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Abstract

We are concerned in this paper with the functional asymptotic behavior of the sequence of stochastic processes

Tn( f ) =

j=k∑
j=1

f ( j)
(
log Xn− j+1,n − log Xn− j,n

)
, (0.1)

indexed by some classes F of functions f : N\{0} �−→ R+ and where k = k(n) satisfies

1 ≤ k ≤ n, k/n→ 0 as n→ ∞.
This is a functional generalized Hill process including as many new estimators of the extreme value index when

F is in the extreme value domain. We focus in this paper on its functional and uniform asymptotic law in the new

setting of weak convergence in the space of bounded real functions. The results are next particularized for explicit

examples of classes F .

Keywords: extreme values theory, asymptotic distribution, functional Gaussian and nongaussian laws, uniform en-

tropy numbers, asymptotic tightness, stochastic process of estimators of extreme value index, sowly and regularly

varying functions
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1. Introduction

Let X1, X2, ... be a sequence of independent copies (s.i.c) of a real random variable (r.v.) X > 1 with d.f. F(x) =

P(X ≤ x). We will be concerned in this paper with the functional asymptotic behavior of the sequence of stochastic

processes

Tn( f ) =

k∑
j=1

f ( j)
(
log Xn− j+1,n − log Xn− j,n

)
, (1.1)

indexed by some classes F of functions f : N∗ = N\{0} �−→ R+ and where k = k(n) satisfies

1 ≤ k ≤ n, k/n→ 0 as n→ ∞.
The main motivation of this study is to obtain very large classes of estimators for the extreme when F lies in the

extreme value domain, all of them being margins of only one stochastic process. Indeed, for the uniform function

f ( j) = j, k−1Tn( f ) is the famous Hill (1975) estimator of such an index. Recently, a first step to functional forms of

the Hill estimator has been done in Diop and Lo (2009) in the form k−τTn( f ) for f ( j) = jτ and respectively studied

in Diop and Lo (2009) for (τ > 1/2) and in Dème, LO and Diop (2010) for (0 < τ < 1/2) in finite distributions.

Groenboom, Lopuha and Wolf (2003). also considered a thorough study of a family of Kernel-type estimators of

the extreme value index. However, they did not consider a stochastic processes view. There exists a very large

number of estimators of the extreme velue index. We may cite those of Csörgő-Deheuvels-Mason (1985), De

Haan-Resnick (1980), Pickands (1975), Deckkers, De Haan and Einmahl (1989), Hasofer and Wang (1992), etc.

But they all go back to the Hill’s one.
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However, the asymptotic theory for the estimators of the extreme value index are set for a finite number of them,

in finite distributions for whole the extreme value domain (−∞ ≤ γ ≤ +∞). The reader is referred to following

sample citations: Csörgö, Deheuvels and Mason (1985); Csörgö and Mason (1985); Dekkers, Einmahl and De

Haan (1989); Diop and Lo (2009); De Haan and Resnick (1980); Hall (1982); Hall (1978); Hauesler and Teugels

(1985); Hasofer and Wang (1992); Lo (1989); Pickands (1975) etc.

Now the modern setting of functional weak convergence allows to handle more complex estimators in form of

stochastic processes, say {Tn( f ), f ∈ F }, such that for any f ∈ F , there exists a nonrandom sequence an( f ) such

that Tn/an( f ) is an estimator of the extreme value index γ. Such processes may be called stochastic processes of

estimators of the extreme value index.

Here, we consider one of such processes, that is (1.1). Our aim is to derive their functional asymptotic normality

when possible or simply their asymptotic distribution for suitable classes. We will see that for some classes, we

have non Gaussian asymptotic behavior, which will be entirely characterized. We shall mainly consider two classes

of functions. The first consists of those functions f satisfying

A(2, f ) =

∞∑
j=1

f ( j)2 j−2 < ∞, (K1)

with the general notation A(m, f ) =
∑∞

j=1 f ( j)m j−m. The second includes functions f such that

lim sup
n→+∞

B(n, f ) = 0, (K2)

