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Abstract

Exponential-type upper bounds are formulated for the probability that the maximum of the partial sample sums

of discrete random variables having finite equispaced support exceeds or differs from the population mean by a

specified positive constant. The new inequalities extend the work of Serfling (1974). An example of the results are

given to demonstrate their efficacy.
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1. Introduction

Serfling (1974) has obtained upper bounds for the probability that the sum of observations sampled without re-

placement from a finite population exceeds its expected value by a specified quantity. Serfling (1974) also noted

that his bound is crude due to the incorporation of the coarse variance upper bound σ2 < (b − a)2/4 and has

suggested that “it would be desirable to obtain a sharpening of this result involving the quantity σ2 in place of

the quantity (b − a)2/4.” While this problem remains unsolved, we attempt to at least partially fulfill Serfling’s

suggestion. In order to do this we tighten his inequality bound by restricting ourselves to a particular class of

discrete distributions. The general problem which we address may be stated as follows.

Consider a finite population of size N whose members are not necessarily distinct. Let the setΩN = {x1, x2, . . . , xN}
be the set representation of this population. Denote by X1, X2, . . . , Xn the values of a sample of size n drawn without

replacement from ΩN . Define the statistics

a = min
1≤i≤N

xi, b = max
1≤i≤N

xi, μ =

N∑
i=1

xi

N
, σ2 =

N∑
i=1

(xi − μ)2/N, (1.1)

and let the sampling fractions be fn = (n − 1)/(N − 1) and gn = (n − 1)/N. We are concerned with the behavior of

the sum

S k =

k∑
i=1

Xi (1.2)

for 1 ≤ k ≤ n. In particular, we derive a new parameter-free upper bounds on the probabilities

Pn(ε) = P[S n − nμ ≥ nε] (1.3)

and

Rn(ε) = P
[

max
n≤k≤N

S k − kμ
k

≥ ε
]

(1.4)

where ε > 0.

The most familiar upper bound for (1.3) is the Bienayme-Chebyshev inequality, which is of the form

Pn(ε) ≤ (1 − fn)σ2

nε2
. (1.5)
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Serfling (1974) has derived an alternative upper bound for (1.3), which may be expressed as

Pn(ε) ≤ exp

[ −2nε2

(1 − gn)(b − a)2

]
(1.6)

and an alternative bound for a two-sided version of (1.4), which is given as

R∗n(ε) = P
[

max
n≤k≤N

∣∣∣∣∣S k − kμ
k

∣∣∣∣∣ ≥ ε
]
≤ E(S n − nμ)2r

(nε)2r (1.7)

where r is a positive integer.

We then compare our new under bound with these under the following scenario, which is similar to an example

presented by Savage (1961). Suppose one wishes to study the average height of a finite population of people.

Assume that all individuals in the population are between 60 and 78 inches and their heights are measured to the

nearest inch. The question we wish to answer is, “What is the probability that the average height of a sample of

100 from a population of 4,000 individuals is within two inches of the population mean height?”

The main vehicle we utilize for the sharpening of inequalities (1.6) and (1.7) is the additional assumption that the

random variables given by

(Xi|X1, . . . , Xi−1) for i = 1, . . . , n

are discrete random variables with probability functions having finite, equispaced support, and whose variance is

bounded above by the discrete uniform variance. The remainder of the paper is as follows. In Section 2 we give

some mathematical preliminaries while in Section 2.1 we derive the main inequality results. Finally, in Section 3

we present the before mentioned application of the newly-derived probability bounds.

2. The Set Va,b,J

From this point forward we work almost exclusively with an equispaced set of J points in the interval [a, b]

beginning at a and ending at b. We denote the set as

Ωa,b,J = {a, a + c, a + 2c, . . . , a + (J − 1)c}
where b = a + (J − 1)c and c = b−a

J−1
. We refer to J as the support size. As before X1, X2, . . . , Xn denote the values

of a sample of size n drawn without replacement from Ωa,b,J and S k =
∑k

i=1 Xi.

