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Abstract

We propose a flexible linear calibration model with errors from RS (Ramberg & Schmeiser, 1974) generalized

lambda distribution (GλD). We demonstrate the derivation of the maximum likelihood estimates of RS GλD pa-

rameters and examine the estimation performance using a simulation study for sample sizes ranging from 30 to

200. The use of RS GλD calibration model not only provides statistical modeller with a richer range of distribu-

tional shapes, but can also provide more precise parameter estimates compared to the standard Normal calibration

model or skewed Normal calibration model proposed by Figueiredoa, Bolfarinea, Sandovala and Limab (2010).

Keywords: generalized lambda distribution, linear calibration model, skew normal distribution, maximum likeli-

hood estimation

1. Introduction

The statistical calibration model is a reverse regression technique, where we use the response variable to predict the

corresponding explanatory variable. There are number of applications of this technique in science. For example,

we may use radiometric dating to ascertain the age of a tree and further verify our result using tree rings. Our

aim, however, is to use radiometric dating to estimate age of new trees, and the problem is whether we should

minimize errors in the observation or minimize errors in age determination. There are many similar problems in

substance concentration determination in biology and chemistry, physical quantities determination in physics and

blood pressure/cholsterol level measurement in medicine. The literature on calibration problem has a long history,

and one of the earliest works can be found in Eisenhart (1939).

The usual calibration experiment is a two stage process involving two random variables X and Y. The first stage is

known as the calibration trial, where we observe the n values of the response variable y1, · · · , yn from a given set of

explanatory values x1, · · · , xn and we can estimate the link function between X and Y. The second stage is known

as the calibration experiment, where we observe k ≥ 1 value(s) of the response variable Y as y01, · · · , y0k which

are mapped from some unknown value x0 from the explanatory variable X.We can express these two stages by the

following equations.

yi = α + βxi + εi, i = 1, · · · , n;

y0 j = α + βx0 + ε0 j, j = 1, · · · , k, (1.1)

We usually assume that the errors ε1, · · · , εn, ε01, · · · , ε0k are i.i.d and Normally distributed with mean 0 and vari-

ance σ2. Also, x1, · · · , xn are known and α, β, x0 and σ2 are unknown parameters which we need to estimate.

As an extension to Normal distribution, Azzalini (1985) introduced the skewed Normal distribution. The skewed

Normal distribution is defined as

g(x; ξ, ω, λ) =
2

ω
φ
( x − ξ
ω

)
Φ

(
λ
( x − ξ
ω

))
, (1.2)

where φ(·) and Φ(·) are the p.d.f. and c.d.f. of a standard normal distribution respectively. Specially, when ξ =
0 and ω = 1, we obtain the standard skewed Normal distribution.
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Based on (1.2), Figueiredoa et al. (2010) defined a skew-normal calibration model by assuming that εi and ε0 j are

i.i.d. and follow a skewed Normal distribution with ξ = 0 denoted by S N(0, ω, λ). This gives us the following

calibration model:

yi|xi ∼ S N(α + βxi;ω; λ), i = 1. · · · , n,
y0 j|x0 ∼ S N(α + βxi;ω; λ), j = 1, · · · , k. (1.3)

In (1.3), the conditional distribution of yi given xi and y0 j given x0 are governed by skewed Normal distributions.

This skewed Normal calibration model allows the modeller to cope with some degree of skewness in the error dis-

tribution. However, this is still limited as the skewed Normal distribution have limited range of shapes. The skewed

Normal distribution still cannot handle heavy tailed, U shape, uniform, triangular or exponential upward/downward

patterns. These shapes however, can be captured using GλD (generalized lambda distributions), and we propose a

further extension to the calibration model by using RS GλD.

Our article is organized as follows. In Section 2, we introduce the GλD family. In Section 3, we outline the RS

GλD calibration model and discuss possible ways to estimate parameters of the model using maximum likelihood

estimation. In Section 4, we demonstrate the estimation performance of our proposed model across a range of

different sample sizes from 30 to 200. As a further test to our proposed model to the literature, we compare the

performance of RS GλD calibration model against Normal and skewed Normal calibration model with respect to

a real life dataset used by Figueiredoa et al. (2010) in Section 5. A discussion of our proposed method is given in

Section 6.

