
International Journal of Statistics and Probability; Vol. 2, No. 2; 2013

ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

A Note on Bivariate Smoothing for Two-Dimensional

Functional Data

Andrada E. Ivanescu1

1 Department of Biostatistics, East Carolina University, Greenville NC 27834, USA

Correspondence: Andrada E. Ivanescu, Department of Biostatistics, East Carolina University, Greenville NC

27834, USA. Tel: 1-252-744-6042. E-mail: ivanescua@ecu.edu

Received: April 1, 2013 Accepted: April 22, 2013 Online Published: April 25, 2013

doi:10.5539/ijsp.v2n2p102 URL: http://dx.doi.org/10.5539/ijsp.v2n2p102

Abstract

In this paper we study a bivariate smoothing approach for estimating multiple functional parameters for functional

data with a two-dimensional domain. We present a penalized regression framework for smoothing with the purpose

to: (a) facilitate the estimation of the smooth overall bivariate mean function of two-dimensional functional data,

(b) enable the estimation of the functional effect of a scalar covariate, (c) accommodate completely or incompletely

sampled data, (d) implement the fitting approach using available statistical software, and (e) construct pointwise

approximate confidence intervals for multiple bivariate functional parameters. Implementation results from simu-

lation studies show that these methods perform very well in practice. We illustrate the usefulness of the bivariate

smoothing approach to several real datasets, including applications to electricity demand.

Keywords: bivariate functional parameters, bivariate splines, functional data analysis, mixed model, penalized

regression, two-dimensional domain

1. Introduction

We study a statistical framework for smooth function estimation for functional data observed on a two-dimensional

domain. Two-dimensional functional data are recorded in many disciplines and examples include human mortality

rates (Gervini, 2010) and gel proteomic samples (Morris, Baladandayuthapani, Herrick, Sanna, & Gutstein, 2011).

Analyzing two-dimensional functional data is a research area of dynamic interest. In this paper we examine a

fitting approach for multiple smooth bivariate functional parameters.

We observe for the ith sample the data values [{Yi(ti j, siκ)} jκ,Wi], where Yi(ti j, siκ) is the observed outcome at points

ti j ∈ T and siκ ∈ S, Wi is a scalar covariate, and (t, s) ∈ T × S, where T and S are intervals on the real line. We

consider the following model for the ith observed outcome:

Yi(ti j, siκ) = Wiγ(ti j, siκ) + f (ti j, siκ) + εi(ti j, siκ), (1)

for 1 ≤ i ≤ n, 1 ≤ j ≤ mi and 1 ≤ κ ≤ qi. The bivariate mean function is modeled semi-parametrically (Ruppert,

Wand, & Caroll, 2003; Wood, 2006) and comprises of two components: a linear function Wiγ(·, ·) to account for

the scalar covariate Wi and an overall nonparametric function f (·, ·). The bivariate functional parameters f and γ
are assumed smooth, and the errors εi are mean zero random processes. The model parameter γ(t, s) is the bivariate

functional coefficient of the scalar covariate and captures the effect of Wi varying smoothly on the two-dimensional

domain (t, s).

We wish to estimate f and γ in the setting of model (1). While the estimation of the overall mean function f has

received some attention in the context of two-dimensional functional data, see Gervini (2010), the simultaneous

estimation of both f and γ in the setting of model (1) has not been discussed. Important aspects that are still open

to investigation in the setting of two-dimensional functional data include: estimating the bivariate smooth overall

mean function for completely or incompletely sampled outcomes; incorporating the functional effect of a scalar

covariate; constructing confidence intervals for multiple smooth bivariate functional parameters. Most smoothing

methods for functional data are focused on functional data with a univariate domain (Ramsay & Silverman, 2005;

Ramsay, Hooker, & Graves, 2009), and the use of smoothing methods in the setting of two-dimensional functional

data is currently in the incipient stage. In this paper we undertake a mixed model framework with a fast-fitting

approach to examine these aspects. This provides a statistically coherent analysis for important problems in the

two-dimensional functional data literature.
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The organization of the paper is as follows. Section 2 describes the methods for the bivariate smoothing approach.

Section 3 outlines extensions to incompletely observed data scenarios. Section 4 presents numerical results for the

empirical performance of the smoothing approach. Applications to several real datasets are illustrated in Section

5, and Section 6 is our conclusion.