To sharpen the inequalities (1.6) and (1.7) we work with probability distributions that have a variance bounded by

the variance of a discrete uniform probability distribution. This leads us to the following definition.

Definition 2.1 Let Va,b,J be the set of probability functions f with support on Ωa,b,J such that for a random variable

X having probability function f the variance is bounded as per

Var f (X) ≤ J + 1

J − 1

(b − a)2

12
.

Remark 2.2 For f ∈ Va,b,J , the above bound on Var f (X) is simply the variance of a discrete uniform probability

function on Ωa,b,J .

Remark 2.3 The definition for Va,b,J , although appearing somewhat restrictive, still allows for a broad and rich

range of distributions. In particular, it applies to a broad range of discrete unimodal distributions.

2.1 Probability Inequalities for Va,b,J

In this section we derive a new maximal probability inequality for sums of discrete unimodal random variables

sampled without replacement from a set of probability functions belonging to Va,b,J . We shall need the following

lemmas, theorems, and corollaries to develop the new maximal probability inequality. We now develop two lemmas

which are used in the proof of the main theorem.

Lemma 2.4 Let X be a random variable with probability function in Va,b,J and let E(X) = μ. Then for any λ ≥ 0

we have
E[eλ(X−μ)] ≤ exp[α(eλd − λd − 1)],

where d = b − a and α = J+1
J−1

1
12

.
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Proof. Let Z = X − μ and notice that

E[eλZ] = 1 +

∞∑
j=1

λ j

j!
E[Z j] = 1 +

∞∑
j=2

λ j

j!
E[Z j], (2.1)

since E[Z] = 0. Now let f be the probability function for X. Then for any j ≥ 2 we have

E[Z j] =

b∑
x=a

(x − μ) j f (x)

≤
b∑

x=a

d j−2(x − μ)2 f (x) since x − μ ≤ d

= d j−2
b∑

x=a

(x − μ)2 f (x)

= d j−2Var f (X)

≤ d j−2 J + 1

J − 1

d2

12
since f ∈ Va,b, f

≤ J + 1

J − 1

d j

12
.

Substituting the result E[Z j] ≤ J+1
J−1

d j

12
into (2.1), we get

E[eλZ] ≤ 1 +

∞∑
j=2

λ j

j!
J + 1

J − 1

d j

12
= 1 +

J + 1

J − 1

1

12

∞∑
j=2

λ jd j

j!

= 1 + α

∞∑
j=2

λ jd j

j!

= 1 + α[eλd − λd − 1]

≤ exp[α(eλd − λd − 1)].

�
Corollary 2.5 Let X be a random variable with probability function in Va,b,J and let E(X) = μ. Then for any λ ≥ 0

we have
E[eλ(X−μ)] ≤ exp[βλ2r(λ, d)],

where d = b − a, β = J+1
J−1

(b−a)2

12
, and r(λ, d) =

∑∞
j=2
λ j−2d j−2

j! .

Proof. By Lemma 2.4, we have

E[eλ(X−μ)] ≤ exp

[
1

12

J + 1

J − 1
(eλd − λd − 1)

]
.

Thus,

exp

[
1

12

J + 1

J − 1
(eλd − λd − 1)

]
= exp

⎡⎢⎢⎢⎢⎢⎢⎣ 1

12

J + 1

J − 1

∞∑
j=2

λ jd j

j!

⎤⎥⎥⎥⎥⎥⎥⎦

= exp

⎡⎢⎢⎢⎢⎢⎢⎣ (b − a)2

12

J + 1

J − 1
λ2

∞∑
j=2

λ j−2d j−2

j!

⎤⎥⎥⎥⎥⎥⎥⎦
= exp[βλ2r(λ, d)].

�
The following lemma uses an argument similar to Theorem 2.2 in Sefling’s paper (1974).
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Lemma 2.6 Let ΩN = {x1, x2, . . . , xN} where each xk is in Ωa,b,J. Also let μ =
∑N

k=1
xk
N . If the probability function of

X1 and the conditional probability functions of (Xk |X1, X2, . . . , Xk−1), k = 2, . . . , n are in Va,b,J, then, for any λ ≥ 0

and any n ∈ {1, 2, . . . ,N} we have

E[eλ(S n−nμ)] ≤ exp

[
n

1 − gn

12

J + 1

J − 1
(eλd−λd−1)

]
,

where S n =
∑n

k=1 Xk.