2. Generalized Lambda Distributions

The RS GλD (Ramberg & Schmeiser, 1974) is an extension of Tukey’s lambda distribution. It is defined by its

inverse distribution function:

F−1(u) = λ1 +
uλ3 − (1 − u)λ4

λ2

0 ≤ u ≤ 1 (2.1)

From (2.1), λ1, λ2, λ3, λ4 are respectively the location, inverse scale and shape 1 and shape 2 parameters. Karian

and Dudewicz (2000) noted that GλD is defined only if
λ2

λ3uλ3−1 + λ4(1 − u)λ4−1
≥ 0 for 0 ≤ u ≤ 1. The conditions

for which RS GλD is a valid p.d.f. are set out in Karian and Dudewicz (2000) and these are also programmed in

GLDEX package in R (Su, 2010, 2007a).

Freimer, Kollia, Mudholkar and Lin (1988) describe another distribution known as FKML GλD. The FKML GλD
can be written as:

F−1(u) = λ1 +

uλ3−1
λ3
− (1−u)λ4−1

λ4

λ2

0 ≤ u ≤ 1 (2.2)

Under (2.2), λ1, λ2, λ3, λ4 are respectively the location, inverse scale and shape 1 and shape 2 parameters.

The fundamental motivation for the development of FKML GλD is that the distribution is defined over all λ3 and

λ4 (Freimer et al., 1988). The only restriction on FKML GλD is λ2 > 0. This is more convenient to deal with

computationally than RS GλD and hence it is sometimes the preferred GλD for some researchers.

We restrict our attention in this article to the more difficult problem of fitting RS GλD calibration model to data.

Without loss of generality, the method we outlined below can be easily adapted to build FKML GλD calibration

model.

3. Statistical Model

3.1 GλD Based Calibration Model

We consider the following usual calibration model:

yi = α + βxi + εi, i = 1, · · · , n, (3.1)

y0 j = α + βx0 + ε j, j = 1, · · · , k. (3.2)

We assume that εi and ε j are i.i.d. GλD(0, λ2, λ3, λ4). In general, we consider x1, · · · , xn to be known and fixed

and α, β, λ2, λ3 and λ4 are parameters we need to estimate. Our GλD calibration model takes the following form:

yi|xi ∼ GλD(α + βxi, λ2, λ3, λ4), (3.3)
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y0 j|x0 ∼ GλD(α + βx0, λ2, λ3, λ4). (3.4)

Consequently, the likelihood function for RS GλD is:

L(θ, y, y0) =

n∏
i=1

λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

·
k∏

j=1

λ2

λ3zλ3−1
j + λ4(1 − z j)λ4−1

, (3.5)

where

yi = (α + βxi) +
zλ3

i − (1 − zi)
λ4

λ2

,

y0 j = (α + βx0) +
zλ3

j − (1 − z j)
λ4

λ2

,

and 0 ≤ zi, z j ≤ 1, θ = (α, β, x0, λ2, λ3, λ4).

3.2 Estimation of Parameters

From (3.5), we obtain the following log likelihood function:

log L(θ, y, y0) =
n∑

i=1

log ( f1(θ, yi)) +

k∑
j=1

log
(

f2(θ, y0 j)
)

(3.6)

where

f1(θ, yi) =
λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

,

f2(θ, y0 j) =
λ2

λ3zλ3−1
j + λ4(1 − z j)λ4−1

Taking the derivative of (3.6), we obtain the following:

∂ log L(θ)

∂θ
=

n∑
i=1

1

f1

∂ f1
∂θ
+

k∑
j=1

1

f2

∂ f2
∂θ
, (3.7)

where θ = (α, β, x0, λ2, λ3, λ4).

Theoretically, the MLE of θ is the solution of (3.7) when it is set to be equal to 0. The derivatives
∂ f1
∂θ and

∂ f2
∂θ are

given below.

∂ f1
∂λ2

=
∂ f1
∂zi
· ∂zi

∂yi
· ∂yi

∂λ2

=

⎛⎜⎜⎜⎜⎜⎝λ2

−λ3(λ3 − 1)zλ3−2
i + λ4(λ4 − 1)(1 − zi)

λ4−2

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)2

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝ λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝−

zλ3

i − (1 − zi)
λ4

λ2
2

⎞⎟⎟⎟⎟⎟⎠

=
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2](zλ3

i − (1 − zi)
λ4 )

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ3

= (−λ2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2](zλ3

i log zi)

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ4

= λ2

[λ3(λ3 − 1)zλ3−2
i − λ4(λ4 − 1)(1 − zi)

λ4−2]((1 − zi)
λ3 log(1 − zi))

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂α
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2]