2. Methods

In this section we describe the statistical modeling and fitting procedures. We begin with expressing model (1) as

an additive model, followed by employing penalized regression and associated mixed model fitting framework. In

this section it is considered that the ith sampled outcome is observed at (ti j, siκ) = (t j, sκ) for all i, where 1 ≤ j ≤ mi

and 1 ≤ κ ≤ qi with mi = m and qi = q for all i. In section 3 we discuss the extension to other designs.

2.1 Statistical Modeling of Bivariate Functional Parameters Using Spline Bases

We express model parameters γ and f using a linear combination of tensor product spline basis functions. In

particular, the parameter γ is represented as γ(t, s) ≈
∑L1

l1=1

∑L2

l2=1
βl1,l2 al1 (t)al2 (s), while f is expanded as f (t, s) ≈∑K1

k1=1

∑K2

k2=1
μk1,k2
φk1

(t)φk2
(s). The bases al1 (·) and φk1

(·) are univariate bases in argument t, al2 (·) and φk2
(·) are

univariate bases in argument s, and βl1,l2 and μk1,k2
are unknown coefficients corresponding to the tensor products

al1 (·)al2 (·) and φk1
(·)φk2

(·), respectively. So, the term Wiγ(t, s) can be represented as
∑L1

l1=1

∑L2

l2=1
βl1,l2ψl1,i(t)ψl2,i(s),

where ψl1,i(t)ψl2,i(s) = al1 (t)al2 (s)Wi.

Model (1) can thus be represented as an additive model:

Yi(t, s) =

L1∑
l1=1

L2∑
l2=1

βl1,l2ψl1,i(t)ψl2,i(s) +

K1∑
k1=1

K2∑
k2=1

μk1,k2
φk1

(t)φk2
(s) + εi(t, s), (2)

where ψl1,i(t)ψl2,i(s) and φk1
(t)φk2

(s) are known quantities because Wi is observed and the bases al1 (·), al2 (·), φk1
(·)

and φk2
(·) are chosen a priori. Functions f and γ are conveyed using rich tensor product bases to plausibly represent

their complexity. The dimension of the bases is defined by choosing a large enough number of basis functions L1,

L2, K1 and K2.

2.2 Penalized Criteria for Fitting Smooth Bivariate Functional Parameters

In order to obtain smooth estimates for f and γ we impose quadratic penalties on their corresponding bases coef-

ficients. Let mi((t, s);β,μ) represent the mean of Yi(t, s), where β is the vector of all parameters βl1,l2 and μ is the

vector of all parameters μk1,k2
. Then the criterion to be penalized is:∑

i, j,κ

||Yi(t j, sκ) −mi((t j, sκ);β,μ)||2 + Pen(β) + Pen(μ) (3)

where Pen(β) and Pen(μ) take the form of quadratic penalties for the bivariate smooths (Wood, 2006). For each

parameter function we use smoothing parameters for both t and s dimensions. The penalty term for γ is Pen(β) =

βT
(
λβ,t Pβ,t + λβ,s Pβ,s

)
β. The penalty term for f is Pen(μ) = μT

(
λμ,t Pμ,t + λμ,s Pμ,s

)
μ. Matrices Pβ,t, Pβ,s, Pμ,t and

Pμ,s have known functional form, are fixed, and depend on the choice of spline bases.

The scalars λβ,t, λβ,s, λμ,t and λμ,s govern the smoothness of the fit and are unknown parameters. Fitting model (3)

calls for estimation of these smoothing parameters, for which we opt for restricted maximum likelihood (REML)

estimation (Reiss & Ogden, 2009) in a chosen mixed model and outline the approach next.

2.3 Mixed Model Representation for Bivariate Smoothing

The penalized criterion with the quadratic penalty choices discussed above is

1

σ2

∑
i, j,κ

||Yi(t j, sκ) −mi((t j, sκ);β,μ)||2 +
λβ,t

σ2
βT Pβ,tβ +

λβ,s

σ2
βT Pβ,sβ +

λμ,t

σ2
μT Pμ,tμ +

λμ,s

σ2
μT Pμ,sμ,

where σ2 is the variance of the errors in model (1). By letting σ2
β,· = σ

2/λβ,· and σ2
μ,· = σ

2/λμ,· and employing the

considerations presented in, for example, Ruppert et al. (2003, sec 4.9), one can establish that the solution to the

penalized criterion (3) is the best linear unbiased predictor in the mixed model

Yi(t, s) ∼ N{mi((t, s);β,μ), σ2};
β ∼ N(0,

(
σ2
β,t Pβ,t + σ

2
β,s Pβ,s

)−1
);