Proof. For λ = 0, the result is obvious. Given λ > 0 let

λk =
N − n
N − k

λ for 1 ≤ k ≤ n.

Notice λk is increasing in k up to λ as k goes from 1 to n.

Because (Xk − μ|Xk−1, . . . X1) ∈ Va,b,J and X1 ∈ Va,b,J letting μk denote the conditional expectation of (Xk −
μ|Xk−1, . . . , X1) we have by Corollary 2.5 that

E[exp(λk(Xk − μ − μk))|Xk−1, . . . , X1] ≤ exp[βλkr(λk, d)] ≤ exp[βλkr(λ, d)] (2.2)

because λk ≤ λ.
Using the conditional independence of the random variables S k−1 and Xk −μ−μk given Xk−1, . . . , X1, we can apply

Corollary 3.6 so that

E[exp(λk(S k − kμ))] = E[exp(λk−1(S k−1 − (k − 1)μ))]E[exp(λk(Xk − μ − μk)) | |Xk−1, . . . , X1]. (2.3)

Combining (2.3) with (2.2) we have that

E[exp(λk(S k − kμ))] ≤ E[exp(λk−1(S k−1 − (k − 1)μ))] exp[βλ2
kr(λ, d)]. (2.4)

Recursively applying (2.4) we get

E[exp(λn(S n − nμ))] ≤ exp[λ2Δnβr(λ, d)], (2.5)

where Δn =
∑n

k=1

[
N−n
N−k

]2
= 1 + (N − n)2∑N−1

k=N−n+1
1
k2 . Next, using that Δn ≤ n(1 − gn) from (2.5) we get

E[exp(λn(S n − nμ))] ≤ exp[λ2n(1 − gn)βr(λ, d)].

Replacing r(λ, d) with eλd−λd−1
λ2d2 we have

E[exp(λn(S n − nμ))] ≤ exp[λ2n(1 − gn)β eλd−λd−1
λ2d2 ]

= exp

[
n

1 − gn

12

J + 1

J − 1
(eλ−λd−1)

]
.

�
Theorem 2.7 Let Xk, S k, and μ be as before, then for any ε, λ > 0 we have

E[exp(λ(S n − nμ − nε))] ≤ exp

{
−n
[(

d(1 − gn)(J + 1) + 12(J − 1)ε

12(J − 1)d

)
ln

(
12(J − 1)ε

(1 − gn)(J + 1)d
+ 1

)
− ε

d

]}

Proof. First note that by the Lemma 2.6 we have

E[exp(λ(S n − nμ − nε))] = e−λnεE[eλ(S n−nμ)].

≤ e−λnε exp[α(eλd − λd − 1)] where α = n
1 − gn

12

J + 1

J − 1

= exp[α(eλd − λd − 1) − λnε]. (2.6)

In terms of λ, (2.6) is minimized when g(λ) = α(eλd − λd − 1) − λnε is minimized, which occurs at

λ∗ =
1

d
ln
[ nε
αd
+ 1
]
. (2.7)
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Substituting the value in (2.7) into (2.6) we get

exp[α(eλ
∗d − λ∗d − 1) − λ∗nε]

= exp
{
α
[ nε
αd
+ 1 − ln

( nε
αd
+ 1
)
− 1
]
− nε

d
ln
( nε
αd
+ 1
)}

= exp
{
−
(
α +

nε
d

)
ln
( nε
αd
+ 1
)
+

nε
d

}

Substituting for α we get

= exp

{
−
[
n

1 − gn

12

J + 1

J − 1
+

nε
d

]
ln

[
12

1 − gn

J − 1

J + 1

ε

d
+ 1

]
+

nε
d

}

=exp
{
−n
[(

d(1−gn)(J+1)+12(J−1)ε
12(J−1)d

)
ln
(

12(J−1)ε
(1−gn)(J+1)d + 1

)
− εd
]}
.