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂β
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2] · xi

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f2
∂λ2

=
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2](zλ3

j − (1 − z j)
λ4 )

(λ3zλ3−1
i + λ4(1 − z j)λ4−1)3
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∂ f2
∂λ3

= (−λ2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2](zλ3

j log z j)

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ4

= λ2

[λ3(λ3 − 1)zλ3−2
j − λ4(λ4 − 1)(1 − z j)

λ4−2]((1 − z j)
λ3 log(1 − z j))

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂α
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2]

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂β
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2] · x0

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂x0

= (−λ2
2)

[λ3(λ3 − 1)zλ3−2
j − λ4(λ4 − 1)(1 − z j)

λ4−2] · β
(λ3zλ3−1

j + λ4(1 − z j)λ4−1)3

It is difficult to obtain the exact solutions of setting (3.7) to zero using the above formulations, owing to the fact

that RS GλD is defined by its inverse quantile function and there is a high degree of complexity involved in

solving the above equations. As an alternative, we carry out the maximum likelihood estimation by maximising

(3.6) directly using Nelder-Mead optimisation algorithm as is customary done for maximum likelihood estimation

problems involving GλD (see Su, 2010, 2007a, 2007b). This is a preferred and more reliable method of estimation

as opposed to trying to satisfy the exact conditions to which all of the above equations equal to zero. The GLDEX

package in R (Su, 2010, 2007a) facilitates the Nelder-Mead optimisation algorithm for GλD.

Our algorithm is as follows:

1) Generate a set of initial values for α, β, x0, λ2, λ3, λ4. There are a number of strategies that can be used to

determine the best set of initial values. One strategy is to generate initial values α, β, x0 using Normal or skewed

Normal calibration model and then generate some low discrepancy quasi random numbers for λ2, λ3, λ4 over a

range of values and select the set of initial values that maximises (3.6). Alternatively all initial values can be

randomly generated using low discrepancy quasi random numbers.

2) Set λ1 = α + βx0.

3) Check that GλD(λ1, λ2, λ3, λ4) is a valid statistical distribution, this can be done using GLDEX package in R.

4) Check the minimal support of GλD(λ1, λ2, λ3, λ4) is lower or equal to the lowest value of y0. Similarly, check

that the maximum support of GλD(λ1, λ2, λ3, λ4) is greater or equal to the largest value of y0. This is to ensure that

the fitted GλD will span the entire dataset. If these conditons are not met, choose another set of initial values and

repeat from 2).

5) Conduct Nelder Mead optimisation by maximising (3.6) directly using the above initial values to obtain the

required estimates.

4. Simulations

We conduct simulations to illustrate the performance of our RS GλD calibration model for sample size n =
30, 50, 100 and 200 with α = 3, β = 1.5, x0 = 15 or 40, λ3 = 10, λ4 = 1, and λ2 = 2, 5, 10. We further gen-

erate x1, x2, · · · , xn from Uni f orm(10, 30), and we set k = 1. We use the true parameters as our initial values to

kick start the optimisation process to obtain our MLE estimate for x0.

We repeat this process 1000 times, which give us 1000 x̂0m estimates of x0. The mean x̂0,Bias(x0) and MSE(x0) are

calculated as follows:

¯̂x0 =
1

1000

1000∑
m=1

x̂0m

Bias(x0) =
1

1000

1000∑
m=1

(x̂0m − x0)

MSE(x0) =
1

1000

1000∑
m=1

(x̂0m − x0)2

104



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

The results of above simulations are shown in Tables 1 and 2. As expected, the MSE decreases as we increase the

sample size or increase the value of inverse scale parameter λ2. In terms of bias, we observe that the performance

appear to be fairly consistent across sample sizes, this gives confidence in the use of RS GλD calibration model

for smaller samples, even though there are are more parameters that need to be estimated from this model. There

also appears to be a tendency for RS GλD calibration model to slightly overestimate as nearly all the bias results

are positive. Increasing the shape parameter λ3 does not always result in increase in MSE, this is because the shape

parameter spaces of λ3 and λ4 for RS GλD are fairly complex.