μ ∼ N(0,
(
σ2
μ,t Pμ,t + σ2

μ,s Pμ,s
)−1

),

(4)
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where Pβ,· and Pμ,· are known, and σ2
β,· and σ2

μ,· control the smoothness of the functional parameters. In many

instances the inverse is substituted by a generalized inverse or the coefficients are partitioned into penalized and

unpenalized. This mixed model representation is a useful statistical framework that has several advantages. First,

it provides a fast approach for bivariate smoothing that is carried out using available software. Second, elements of

inference corresponding to mixed model analysis, such as pointwise confidence intervals (Nychka, 1998; Ruppert

et al., 2003), can be obtained for the model parameters. We study pointwise confidence intervals for our bivari-

ate functional parameters when we assume independent and identically distributed errors in model (1). Third,

other design settings can be accommodated using this framework, such as incompletely observed two-dimensional

functional data.

We display how to fit model (4) using statistical software based on REML estimation of the variance components.

We employ the gam() function from the mgcv package (Wood, 2012) in R (R Development Team, 2012).

2.4 Fitting Approach for Bivariate Smoothing via Mixed Models Software

In this section we provide implementation steps for the approach using the mgcv package (Wood, 2012) in R. As

illustrated, model (3) can be viewed as a penalized additive model where the smooth bivariate model parameters

are represented using the tensor product bases al1 (·)al2 (·) and φk1
(·)φk2

(·). These are spline bases and the model fit

can be expressed via the following R code formula syntax:

fit <- gam(Y ˜ te(t,s,by = W) + te(t,s), method = ‘‘REML’’).

We now outline the components involved in the fitting procedure above while explaining the connection to our

model and its notation. For two-dimensional smoothing, the data is organized into column vectors in order to

implement the fitting approach. The observed two-dimensional functional data outcome samples {Yi(t j, sκ)}i jκ are

arranged as a column vector of size nmq, so that the ith sample matrix with observed outcomes containing mq
observations is Y (i) = (Yi(t1, s1),Yi(t2, s1), . . . ,Yi(tm, s1),Yi(t1, s2), . . . , Yi(tm, sq))T . All sample-particular matrices

{Y (i)}i, 1 ≤ i ≤ n are row-stacked to form the column vector Y = (Y (1),Y (2), . . . ,Y (n))T . The next step is to specify the

grid of points in dimensions t and s that correspond precisely to the locations of the observed outcomes. The vector

t = (t(1), t(2), . . . , t(n))T consists of row-stacking n copies of t(i) = (t1, t2, . . . , tm, t1, . . . , tm)T . Similarly, we construct

s = (s(1), s(2), . . . , s(n))T , which consists of row-stacking n copies of s(i) = (s1, s1, . . . , s1, s2, . . . , sq)T . The scalar

covariate Wi is repeated mq times for each i to form the nmq dimensional column vector labeled W. The expression

te(t,s,by = W) thus fits a tensor product of spline basis functions at the grid of points specified in the vectors

t and s while being weighted by the values of the scalar covariates Wi. Without the option by = W the expression

te(t,s) constructs a tensor product of spline basis functions al1 (t)al2 (s), whereas including by = W is taking into

account the weights Wi, thus accounting for the effect of the scalar covariate via its functional coefficient varying

over the t and s dimensions.

Fitting the part of the model that yields a smooth estimate for f (t, s) involves the matrices t and s already con-

structed. Thus, the expression te(t,s) fits a bivariate tensor product spline φk1
(t)φk2

(s) at the grid of points in

the vectors t and s. The details of the gam fit can be adjusted as needed. For example, requiring the use of 10

basis functions for each dimension can be requested by including the term k = 10 so that the expression now is

te(t,s,k = 10).

Using the approach described, the underlying gam fitting procedure equips the user to perform rapid bivariate

smoothing and provides a useful toolbox for obtaining graphical and inferential methods readily accessible.