�
2.2 Main Result

We now give the main result of the paper in the following theorem.

Theorem 2.8 For any ε > 0 and λ > 0 we have

Rn(ε) := P
(

max
n≤k≤N

S k − kμ
k

≥ ε
)

≤ exp
{
−n
[(

d(1−gn)(J+1)+12(J−1)ε
12(J−1)d

)
ln
(

12(J−1)ε
(1−gn)(J+1)d + 1

)
− εd
]}

Proof. By Proposition 3.4, we see that

Rn(ε) = P
(

max
n≤k≤N

S k − kμ
k

≥ ε
)

≤ e−λεE
[
exp
(
λ S n−nμ

μ

)]
= E
[
exp
(
λ
n (S n − nμ − nε)

)]
≤ exp

{
−n
[(

d(1−gn)(J+1)+12(J−1)ε
12(J−1)d

)
ln
(

12(J−1)ε
(1−gn)(J+1)d + 1

)
− εd
]}
,

because Theorem 2.7 holds for any λ > 0 (here λn ). �
As per (1.3) we have

Pn(ε) = P(S n − nμ ≥ nε).

Noting that Pn(ε) ≤ Rn(ε) and applying Theorem 2.8 we get the following corollary.

Corollary 2.9 For any ε > 0 we have

Pn(ε) ≤ exp
{
−n
[(

d(1−gn)(J+1)+12(J−1)ε
12(J−1)d

)
ln
(

12(J−1)ε
(1−gn)(J+1)d + 1

)
− εd
]}
.

From (1.6) we have

R∗n(ε) = P
[

max
n≤k≤N

∣∣∣∣∣S k − kμ
k

∣∣∣∣∣ ≥ ε
]
.

Observe that

R∗n(ε) = P
[

max
n≤k≤N

S k − kμ
k

≥ ε
]
+ P
[

max
n≤k≤N

−S k − kμ
k

≥ ε
]
.

Applying Theorem 2.8 to the above we get the following corollary.

Corollary 2.10 For any ε > 0,

R∗n(ε) ≤ 2 exp
{
−n
[(

d(1−gn)(J+1)+12(J−1)ε
12(J−1)d

)
ln
(

12(J−1)ε
(1−gn)(J+1)d + 1

)
− εd
]}
.
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3. An Application

Corollaries 2.9 and 2.10 give parameter-free maximal inequalities which are shaper than Serfling’s (1974) inequali-

ties given in (1.6) and (1.7), respectively. Of course this fact is not surprising because we are utilizing the additional

assumption that X1, X2, . . . , Xn belong to the set of probability distributions whose variance is bounded by the vari-

ance of the discrete uniform distribution as described in Definition 2.1. However, the extent of the improvement

can be substantial as demonstrated by the following example.

Consider the following scenario, which is similar to an example presented by Savage (1961). Suppose one wishes

to study the average height of a finite population of people. Assume that all individuals in the population are

between 60 and 78 inches and their heights are measured to the nearest inch. The question we wish to answer is,

“What is the probability that the average height of a sample of 100 from a population of 4,000 individuals is within

two inches of the population mean height?”

One possible solution is to apply the Bienayme-Chebyshev inequality given in (1.5), where σ2 is replaced by the

maximum possible variance of distributions with support on Ω60,78,19, which for this problem is 81. This solution

gives

P[|X̄ − μ| ≤ 2] ≥ .8025. (3.1)

A second possible solution to this example is to apply the probability inequality (1.6) given by Serfling (1974) and

assumes only finite support of a discrete random variable. For our example, (1.6) yields

P[|X̄ − μ| ≤ 2] ≥ .9205. (3.2)

If we make the additional and, in this case, reasonable assumption that the probability functions of X1, X2, . . . Xn

are from V60,78,19, then we may apply Chebyshev’s inequality with variance bound given in Definition 2.1. This

method yields

P[|X̄ − μ| ≤ 2] ≥ .9268. (3.3)

Applying the newly-derived inequality given in Corollary 2.9, we get the following result

P[|X̄ − μ| ≤ 2] ≥ .9936. (3.4)

Clearly, inequality (3.4) not only yields a better bound than inequalities (3.1), (3.2), and (3.3), but, moreover,

considerably increases the degree of improvement.