where B(n, f ) = σn( f )−1 max{ f ( j) j−1, 1 ≤ j ≤ k} and σn( f ) is defined below in (1.2). Under these two conditions,

we will be able to find the asymptotic distributions of Tn( f ) for a fixed f , under usual and classical hypotheses of

extreme value Theory. But as to functional laws, we need uniform conditions. Define F1 the subclass of F such

that

0 < inf
f∈F1

A(2, f ) < sup
f∈F1

A(2, f ) < +∞, (KU1)

and F2 be a subclass of F such that

lim
n→∞ sup

f∈F2

B(n, f ) = 0, (KU2a)

and such that for any couple ( f1, f2) ∈ F2,

lim
n→∞

1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2 = Γ( f1, f2) (KU2b)

exists, where

σ2
n( f ) =

k∑
j=1

f ( j)2 j−2 and an( f ) =

k∑
j=1

f ( j) j−1. (1.2)

We will suppose at times that each Fh is totally bounded with respect to some semimetric ρh.

Our best achievement is the complete description of the weak convergence of the sequence

{Tn( f ), f ∈ Fh}, h = 1, 2,

in the spaces �∞(Fh) of bounded and real functions defined on Fh, in the light of the modern setting of this theory

in Theorems 3 and 4. Further we provide real case studies with explicit classes in application of the general results,

in corollaries of Section 5.

This approach yields a very great number of estimators of the tail distribution 1 − F in the extreme value domain.

But, this paper will essentially focus on the functional and uniform laws of the process described above. Including

in the present work, for example, second and third order conditions as it is fashion now, and considering data

driven applications or simulation studies would extremely extend the report. These questions are to be considering

in subsequent papers.

This paper will use technical results of extreme value theory. So we will summarize some basics of this theory in

the Section 2. In this section, we introduce basic notation and usual representation of distribution functions lying
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in the extreme value domain, to be used in all the remainder of the paper. Section 3 is devoted to pointwise limit

distributions of Tn( f ), while our general functional results are stated and established in Section 4. In Section 5, we

study some particular cases, especially the family { f ( j) = jτ, τ > 0}. The section 6 is devoted to the tools of the

paper. In this latter, we state two lemmas, namely Lemmas 1 and 2, which are key tools in the earlier proofs.

We draw the attention of the reader that we will deal with uniform converges on families of random variables

indexed set functions denoted here by Fh. It is not sure that the supremum of such families of random variables are

measurable. So we are obliged to use the convergence in outer probability rather than convergence in probability

in the case where measurability is not proved. We remind here this concept. A sequence of applications (Zn)n≥1

defined on (Ω,A,P) with values in R converges to zero in outer probability as n → +∞ if and only there exists a

sequence real and nonnegative random variables (un)n≥1 defined on (Ω,A,P) such that : ∀n ≥ 1, |Zn| ≤ |un| and un

tends to zero in probability as n → +∞. This is also denoted by Zn = o∗P. (See van der Vaart & Wellner, 1996) for

a complete account of such a theory)

2. Some Basics of Extreme Value Theory

The reader is referred to de Haan (1970; 2006), Resnick (1987), Galambos (1985) and Beirlant, Goegebeur and

Teugels (2004) for a modern and large account of the extreme value theory. A distribution function F is said to

be attracted to a non degenerated M iff the maximum Xn,n = max (X1, ...Xn), when appropriately centered and

normalized by two sequences of real numbers (an > 0)n≥0 and (bn)n≥0, converges to M, in the sense that

lim
n→+∞ P

(
Xn,n ≤ an x + bn

)
= lim

n→+∞ Fn (anx + bn) = M(x), (2.1)

for continuity points x of M.

If (2.1) holds, it is said that F is attracted to M or F belongs to the domain of attraction of M, written F ∈ D(M).
It is well-known that the three possible nondegenerate limits in (2.1), called extreme value d.f., are the following.