3. Extension to Incompletely Observed Two-Dimensional Functional Data

Incompletely observed two-dimensional functional data can be accommodated by the procedure described in sec-

tion 2, provided some adjustments are made in the fitting step. In such settings the outcomes {Yi(ti j, siκ)}i jκ, 1 ≤ i ≤
n, are sparsely observed at points {(ti j, siκ)}i jκ over the domain, for 1 ≤ j ≤ mi and 1 ≤ κ ≤ qi. Vectors Y, t, s and

W all have dimension nmiqi and are constructed as follows. The vector of outcomes for the ith sample has dimension

miqi and is constituted as Y (i) = (Yi(ti1, si1),Yi(ti2, si1), . . . , Yi(tmi , si1),Yi(ti1, si2), . . . ,Yi(tmi , siqi ))
T . The sample-

specific matrices {Y (i)}i are row-stacked to form Y = (Y (1),Y (2), . . . ,Y (n))T . Next, the vector labeled t has the form t

= (t(1), t(2), . . . , t(n))T and consists of row-stacking the miqi-dimensional vectors t(i) = (ti1, ti2, . . . , timi , ti1, . . . , timi )
T

for all i. Further, s = (s(1), s(2), . . . , s(n))T is built by row-stacking all the sample-specific vectors of dimension miqi

defined as s(i) = (si1, si1, . . . , si1, si2, . . . , siqi )
T . The vector of covariates W is obtained by taking miqi copies of Wi

and row-stacking these vectors across all n samples. After these matrices are set up, the fitting approach proceeds

as described in section 2. Implementation results obtained for this setting are provided in sections 4 and 5.
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4. Simulation Study

We present numerical results from implementations to simulated data. Empirical performance for the fit of the

estimators was evaluated for completely or incompletely observed two-dimensional data.

4.1 Bivariate Smoothing for One Bivariate Functional Parameter

For each 1 ≤ i ≤ n, we generated densely sampled two-dimensional outcome data according to the model

Yi(t j, sκ) = f (t j, sκ) + εi(t j, sκ), (5)

which were observed on an equally spaced grid with t j = ( j − 1)/m and sκ = (κ − 1)/q, 1 ≤ j ≤ m, 1 ≤ κ ≤ q,

where m = 48, q = 50, and n = 60. The values of m, q and n are chosen similar to the values in real data

applications in sections 5.1 and 5.2. We considered three cases for the error terms: Case R1 where εi(t j, sκ) are

independent and identically distributed N(0, 2); and Cases R2-R3 where εi(t j, sκ) = Zi(t j, sκ) + ei jκ, and where Zi

is a bivariate mean zero stochastic process with variance 1, and ei jκ are i.i.d. N(0, 1). Independent samples Zi(·, ·),
1 ≤ i ≤ n, were simulated, using GaussRF() function in the RandomFields (Schlather, 2012) package, from a

mean zero and variance one Gaussian Random Field with Matérn correlation function with scale parameter ρ and

shape parameter ν = 0.5. We considered two cases: Case R2 ρ = 0.05, and Case R3 ρ = 0.15.

The bivariate mean functional parameter was f (t, s) = 1.6 sin(πs) cos(2πt), which has a similar shape to the

periodic mean function in the application considered in section 5.2. Signal-to-noise ratio defined as SNR1 =

range( f )/[var{ε(t, s)}]1/2 was set to 2.2, where range( f ) = maxT×S{ f (t, s)} − minT×S{ f (t, s)}. Model (5) does not

incorporate the effect of a scalar covariate and thus is a simpler model compared to model (1). Model (5) permits

a comparison of several estimators for f (·, ·), which we discuss next. The first estimator, labeled E1, denotes the

penalized splines estimator obtained by applying methods described in section 2. We facilitate accuracy of the fit

comparisons with other estimators that can be used for estimation of f in the setting of model (5). Tensor products

of cubic B-splines with 100 basis functions (for E1) and 25 basis functions (for E2 and E3) and second-order

difference penalties in both directions were used to fit f (·, ·). The following estimators were computed:

E1. Pen Spl - Penalized splines estimator obtained by applying the methods presented in section 2.

E2. Smooth ensemble - Ensemble average was obtained 1/n
∑n

i=1 Yi(t, s) followed by bivariate smoothing.

E3. Average of smooths - A bivariate smooth estimate for Yi(t, s) was fit for each i. Then, an ensemble average

was computed.

E4. Assemble f̂t - For each fixed t, model (5) was fitted and a univariate penalized spline estimator was obtained.

Then, these estimators were joined along t to form a bivariate estimator f̂ .

E5. Assemble f̂s - For each fixed s, model (5) was fitted and a univariate penalized spline estimator was obtained.

Then, these estimators were joined along s to form a bivariate estimator f̂ .