Table 1. Simulations results with x0 = 15, α = 3, β = 1.5, λ4 = 1

λ2 = 2 λ2 = 5 λ2 = 10

n λ3 x̂0 Bias MSE x̂0 Bias MSE x̂0 Bias MSE

30 10 15.1105 0.1105 0.0263 15.0386 0.0386 0.0042 15.0178 0.0178 0.0010

50 10 15.0944 0.0944 0.0232 15.0352 0.0352 0.0040 15.0172 0.0172 0.0010

100 10 15.0994 0.0994 0.0184 15.0396 0.0396 0.0035 15.0185 0.0185 0.0008

200 10 15.1053 0.1053 0.0166 15.0340 0.0340 0.0030 15.0173 0.0173 0.0007

30 5 15.1430 0.1430 0.0292 15.0578 0.0578 0.0056 15.0285 0.0285 0.0012

50 5 15.1445 0.1445 0.0270 15.0530 0.0530 0.0047 15.0292 0.0292 0.0012

100 5 15.1381 0.1381 0.0214 15.0531 0.0531 0.0043 15.0264 0.0264 0.0010

200 5 15.1429 0.1429 0.0187 15.0534 0.0534 0.0038 15.0227 0.0227 0.0009

30 1 15.0271 0.0271 0.0244 15.0014 0.0014 0.0061 15.0040 0.0040 0.0017

50 1 15.0367 0.0367 0.0169 15.0030 0.0030 0.0048 14.9993 -0.0007 0.0014

100 1 15.0292 0.0292 0.0084 15.0093 0.0093 0.0030 15.0029 0.0029 0.0010

200 1 15.0262 0.0262 0.0052 15.0130 0.0130 0.0016 15.0022 0.0022 0.0007

Table 2. Simulations results with x0 = 40, α = 3, β = 1.5, λ4 = 1

λ2 = 2 λ2 = 5 λ2 = 10

n λ3 x̂0 Bias MSE x̂0 Bias MSE x̂0 Bias MSE

30 10 40.1070 0.1070 0.0259 40.0375 0.0375 0.0049 40.0189 0.0189 0.0012

50 10 40.1051 0.1051 0.0235 40.0388 0.0388 0.0039 40.0177 0.0177 0.0009

100 10 40.1077 0.1077 0.0205 40.0353 0.0353 0.0031 40.0188 0.0188 0.0008

200 10 40.1088 0.1088 0.0169 40.0387 0.0387 0.0028 40.0184 0.0184 0.0008

30 5 40.1339 0.1339 0.0319 40.0557 0.0557 0.0064 40.0288 0.0288 0.0014

50 5 40.1391 0.1391 0.0302 40.0554 0.0554 0.0046 40.0280 0.0280 0.0013

100 5 40.1405 0.1405 0.0232 40.0479 0.0479 0.0039 40.0264 0.0264 0.0010

200 5 40.1538 0.1538 0.0236 40.0474 0.0474 0.0035 40.0205 0.0205 0.0007

30 1 40.0331 0.0331 0.0290 39.9984 -0.0016 0.0058 40.0035 0.0035 0.0016

50 1 40.0348 0.0348 0.0159 40.0031 0.0031 0.0045 40.0022 0.0022 0.0013

100 1 40.0311 0.0311 0.0099 40.0078 0.0078 0.0024 39.9996 -0.0004 0.0009

200 1 40.0217 0.0217 0.0036 40.0114 0.0114 0.0017 40.0031 0.0031 0.0007

Table 3. Simulations results with x0 = 15, α = 3, β = 1.5, true error distribution GEV(0.1860, 0.4016, 0.1511) is

approximated by RS GλD with λ1 = 0, λ2 ≈ −0.0374, λ3 ≈ −0.0027, λ4 ≈ −0.0212

n x̂0 Bias MSE

30 15.3140 0.3140 0.2149

50 15.3269 0.3269 0.2154

100 15.2815 0.2815 0.1774

200 15.2860 0.2860 0.1689

We further considered using RS GλD to approximate generalized extreme value distribution (GEV) with location,

scale and shape parameters being 0.1860, 0.4016, 0.1511 respectively. We choose RS GλD with λ1 = 0, λ2 ≈
−0.0374, λ3 ≈ −0.0027, λ4 ≈ −0.0212 for this demonstration (Figure 1). We then generate simulated data based

on GEV and use our approximated RS GλD to estimate x0 with α = 3, β = 1.5 and repeat this over 1000 simulation

runs. The result of this simulation is given in Table 3. We observe that the RS GλD calibration model tends to

overestimate the true x0 by a small margin, but the bias appears to decrease as sample size increases.
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Figure 1. Approximating GEV using RS GλD

5. Application

We apply the RS GλD calibration model to a dataset which measures teenager testicular volume (ml3). This dataset

is from Chipkevitch, Nishimura, Tu and Galea-Rajas (1996) and consists of 42 observations. Figueiredoa et al.