The Gumbel d. f .
Λ(x) = exp(− exp(−x)), x ∈ R, (2.2)

or the Fréchet d. f . of parameter α > 0,

φγ(x) = exp(−x−α)I[0,+∞[(x), x ∈ R (2.3)

or the Weibull d. f . of parameter α > 0

ψγ(x) = exp(−(x)−α)I]−∞,0](x) + (1 − 1]−∞,0](x)), x ∈ R, (2.4)

where IA denotes the indicator function of the set A. Now put D(φ) = ∪α>0D(φγ), D(ψ) = ∪α>0D(ψγ), and

Γ = D(φ) ∪ D(ψ) ∪ D(Λ).

In fact the limiting distribution function M is defined by an equivalence class of the binary relation R on the set of

d.f’sD in R defined as follows :

∀(M1,M2) ∈ D2, (M1RM2)⇔ ∃(a, b) ∈ R+\{0} × R,∀(x ∈ R),

M2(x) = M1(ax + b).

One easily checks that if Fn (anx + bn)→ M1(x), then Fn (cnx + dn)→ M1(ax + b) = M2(x) whenever

an/dn → a and (bn − dn)/cn → b as n→ ∞. (2.5)

These facts allow to parameterize the class of extreme value distribution functions. For this purpose, suppose that

(2.1) holds for the three d.f.’s given in (2.2), (2.3) and (2.4). We may take sequences (an > 0)n≥1 and (bn)n≥1 such

that the limits in (2.5) are a = γ = 1/α and b = 1 (in the case of Fréchet extreme value domain), and a = −γ = −1/α
and b = −1 (in the case of Weibull extreme value domain). Finally, one may interprets (1 + γx)−1/γ = exp(−x)

for γ = 0 (in the case of Gumbel extreme value domain). This leads to the following parameterized extreme value

distribution function

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx ≥ 0, (2.6)

called the Generalized Extreme Value (GEV) distribution of parameter γ ∈ R.
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Now we give the usual representations of d f ′s lying in the extreme value domain in terms of the quantile function

of G(x)=F(ex), x ≥ 1, that is G−1(1 − u) = log F−1(1 − u), 0 ≤ u ≤ 1.

Theorem 1 We have:

1) Karamata’s representation (KARARE)

(a) If F ∈ D(φ1/γ), γ > 0, then

G−1(1 − u) = log c + log(1 + p(u)) − γ log u + (

∫ 1

u
b(t)t−1dt), 0 < u < 1, (2.7)

where sup(|p(u)| , |b(u)|) → 0 as u → 0 and c is a positive constant and G−1(1 − u) = inf{x,G(x) ≥ u}, 0 ≤ u ≤ 1,
is the generalized inverse of G with G−1(0) = G−1(0+).

(b) If F ∈ D(ψ1/γ), γ > 0, then y0(G) = sup{x, G(x) < 1} < +∞ and

y0 −G−1(1 − u) = c(1 + p(u))uγ exp(

∫ 1

u
b(t)t−1dt), 0 < u < 1, (2.8)

where c, p(·) and b(·) are as in (2.7).

2) Representation of de Haan (Theorem 2.4.1, 1970),

If G ∈ D(Λ), then

G−1(1 − u) = d − s(u) +

∫ 1

u
s(t)t−1dt, 0 < u < 1, (2.9)

where d is a constant and s(·) admits this KARARE:

s(u) = c(1 + p(u)) exp(

∫ 1

u
b(t)t−1dt), 0 < u < 1, (2.10)

c, p(·) anf b(·) being defined as in (2.7).

We restrict ourselves here to the cases F ∈ D(Γ) ∪ D(Φ1/γ), γ > 0, since the case F ∈ D(Ψ1/γ), γ > 0, may

be studied through the transform F(x0(F) − 1/̇)) ∈ D(Φ1/γ) for estimating γ. This leads to replacle Xn− j+1,n by

x0(F)− 1/1/Xj,n in (1.1). However, a direct investigation of (1.1) for F ∈ D(Ψ1/γ), γ > 0 is possible. This requires

the theory of sums of dependent random variables while this paper uses results on sums of independent random

variables, as it will be seen shortly. We consequently consider a special handling of this case in a distinct paper.