We provide numerical results for the fit performance, as well as computational time aspects of the fitting proce-

dures used. We computed the integrated mean square error (IMSE), integrated square bias (IBIAS2), and inte-

grated variance (IVAR), where IMSE{ f̂ (t, s)} =
∫
T

∫
S E[{ f̂ (t, s)− f (t, s)}2]dtds, IBIAS2{ f̂ (t, s)} =

∫
T

∫
S[E{ f̂ (t, s)}−

f (t, s)]2dtds, and IVAR{ f̂ (t, s)} =
∫
T

∫
S Var{ f̂ (t, s)}dtds. Here E{ f̂ (t, s)} and Var{ f̂ (t, s)} were estimated by the

empirical mean and variance of f̂ (t, s) in S = 250 simulations.

Results for the fit of the estimation for each method are presented in Table 1 and can be summarized as follows.

The IMSE for the penalized splines estimator E1 was smaller compared to the estimators E2-E5 for all R1-R3

choices. Figure 1 shows that the variability of the ISE of all estimators was comparable, and that the median ISE

of E1 was smaller than for the other estimators. Compared to E4 and E5 estimators, which do not borrow strength

in both t and s domains simultaneously, E1 performed better, as illustrated by smaller ISE; see Figure 1. IMSE

was smaller for the case R1 of the errors. For the case of non-i.i.d. errors (cases R2 and R3) IMSE increased

for all estimators, but E1 still outperformed E2-E5 estimators. Comparable IVAR among E1, E2 and E3 may be

achieved for case R1 provided a similar number of basis functions is used for model fitting. For cases R2 and R3,

the methods E1 and E3 display undersmoothing (of similar degree) compared to the uncorrelated errors case, and

thus have larger IVAR compared to case R1. Bivariate smoothing is typically slow, but our approach was fast:

about 11 seconds for the analysis of 60 two-dimensional data objects. Computational time considerations reveal

that E1 is computationally fast compared to the other approaches; compare the average time over 250 model fits:

E1 [11.8 sec], E2 [1.2 sec], E3 [101.4 sec], E4 [59.8 sec], E5 [57.4 sec].
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Table 1. Estimation results for the fit of the estimators for f (·, ·). Scenario: m = 48, q = 50, S NR1 = 2.2, section

4.1 simulation setting. Results are based on 250 simulations

n = 60

(×100)√
IMS E

√
IVAR

√
IBIAS 2

Case R1
E1. Pen Spl 4.37 2.55 3.55

E2. Smooth ensemble 5.47 1.84 5.15

E3. Average of smooths 5.97 1.54 5.77

E4. Assemble f̂t 5.64 5.58 0.83

E5. Assemble f̂s 6.75 6.50 1.80

Case R2
E1. Pen Spl 6.75 5.93 3.23

E2. Smooth ensemble 8.08 6.21 5.17

E3. Average of smooths 7.94 5.94 5.26

E4. Assemble f̂t 9.21 9.16 0.92

E5. Assemble f̂s 10.30 10.16 1.73

Case R3
E1. Pen Spl 10.38 9.83 3.34

E2. Smooth ensemble 11.35 10.08 5.23

E3. Average of smooths 11.25 9.94 5.26

E4. Assemble f̂t 11.55 11.49 1.17

E5. Assemble f̂s 12.35 12.20 1.94

Figure 1. Displayed are boxplots of
√

IS E corresponding to estimators E1 - E5 for f . Columns correspond to

cases R1, R2 and R3. Scenario: m = 48, q = 50, n = 60, S NR1 = 2.2, section 4.1 simulation setting. Results are

based on 250 simulations

4.2 Bivariate Smoothing for Two Bivariate Functional Parameters

We generated two-dimensional functional outcomes according to model (1), where Wi was a binary variable such

that Wi = 1{Ui ≥ 0.75}, with Ui ∼ Uniform(0, 1), where n = {30, 60}. We considered the equally spaced grid

design used in section 4.1. We generated εi(t, s) for cases R1 - R3 as in section 4.1.
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For the bivariate functional parameters we set γ(t, s) = sin(πs) cos(2πt) and f (t, s) = 1.5 exp−8s2

+0.6 exp−8t2

, so

that γ and f have comparable range. Our choice for f (·, ·) was motivated by the shape of the mean function for

the application in section 5.3. Signal-to-noise ratio defined as SNR2 = range(.75γ + f )/[var{ε(t, s)}]1/2 was set to

2.2. Because of the presence of the scalar covariate, only the estimators E1, E4 and E5 are employed for fitting

model (1). Empirical results corresponding to the accuracy of the fit are presented in Table 2. Results show that

the penalized splines estimator E1 outperformed the estimators E4 and E5 for both f and γ, for R1-R3 choices

and for both n choices. The advantage of E1 was especially evident for case R1 of the errors. As n increased,

the IMSE decreased, which indicates that the penalized splines estimator is consistent. E1 provides a smooth fit

compared to the E4 and E5 estimators, which do not borrow strength in both t and s domains; see Figure 2 for

the visual representation of the estimators E1, E4 and E5 for f (·, ·). Methods E4 and E5 comport like unpenalized

(least squares) estimators in one of the two dimensions and thus sometimes yield slightly smaller IBIAS than E1,

which is a penalized estimator in both t and s dimensions.