(2010) considered two measurement methods from Chipkevitch et al. (1996): dimensional measurement with a

caliper (DM) and measurement by ultrasonography (US) and the data is given in Table 4. In their paper, Figueiredoa

et al. (2010) consider the x0 value of 16.4, which is observed twice by ultrasonography. They subsequently treated

this value as unknown, with corresponding y0 j values of y01 = 10.3 and y02 = 17.3. Then, they estimate x0 using

their skewed Normal calibration model and compared this with the standard Normal calibration model. We did the

same using the RS GλD calibration model and our results are shown in Table 5.

Table 4. Measurements obtained by dimensional measurement with a caliper (DM) and by ultrasonography (US)

from the right testis for 42 teenagers, in ml3

DM US DM US DM US DM US DM US DM US

5.9 5 17.3 16.4 7.2 6.7 4.8 5.7 17.3 17.6 5.9 5.3

6.8 7.4 7.9 10 16.3 20 3.1 2.6 4.4 4.1 16.3 18.8

5 5.7 11.4 12.7 12.2 13.9 4.4 6.1 4.1 2.7 10.3 9.4

6 6.2 11.1 10.2 10.8 9.1 8.8 10.4 15.3 16.5 13 14.1

7.9 9.1 3.9 4.5 8.4 9.3 13 14.8 4.5 5.6 22.1 20.9

10.3 16.4 9.7 11 10.6 11.5 8.2 9.6 11.3 9.2 9.7 9.7

19.8 15.7 8.8 8.5 11.6 13.7 2 3 6.1 5.4 8.1 8.9

Table 5. A comparison of linear calibration models

RS GλD model S N model Normal model

Parameter Estimate Stdev. Estimate Stdev. Estimate Stdev.

α 0.014 0.497 -0.69 - 0.32 0.56

β 0.855 0.035 0.86 0.07 0.92 0.05

σ - - 2.13 - 1.55 0.17

x0 12.128 0.963 12.66 1.81 14.58 1.24

λ - - 2.16 1.73 - -

λ2 0.146 0.355 - - - -

λ3 -0.030 0.061 - - - -

λ4 -0.162 0.184 - - - -

AIC 150.36 160.69 163.74

BIC 160.79 169.38 170.69

HQ 144.58 156.55 161.15

The theoretical derivation of the variability of our estimates under RS GλD is not readily tractable as in the cases

of skewed Normal and Normal distributions. As we need to numerically derive our calculations, small errors in
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numerical procedures could accumulate into large errors even if we could evaluate the exact theoretical solution.

As a workaround, we adopt the following procedure. Once we obtained the parameters of our model, α, β, x0, λ2,

λ3, λ4, we conduct simulations to estimate the variability of our estimate. We use our estimated parameters from

the RS GλD calibration model and xi (excluding xi = 16.4) from the original data to randomly generate y0 j and yi

according to (3.1) and (3.2). We then maximise the likelihood in (3.6) using Nelder Mead Simplex algorithm with

initial values being our original estimated parameters. We repeat the process 1000 times and calculate the sample

standard deviations of our estimated parameters.

Table 5 lists the estimated parameters and their standard deviations from RS GλD, skewed Normal and Normal

calibration models. We compute the Akaike, Bayesian and Hannan-Quinn information criterion (AIC, BIC, and

HQ) to allow model selection between three models. All three criterion favors the RS GλD calibration model. In

addition, the RS GλD model is much more efficient compared to the other models, with the smallest variability in

its parameter estimates.

6. Concluding Remarks

We propose a new calibration model with RS GλD errors, which is an extremely flexible model that can cope with

a wide range of different error distributions. Our method also lends to the development of FKML GλD calibration

model, which may have better properties with regard to numerical convergence. Our simulations studies suggest

our proposed model perform well for small sample sizes across a range of inverse scale and shape parameters of

RS GλD. We further demonstrate that the RS GλD calibration model can outperform skewed Normal or Normal

calibration model, with lower AIC, BIC and HQ information criterion and lower variability in our parameter

estimates in the context of a real life data. These simulation results are promising and future statistical models

should aim to develop statistical technique that are tailored to data, rather than requiring empirical data to satisfy

a particular statistical model. One possible extension of our model is the development of a mixture RS GλD
calibration model, which would extend the flexibility of our model even further but also present a very challenging

problem for data with small samples.
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