Finally, we shall also use the uniform representation of Y1 = log X1, Y2 = log X2, ... by G−1(1−U1), G−1(1−U2), ...
where U1, U2, ... are independent and uniform random variables on (0, 1) and where G is the d. f . of Y , in the sense

of equality in distribution (denoted by =d)

{
Yj, j ≥ 1} =d {G−1(1 − U j), j ≥ 1

}
,

and hence

{{Y1,n,Y2,n, ...Yn,n
}
, n ≥ 1} (2.11)

=d

{
{G−1(1 − Un,n),G−1(1 − Un−1,n), ...,G−1(1 − U1,n)}, n ≥ 1

}
.

In connection with this, we shall use the following Malmquist representation (see Shorack & Wellner, 1986, p.

336) :

{log(
U j+1,n

U j,n
) j, j = 1, ..., n} =d {E1, ..., En}, (2.12)

where E1, ..., En are independent standard exponential random variables.

3. Pointwise and Finite-distribution Laws of Tn( f )

Let us begin to introduce these conditions on the distribution function G, through the functions p and b in the

representations (2.7), (2.8), (2.9) and (2.10). First, define for λ > 1,

0 ≤ g1,n(p, λ) = sup
0≤u≤λk/n

|p(u)| ,
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g2,n(b, λ) = sup
0≤u≤λk/n

|b(u)| ,

and

dn(p, b, λ) = max(g1,n(p, λ), g2,n(b, λ) log k).

We will need the following conditions for some λ > 1 :

dn(p, b, λ)→ 0 as n→ ∞. (C0)

g1,n( f , λ)(σn( f ))−1
k∑

j=1

f ( j)→ 0, as n→ ∞, (C1)

g2,n(b, λ)(σn(τ)kτ)−1
k∑

j=1

f ( j)→ 0 as n→ ∞ (C2)

and

dn(p, b, λ)(σn( f )kτ)−1
k∑

j=1

f ( j)→ 0 as n→ ∞. (C3)

From now on, all the limits are meant as n→ ∞ unless the contrary is explicitly stated. We are able to state:

Theorem 2 Let F ∈ D(Λ). If (C0) and (C3) holds, then

(s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n))→ N(0, 1)

when (K2) holds and
(s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n))→ L( f ),

when (K1) is satisfied, and where

L( f ) = A(2, f )−1/2
∞∑
j=1

f ( j) j−1(E j − 1).

Let F ∈ D(φ1/γ). If (C1) and (C2) hold, then

(an( f )/σn( f ))(Tn( f )/an( f ) − γ)→ N(0, γ2)

under (K2) and
(an( f )/σn( f ))(Tn( f )/an( f ) − γ)→ γ−1L( f )

under (K1).

Proof. Let us use the representation (2.11). We thus have, for any n ≥ 1,

{
log Xn− j+1,n = Yn− j+1,n, 1 ≤ j ≤ n

}
=d

{
G−1{1 − U j,n), 1 ≤ j ≤ n

}
.

First, let F ∈ D(Λ). By (2.8), we get

Tn( f ) =

k∑
j=1

f ( j)(s(U j,n) − s(U j+1,n)) +

k∑
j=1

f ( j)
∫ U j+1,n

U j,n

s(t)/tdt ≡ S n(1) + S n(2).

Using (2.10), we have for U1,n ≤ v, u ≤ Uk,n,

s(u)/s(v) = (1 + p(u))/(1 + p(v)) exp(−
∫ Uk+1,n

U1,n

t−1b(t)dt).

Putting

g1,n,0(p) = sup{|p(u)| , 0 ≤ u ≤ Uk+1,n} and g2,n,0(p) = sup{|b(u)| , 0 ≤ u ≤ Uk+1,n}, (3.1)
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we get, since log(Uk+1,n/U1,n) = Op(log k) as n→ ∞,
s(u)/s(v) = (1 + O(g1,n,0)) exp(−Op(g2,n,0 log k)).