Figure 2. Estimates for the bivariate functional parameter f : true function (black: top left panel), E1 (gray: top

right panel), E4 (gray: bottom left panel) and E5 (gray: bottom right panel). Scenario: m = 48, q = 50, n = 60,

Case R1, section 4.2 simulation setting

Table 2. Estimation results for γ(·, ·) and f (·, ·) bivariate functional parameters. Scenario: m = 48, q = 50,

S NR2 = 2.2, section 4.2 simulation setting. Results are based on 250 simulations

n = 30 n = 60

γ(t, s) f (t, s) γ(t, s) f (t, s)
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2

(×100)

Completely observed data

Case R1
E1. Pen Spl 5.69 5.01 2.69 4.49 3.94 2.16 5.38 4.74 2.55 3.76 3.34 1.72

E4. Assemble γ̂t , f̂t 17.34 15.98 6.74 15.62 14.14 6.63 12.20 11.46 4.17 11.04 10.14 4.37

E5. Assemble γ̂s , f̂s 16.15 15.93 2.64 13.22 13.03 2.23 11.80 11.61 2.09 9.67 9.45 2.06

Case R2
E1. Pen Spl 23.60 23.47 2.44 20.12 20.04 1.84 15.13 14.88 2.74 11.51 11.34 1.96

E4. Assemble γ̂t , f̂t 26.07 25.63 4.76 23.04 22.59 4.52 18.88 18.61 3.14 16.77 16.46 3.22

E5. Assemble γ̂s , f̂s 26.56 26.42 2.73 22.36 22.30 1.60 19.15 19.04 2.04 15.91 15.85 1.42

Case R3
E1. Pen Spl 34.37 34.27 2.60 29.93 29.85 2.10 23.51 23.33 2.86 19.69 19.57 2.25

E4. Assemble γ̂t , f̂t 34.58 34.28 4.56 30.53 30.24 4.26 24.95 24.76 3.08 22.04 21.81 3.19

E5. Assemble γ̂s , f̂s 35.08 34.95 3.03 30.13 30.07 1.89 25.17 25.06 2.35 21.43 21.36 1.73

4.3 Incompletely Observed Two-Dimensional Data

The bivariate smoothing method studied in this paper can be applied to incompletely two-dimensional sampled

data. In this section we present a brief evaluation of the accuracy of the fit in such scenarios. Data was generated as
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described in section 4.2 for Case R1. We randomly selected and kept sixty percent of the generated outcome data

and this set of data was used as input values for model fitting. The approach described in section 3 was applied.

Results for the fit of the estimators show that accuracy in estimation is affected by the sparsity in the data, but not

by much; compare IMSE, IVAR and IBIAS columns in Table 3 to results in Table 2 for Case R1. As the number

of samples n increased, the estimation accuracy improved, as expected; see IMSE columns in Table 3.

Table 3. Estimation results for estimator E1 for γ(·, ·) and f (·, ·) for incompletely observed two-dimensional data.

Scenario: m = 48, q = 50, S NR2 = 2.2, section 4.3 simulation setting. Results are based on 250 simulations

n = 30 n = 60

γ(t, s) f (t, s) γ(t, s) f (t, s)
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2
√

IMS E
√

IVAR
√

IBIAS 2

(×100)

Incompletely observed data

Case R1 6.85 6.22 2.87 5.55 4.92 2.57 6.40 5.79 2.72 4.56 4.04 2.11

4.4 Confidence Intervals for Smooth Bivariate Functional Parameters

One advantage of the fitting approach discussed in section 2 is obtaining pointwise confidence intervals for the

model parameters as a consequence of the mixed model fitting procedure. We considered the same data gener-

ating process as in section 4.2 and Case R1. To characterize the properties of the pointwise confidence intervals

we computed the integrated actual pointwise coverage (IAC) and integrated actual width (IAW). For the case of

f (·, ·), IAC = E[
∫
T

∫
S 1{ f̂ (t, s) ∈ CIp(t, s)}dtds]. An approximate 95% pointwise confidence interval CIp(t0, s0)