As an extension of the above example, let the amount of error, ε, between X̄ and μ be arbitrary, but retain all

other values in the example. Figure 1 demonstrates the sharpening of Serfling’s (1974) inequality in (1.6) by the

inequality given in Corollary 2.9 across values of ε from 0 to 3.

Figure 1. Comparison of our bound (OB) to Serfling’s bound (SB) over value of ε from 0 to 3
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Appendix

Here we present some results that are mostly standard, but are complied here for ease of reference. We begin with

a brief review of martingales including some results pertinent to this work.

1. Martingales

In the proofs of the results for this paper we need a few results about submartingales, in particular, reverse sub-

martingales. We present the necessary results here for ease of reference. For a more indepth treatment of this

subject see Feller (1966). For our purposes we will use the following definitions for martingales, submartingales,

reverse martingales, and reverse submartingales.

Definition 1 Let {Zk} be a a sequence of random variables such that E(|Zk |) < ∞. We say {Zk} is a martingale if

E[Zk |Zk−1,Zk−2, . . . ] = Zk−1 for all k. We say {Zk} is a submartingale if E[Zk |Zk−1,Zk−2, . . . ] ≥ Zk−1 for all k. We

say {Zk} is a reverse martingale if E[Zk |Zk+1, Zk+2, . . . ] = Zk+1 for all k. We say {Zk} is a reverse submartingale if

E[Zk |Zk+1,Zk+2, . . . ] ≥ Zk+1 for all k.

We now present several results which exploit these properties.

Proposition 2 Let {Zn}Nn=1
be a sequence of non-negative reverse submartingales, i.e.

E[Zn|Zn+1, . . . ,ZN] ≥ Zn+1.

Then for any c ≥ 0 we have

cP
[

max
n≤k≤N

Zk ≥ c
]
≤ E[Zn].

Proof. Let F = {maxn≤k≤N Zk ≥ c}. Then F can be expressed as the disjoint union of

FN = {ZN ≥ c}
FN−1 = {ZN < c} ∩ {ZN−1 ≥ c}
FN−2 = {ZN < c} ∩ {ZN−1 < c} ∩ {ZN−2 ≥ c}
...

Fn = {ZN < c} ∩ · · · ∩ {Zn+1 < c} ∩ {Zn ≥ c}
Now observe for each k = n, . . . ,N,

E[Zn ; Fk] = E(E[Zn|Zn+1, . . . ,ZN] ; Fk)

≥ E[Zk ; Fk] since {Zn} is a reverse submartingale

≥ cP(Fk) since Zk ≥ c on Fk.

Summing over all k we get
N∑

k=n

E[Zn ; Fk] ≥
N∑

k=n

cP(Fk)

or, equivalently,

E[Zn ; F] ≥ cP(F) since F =
N⋃

k=n

Fk.

Therefore,

E[Zn] ≥ E[Zn ; F] ≥ cP(F) = cP
(

max
n≤k≤N

Zk ≥ c
)
,

which yields the desired result. �
Remark 3 If {Zk} is a reverse martingale, then applying Jensen’s inequality immediately gives us that in{eλZk } is a

reverse submartingale for any λ > 0.

Proposition 4 Let {Zk}Nk=1
be a reverse martingale, i.e.

E[Zk |Zk+1,Zk+2, . . . ] = Zk+1.

82



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 4; 2013

For any ε > 0 and λ > 0 we have

P
(

max
n≤k≤N

Zk ≥ ε
)
≤ E(eλZn )

eλε
.