This implies

sup
U1,n≤u,v≤Uk,n

|s(u)/s(v) − 1| = Op(max(g1,n,0, g2,n,0 log k)) (3.2)

as n→ ∞ and

sup
U1,n≤u,v≤Uk,n

∣∣∣∣∣ s(u) − s(v)

s(k/n)

∣∣∣∣∣ = Op(max(g1,n,0, g2,n,0 log k)). (3.3)

Since nk−1Uk+1,n → 1 a.s. as n→ ∞, we may find for any ε > 0 and for any λ > 1, an integer N0 such that for any

n ≥ N0,
P(g1,n,0 ≤ g1,n(p, λ), g2,n,0 ≤ g2,n(b, λ)) ≥ 1 − ε. (3.4)

Hence (C3) implies

S n(1)

σn( f )s(k/n)
≤ dn(p, b, λ) (σn( f ))−1

k∑
j=1

f ( j)→P 0,

where dn(p, b, λ) = max(g1,n, g2,n log k). Next

S n(2)

σn( f )s(k/n)
= σn( f )−1

k∑
j=1

f ( j)
∫ U j+1,n

U j,n

{s(t)/s(k/n)} /tdt

= σn( f )−1
k∑

j=1

f ( j)
∫ U j+1,n

U j,n

t−1dt + σn( f )−1
k∑

j=1

f ( j)
∫ U j+1,n

U j,n

{s(t)/s(k/n) − 1} /tdt

≡ S n(2, 1) + S n(2, 2).

We have, by (3.2) and the Malmquist representation (2.12),

|S n(2, 2)| ≤ Op(1)dn(p, b, λ) × σn( f )−1
k∑

j=1

f ( j) j−1E j ≤ Op(1) ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩dn(p, b, λ) × σn( f )−1

k∑
j=1

f ( j) j−1(E j − 1) + dn(p, b, λ) × σn( f )−1
k∑

j=1

f ( j) j−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The first term tends to zero since σn( f )−1∑k

j=1 f ( j) j−1(E j − 1) converges in distribution to a finite random variable

by Lemma 1 in Section 6 and dn(p, b, λ) → 0 by (C0). The second also tends to zero by (C3). Finally, by the

Malmquist representation (2.12), one arrives to

S n(2, 1) = σn( f )−1
k∑

j=1

f ( j) j−1E j.

And this leads to

S n(2, 1) − {an( f )/σn( f )} = σn(τ)−1
k∑

j=1

jτ−1(E j − 1),

which converges in distribution to a N(0, 1) random variable under (K2) and to L( f ) under (K1) by Lemma 1 in

Section 6. By sammerizing all these facts, we have proved that

(σn( f )s(k/n))−1(Tn( f ) − an( f )s(k/n))

converges in distribution to a N(0, 1) random variable under (K2) and to L( f ) under (K1).

Now let F ∈ D(φ1/γ), we have by (2.7) and the usual representations,

Tn( f ) =

k∑
j=1

f ( j)
{
log(1 + p(U j+1,n)) − log(1 + p(U j,n))

}
+ γ

k∑
j=1

f ( j) log(U j+1,n/U j,n) +

k∑
j=1

f ( j)
∫ U j+1,n

U j,n

b(t)/tdt

≡ S n(1) + S n(2) + S n(3).
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We have, for large values of k,

|S n(1)/σn( f )| ≤ 2g1,n,0( f )(σn( f ))−1
k∑

j=1

f ( j),

where g1,n,0 is defined in (3.1), which tends to zero in probability by (C1) and (3.2). Next

|S n(3)/σn(τ)| ≤ g2,n,0(b)(σn( f ))−1
k∑

j=1

f ( j) log(U j+1,n/U j,n)

= g2,n,0(b)σn( f )−1
k∑

j=1

f ( j) j−1(E j − 1) + g2,n,0(b)σn( f )−1
k∑

j=1

f ( j) j−1,

where g2,n,0 defined in (3.1). Then S n(3)/σn( f ) → 0 by (C3) and Lemma 1 and the methods described above.