for f (t0, s0) can be constructed as f̂ (t0, s0) ± 1.96 ŝd{ f̂ (t0, s0)}. Since f̂ (t0, s0) =
∑K1

k1=1

∑K2

k2=1
μ̂k1,k2
φk1

(t0)φk2
(s0),

for every (t0, s0), we obtain ŝd{ f̂ (t0, s0)} =
√
φk1

(t0)φk2
(s0)Σ̂

[
φk1

(t0)φk2
(s0)
]T

, where Σ̂ is the estimated covariance

matrix of μ̂. We used the Bayesian posterior covariance matrix (Ruppert et al. 2003). The length of this confidence

interval was 3.92 ŝd{ f̂ (t0, s0)} and IAW = E[3.92
∫
T

∫
S ŝd{ f̂ (t, s)}dtds]. Empirical coverage results are presented

in Table 4. The nominal level was set to 0.95.

Table 4. Results for pointwise approximate confidence intervals. Displayed are IAC(IAW) results for 95% nominal

confidence level. Scenario: m = 48, q = 50, S NR2 = 2.2, Case R1, section 4.4 simulation setting. Results are

based on 250 simulations

γ(t, s) f (t, s)

n = 30 0.97 (0.47) 0.97 (0.41)

n = 60 0.97 (0.44) 0.97 (0.38)

Table 4 results can be summarized as follows. The pointwise confidence intervals had a coverage probability ex-

ceeding the nominal level. As the number of samples n increased, the width of the intervals decreased for both

parameter functions, while maintaining IAC above the nominal level. In conclusion, for Case R1, the pointwise ap-

proximate confidence intervals for the bivariate functional parameters had narrow width and achieved or exceeded

the nominal coverage level.

5. Applications

We applied the bivariate smoothing methods discussed in section 2 to several real datasets. Implementations to

datasets on electric energy demand, temperature and human mortality are presented.

5.1 Application to Electric Energy Demand in Adelaide, Australia

Electricity is an energy support for human progress. Electricity demand fluctuates as it is influenced by con-

sumption patterns according to business hours, outside temperature and other weather conditions. Understanding

electricity demand is useful for planning optimal electric energy supply depending on various factors, such as, time

of day and week of year. Our goal is to estimate the electric energy demand patterns in Adelaide, Australia, as

function of time of day t and week s. We use the Electricitydemand data, which is part of the functional datasets

fds package (Shang & Hyndman, 2012) in R, and comprises of electricity demand recordings, in megawatts, that

span the calendar years 1998 - 2006. Following the notations in section 2, Yi(t, s) corresponds to the electricity

demand for ith day at half-hourly time of day t and week of year s. We estimate the mean function f (·, ·) and

the functional coefficient γ(·, ·) of weekend, where Wi = 1{weekend day}, for 1 ≤ i ≤ n, from data consisting of

n = 63 (corresponding to data for the seven days of the week, for nine years) two-dimensional data samples. The
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two-dimensional domain is T × S, where t ∈ T = {1, 2, . . . , 48} corresponds to 48 half-hourly time points during

the course of a day, starting with the first half-hour after midnight, and where s ∈ S = {1, 2, . . . , 52} corresponds

to the week of year, starting with the first week in January.

Figure 3. Electric energy demand data. Estimated overall mean electricity demand (left panel) and estimated

functional coefficient corresponding to weekend days (right panel)

We applied the methods presented in section 2 to obtain smooth f̂ and γ̂. Tensor products of cubic B-splines with

64 basis functions and second-order difference penalties in both directions were used to fit f (·, ·) and γ(·, ·). Results

show that over the course of the year, the mean electricity demand was high for the beginning and end-year weeks

(Australian summer) and in the mid-year weeks (Australian winter); see Figure 3. Over the course of the day, the

electricity demand was higher during mid-day, at around half-hour 30. During the early morning and late evening

hours of the day, more electricity was demanded during mid-year (Australian winter); this may be due to the use

of heating for homes during the night hours. During mid-day more electricity was demanded during first and last

weeks (Australian summer). The effect of weekend on the electricity demand resulted in a decrease by as much

as 300 megawatts; see Figure 3. This decrease is more pronounced for the mid-day hours of the weekend, around

half-hours 20 - 30, throughout the year. The mean width of the 95% pointwise confidence intervals was 17.7

for f and 32.9 for γ. Figure 3 displays information about the pointwise confidence intervals for γ: bright green

corresponds to effects that were approximately 2 standard errors above -100, and bright blue corresponds to effects

that were approximately 2 standard errors below -100.