Proof. By Remark 3, {eλZk } is a reverse submartingale. Now using c = eλε in Proposition 2 we have

P
(

max
n≤k≤N

eλZk ≥ eλε
)
≤ E(eλZn )

eλε
. (A.1)

Combining (A.1) with the fact that

P
(

max
n≤k≤N

eλZk ≥ eλε
)
= P
(

max
n≤k≤N

Zk ≥ ε
)
,

we get the desired result. �
2. Finite Population Drawn Without Replacement

Here, we present some results which will aid us in our quest for sharpening of inequalities (1.6) and (1.7). These

results were first used without proof in Serfling’s paper (1974). We give proofs here for the sake of completeness.

We work under the same set-up as presented in Section 1. That is ΩN = {x1, x2, . . . , xN} is a finite population of

size N, the members of which are not necessarily distinct. Also X1, X2, . . . , Xn denote the values of a sample of

size n drawn without replacement from ΩN and S k is the sum of the first k samples, as in (1.2). We also take μ as

in (1.1).

Proposition 5 Let μk ≡ (Xk − μ|X1, X2, . . . , Xk−1). Then,

μk = −S k−1 − (k − 1)μ

N − (k − 1)
. (A.2)

Proof. For k = 1, 2, . . . ,N − 1, let

Tk ≡ S k − kμ
k

and T ∗k ≡
S k − kμ
N − k

.

One can easily check that Tk is a reverse martingale and T ∗k are martingales Serfling (1974). That is,

E[Tk |Tk+1, . . . , TN−1] = Tk+1, 1 ≤ k ≤ N − 2

and

E[T ∗k |T ∗k−1, . . . ,T
∗
1 ] = T ∗k−1, 2 ≤ k ≤ N − 1.

To prove (A.2) note that

T ∗k = E[T ∗k+1 | T ∗k , . . . T ∗1 ]

= E
[
S k+1 − (k + 1)μ

N − k − 1
|T ∗k , . . .T ∗1

]

=
N − k

N − k − 1
E
[
S k+1 − (k + 1)μ

N − k
|T ∗k , . . . T ∗1

]

=
N − k

N − k − 1
E
[

Xk+1 − μ + S k − kμ
N − k

|T ∗k , . . .T ∗1
]

=
N − k

N − k − 1

(
E
[Xk+1 − μ

N − k
|T ∗k , . . . T ∗1

]
+ E
[
S k − kμ
N − k

|T ∗k , . . .T ∗1
])

=
N − k

N − k − 1

(
1

N − k
E
[
Xk+1 − μ | Xk, . . . X1

]
+ E
[
T ∗k |T ∗k , . . . T ∗1

])

=
N − k

N − k − 1

(
1

N − k
μk+1 + T ∗k

)
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Thus,

T ∗k =
μk

N − k − 1
+

(N − k)T ∗k
N − k − 1

. (A.3)

Multiplying both sides of (A.3) by N − k − 1, we get

(N − k − 1)T ∗k = μk+1 + (N − k)T ∗k

or T ∗k = −μk+1. Therefore (A.2) holds. �
In the next corollary utilizes a nonobvious recursive relationship between the S k’s.

Corollary 6 For a fixed integer any λ > 0, let λk =
N−n
N−k for 1 ≤ k ≤ n. Then

λk(S k − kμ) = λk−1[S k−1 − (k − 1)μ] + λk(Xk − μ − μk) (A.4)

for k = 2, 3, . . . ,N.

Proof. Using (A.2), we have that

λk−1[S k−1 − (k − 1)μ] + λk(Xk − μ − μk)

= λ
N − n

N − (k − 1)

[
S k−1 − (k − 1)μ

]
+ λ

N − n
N − k

[
Xk − μ + S k−1 − (k − 1)μ

N − k + 1

]

= λ(N − n)

[
S k−1 − (k − 1)μ

N − (k − 1)
+

Xk − μ
N − k

+

(
1

N − k

)
S k−1 − (k − 1)μ

N − k + 1

]

= λ(N − n)

[(
N − k + 1

N − k

) (
S k−1 − (k − 1)μ

N − (k − 1)

)
+

Xk − μ
N − k

]

= λ
N − n
N − k

[
S k−1 − (k − 1)μ + Xk − μ]

= λk[S k − kμ],

which yields (A.4). �
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