Finally, always by Lemma 1,

{(S n(3) − γan( f )} /σn( f ) = γσn( f )−1
k∑

j=1

f ( j) j−1(E j − 1) = γVn∗( f ).

We recall that Vn( f ) and Vn∗( f ) are both defined in Lemma 1 and its proofs in Equations (6.1 - 6.4). We conclude

the proof by noticing that the right member this latter equation converges in distribution to a N(0, γ2) random

variable under (K2) and to γL( f ) under (K1), by Lemma 1.

From these proofs, we get two intermediate results towards the functional laws. The first concerns the asymptotic

law in finite distributions.

Corollary 1 Suppose that the hypotheses (C0), (C1), (C2) and (C3) hold and for any ( f1, f2) ∈ F 2
1 ∪ F 2

2 ,

lim
n→∞

1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2 = Γ( f1, f2) exists.

Then the finite-distributions of {(s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n)), f ∈ F1} weakly converge to those of the
process L, for F ∈ D(Λ) and the finite-distributions of {σn( f )−1(Tn( f ) − an( f ), f ∈ F1} weakly converge to those
of the process γL, for F ∈ D(ϕ1/γ).

And the finite-distributions of {(s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n)), f ∈ F2} weakly converge to those of a Gaus-
sian process G of covariance function

Γ( f1, f2) = lim
n→∞

1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2

and, for F ∈ D(Λ), the finite-distributions of {σn( f )−1(Tn( f ) − an( f ), f ∈ F2} weakly converge to those of γG, for
F ∈ D(ϕ1/γ).

Proof. Put Vn(0, f ) = (s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n)) and Vn(1, f ) = σn( f )−1(Tn( f ) − an( f )) for a fixed

f ∈ Fh, h = 1, 2. For a finite family ( f1, f2, ..., fs) ∈ f ∈ F s
h , h = 1, 2, 0 < s ∈ N∗, we have by the proof of Theorem

1, for each 1 ≤ i ≤ s,
Vn(0, fi) = V∗n ( fi) + oP(1), (3.5)

for F ∈ D(Λ) and

Vn(1, fi) = γV∗n ( fi) + oP(1) (3.6)

for F ∈ D(ϕ1/γ). From now, we conclude by applying Lemma 2 which establishes the asymptotic laws of (V∗n ( f1),

..., V∗n ( fs)) under the assumptions of the Lemma.

This corollary makes a good transition towards the functional law. In order to state a further step, we need the

following uniform conditions on the distribution function F. Define for some λ > 1,

sup
f∈Fh

dn(p, b, λ)→ 0. (CU0)
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sup
f∈Fh

g1,n( f , λ)(σn( f ))−1
k∑

j=1

f ( j)→ 0, (CU1)

sup
f∈Fh

g2,n(b, λ)(σn( f ))−1
k∑

j=1

f ( j) (CU2)

and

sup
f∈Fh

dn(p, b, λ)σn( f )−1
k∑

j=1

f ( j)→ 0. (CU3)

These conditions are set so that the oP(1) in (3.5) and (3.6) hold uniformly in our classes. We thus begin to state

this:

Corollary 2 Assume that the uniform conditions (KU1), (KU2a), (KU2b), (CU0) (CU1), (CU2) and (CU3) hold
- when appropriate - in Theorem 2. Finally let Fa be a nonvoid family of functions satisfying (KU1) or, a nonvoid
family of functions satisfying (KU2a − b). Suppose that {V∗n ( f ), f ∈ Fa} weakly converges in �∞(Fa). Then,
uniformly in f ∈ Fa,

(s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n)) = V∗n ( f ) + o∗P(1)

for F ∈ D(Λ) and
(an( f )/σn( f ))(Tn( f )/an − γ) = γV∗n ( f ) + o∗P(1)

for F ∈ D(φ1/γ).

Proof. Put

Vn(0, f ) = (s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n))

and

Vn(1, f ) = (an( f )/σn( f ))(Tn( f )/an − γ).
When the uniformity hypotheses (KU1) or,(KU2a) and (KU2b) hold, we surely have

Vn(0, f ) = V∗n ( f )(1 + o∗P(1)) + o∗P(1) and Vn(1, f ) = γV∗n ( f )(1 + o∗P(1)) + o∗P(1),

uniformly in f ∈ Fh. Now let Fa a subset of F1 such that {V∗n ( f ), f ∈ Fa} weakly converges, say to G in �∞(Fa).