5.2 Application to Temperature Patterns in Adelaide, Australia

Adelaide, Australia has an overall mild climate year-round. In this region, winter corresponds to the mid-year

months, while the summer months occur during the weeks at the beginning and end of the year. The goal was to

estimate the mean temperature pattern as a function of half-hourly time of day t and week s. Data tempkent, which

is available in the functional datasets fds package (Shang & Hyndman, 2012) in R, was used for this purpose. The

two-dimensional domain T × S in this application was the same as in the application to electricity demand. Here

Yi(t, s) denotes the temperature in degrees Celsius recorded for ith day at time of day t and week s. We applied

the methodology in section 2 to estimate f (·, ·) using n = 63 two-dimensional data samples (corresponding to 7

days of week for years 1998 - 2006). Scalar covariates were not considered in this application. Tensor products

of cubic B-splines with 100 basis functions and second-order difference penalties in both directions were used to

fit f (·, ·). The estimator is illustrated in Figure 4. The features can be summarized as follows. Warm average

temperature of about 27 degrees Celsius was observed for the beginning and end weeks of the year (Australian

summer), especially during mid-day at half-hours 20 - 30. The mid-year weeks registered a decreased average

temperature with a minimum average temperature of about 10 degrees Celsius during the beginning and evening

hours of the day. The mean width of the 95% pointwise confidence intervals for f was 0.21.
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Figure 4. Temperature data. Smooth estimate for the overall bivariate functional mean temperature

5.3 Application to Australian Human Mortality Data

Data on human mortality for seven regions in Australia was used in this implementation. The seven regions are

New South Wales, Northern Territory, Queensland, South Australia, Tasmania, Victoria, and Western Australia.

Australian human mortality data is available for both female and male gender in the functional data sets fds pack-

age (Shang & Hyndman, 2012) in R. In this application Y(t, s) is the log mortality for individuals of age s during

year t. Lower values of log mortality correspond to less observed mortality. The purpose of this implementation

was to obtain a smooth estimate for the overall mean log mortality f (t, s), as a function of year t and age s, and a

smooth estimate for the coefficient γ(t, s) corresponding to the covariate gender, where Wi = 1{female}, 1 ≤ i ≤ 14.

The two-dimensional domain in this application was T ×S, where T = {1901, 1921, . . . , 2003} corresponds to the

calendar year, and S = {0, 1, . . . , 100} corresponds to age. The methods presented in section 3 was employed to ob-

tain smooth fitted model parameters. Tensor products of cubic B-splines with 100 basis functions and second-order

difference penalties in both directions were used to fit f (·, ·) and γ(·, ·).

The estimated overall mean function displayed a decrease in infant mortality in recent years; see Figure 5. This

observed effect was probably due to recent improvements in medical care for newborns and infants. After age 10,

as age increased mortality also increased for most years. The estimated functional coefficient of gender shows that,

overall, female mortality was lower than male mortality; see Figure 5. Female mortality for early youth had lower

magnitude compared to male mortality and this decrease was larger in recent years. This effect was due, possibly,

to the recent medical advancements that benefited the female population. The mean width of the 95% pointwise

confidence intervals was 0.04 for f and 0.06 for γ. Figure 5 displays information about the pointwise confidence

intervals for γ: bright green corresponds to effects that were approximately 2 standard errors above -0.5 and bright

blue corresponds to effects that were approximately 2 standard errors below -0.5.

Figure 5. Human mortality data. Smooth overall mean log mortality estimate (left panel) and smooth functional

coefficient estimate corresponding to gender (right panel)

6. Discussion

The approach we study in this paper is a useful statistical framework for fitting smooth bivariate functional param-

eters in the setting of two-dimensional functional data. Our bivariate smoothing research is a useful contribution
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that: (i) yields smooth bivariate estimator for the overall mean functional parameter, (ii) produces an estimate for

the bivariate smooth varying coefficient to account for the effect of a scalar covariate, (iii) can be applied to com-

pletely or incompletely observed two-dimensional functional data, (iv) is carried out using available software, (v)

is computationally fast, and (vi) facilitates the construction of pointwise confidence intervals for smooth bivariate

functional parameters. We applied the approach to various simulated data scenarios and the numerical results and

visual considerations showed good performance in implementations. Results from our applications to several real

datasets and from our simulation study illustrate the usefulness of the bivariate smoothing approach in practice.
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