Then ‖G‖∗Fa
< ∞. Since, by the continuity theorem,

∥∥∥V∗n∥∥∥Fa
� ‖G‖∗Fa

, we get

Vn(0, f ) = V∗n ( f ) + o∗P(1), (3.7)

uniformly in f ∈ Fa for F ∈ D(Λ). The other cases are proved similarly.

4. The Functional Law of Tn( f )

We shall use here (3.7). Recall and denote

V∗n ( f ) = σn( f )−1(Vn( f ) − an( f )) =

k∑
j=1

f ( j) j−1

σn( f )
(E j − 1) =:

k∑
j=1

Zj,n( f ).

Then, our main tools for handling these stochastic processes are Theorem 2.11.1 and Theorem 2.11.9 of (van der

Vaart & Wellner, 1996) on uniform laws of sums of independent stochastic processes. We will then need the basic

frame of these theorems.

Next, we shall possibly consider sub-families F of of Fh (h = 1, 2) formed by functions f : N \ 0 �−→ R+ \ 0

satisfying this measurability assumption, that is for each h = 1, 2, for each δ > 0 and for each (e1, ..., en) ∈
{−1, 0, 1}n, for each p = 1, 2,

sup
( f1, f2)∈Fh,ρ( f1, f2)≤δ

k∑
j=1

e j

∣∣∣σ−1
n ( f1) f1( j) j−1 − σ−1

n ( f2) f2( j) j−1
∣∣∣p Ep

j , (MES)
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is measurable, where ρ is a semimetric space on F . Precisely, we introduce the two classes. Let subfamilies Fh,0

of Fh (h = 1, 2) such that each of them is equipped with a semimetric ρh such that (Fh,0, ρh) is totally bounded, and

that the measurability of (MES) holds. We may also need the random semimetric

d2
n( f1, f2) =

k∑
j=1

(σ−1
n ( f1) f1( j) j−1 − σ−1

n ( f2) f2( j) j−1)2(E j − 1)2.

Now suppose that (Fh,0, ‖‖) be a normed space verifying the Riesz property. Let us define, as in van der Vaart

and Wellner (1996, p. 211), the bracketing number N[](ε,Fh,0, Ln
2
) as the minimal number of sets Nε in a partition

Fh,0 =
Nε⋃
j=1
F n
ε j of the index set into sets F n

ε j such that, for every partitioning set F n
ε j,

k∑
i=1

E∗ sup
f ,g∈Fn

ε j

|Zni( f1) − Zni( f2)|2 ≤ ε2.

We have our first version of the functional laws of Tn( f ).

Theorem 3 Suppose that for each h = 1, 2, we have

sup
( f1, f2)∈F 2

h,0,ρh( f1, f2)≤δn

k(n)∑
j=1

( f1( j)/( jσn( f )) − f2( j)/( jσn( f )))2 → 0 (L1)

as δn ↓ 0 as n ↑ +∞, and ∫ δn
0

√
logN[](ε,Fh, dn)dε → 0, (L2)

as n ↑ ∞, where N[](ε,Fh,0, dn) is the ε-entropy number of Fh,0 with respect to the semi-metric dn, that is the
minimal number of dn-balls of radius at most ε needed to cover Fh.

Let F ∈ D(Λ) and suppose that (CU0) and (CU3) hold. Then
{
(s(k/n)σn( f ))−1 (Tn( f ) − s(k/n)an( f )), f ∈ F1

}

converges to a Gaussian process in �∞(F2,0) with covariance function

Γ( f1, f2) = lim
n→∞

k(n)∑
j=1

{σn( f1)σn( f2)}−1 f1( j) f2( j) j−2 ≤ 1.

And
{
(s(k/n)σn( f ))−1 (Tn( f ) − s(k/n)an( f )), f ∈ F1,0

}
converges to a stochastic process {L( f ), f ∈ F1,0} in �∞(F1,0)

with covariance function Γ( f1, f2). The finite distributions of (L( f1), ...,L( fS )) are characterized by the generating
moments function

(t1, ..., tS ) �→
+∞∏
j=1

exp(

S∑
s=1

ts fs( j) j−1)(1 −
S∑

s=1

ts fs( j) j−1), (4.1)

for |ts| ≤ 1/S , s = 1, ..., S .

Let F ∈ D(φ1/γ) and suppose that (CU1) and (CU2) hold. Then
{
(an( f )/σn( f ))(Tn( f )/an − γ), f ∈ F2,0

}
converges to a Gaussian process in �∞(F2,0) with covariance function Γ.

And
{
(an( f )/σn( f ))(Tn( f )/an − γ)/γ, f ∈ F1,0

}
converges to a stochastic process in �∞(F1,0) with covariance func-

tion γ2Γ and finite distribution characterized by (4.1).

Proof. We begin by applying Corollary 2. For T ∗n ( f ) = (s(k/n)σn( f ))−1(Tn( f ) − an( f )s(k/n)) for F ∈ D(Λ) or

T ∗n ( f ) = (an( f )/σn( f ))(Tn( f )/an − γ) for F ∈ D(G1/γ), we have

T ∗n ( f ) = V∗n ( f ) + o∗P(1),
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uniformly in f ∈ Fh and hence uniformly in f ∈ Fh,0 (h = 1, 2). From there, we apply Theorem 2.11.1 of (van der

Vaart & Wellner, 1996) on the uniform behavior of the stochastic processes

V∗n ( f ) = σn( f )−1(Vn( f ) − an( f )) =

k∑
j=1

f ( j) j−1

σn( f )
=:

k∑
j=1

Zj,n( f ),

indexed by f ∈ Fh,0. All the assumptions of Theorem 2.11.1 of (van der Vaart & Wellner, 1996) have already been

taken into account in our statement, except this one,

E∗{∥∥∥Zj,n

∥∥∥2Fh
I(‖Zj,n‖Fh

>η))→ 0, as n→ ∞, (L3)

for any η > 0, and the convergence of the covariance function. But the
∥∥∥Zj,n

∥∥∥ are measurable and

E
∥∥∥Zj,n

∥∥∥F1
= max{ f ( j)/ j, j ≥ 1}/σn( f )→ 0,

because of (KU1) and

E
∥∥∥Zj,n

∥∥∥F2
≤ Bn → 0

because of (KU2a). This proves (L3). As to the covariance functions which are

Γn( f1, f2) =

k(n)∑
j=1

{σn( f1)σn( f2)}−1 f1( j) f2( j) j−2,

we notice by the Cauchy-Schwartz inequality that they are bounded by the unity. For h = 1, we have

Γn( f1, f2) =
1√

A(2, f1)A(2, f2)

∞∑
j=1

f1( j) f2( j) j−2 ≤ 1,

while for h = 2, the condition (KU2a) guarantees the desired result. We thus conclude that {T ∗n ( f ), f ∈ Fh,0}
weakly converges in �∞(Fh,0) for each h = 1, 2. Now, by Theorem 2 and Corollary 1, we know that the weak limit

is either L defined by (4.1) or a Gaussian process Gof covariance function Γ.

Now, we present the second version which is more general since we do not require the measurability assumption

so that we consider the whole spaces Fh (h = 1, 2).

Theorem 4 If (Fh, ‖‖) is a normed space verifying the Riesz property, then the results of Theorem 3 hold when
∫ δn

0

√
logN[](ε,Fh, Ln

2
)dε → 0, (L4)

as n→ ∞, in place of (L2), provided that the Z j,n have finite second moments.

Proof. It is achieved by applying Theorem 2.11.9 of van der Vaart and Wellner (1996) in the proof of Theorem 3,

that requires (L1), (L2), (L4) and that the Zj,n have finite second moments. But (L2) and the last condition hold.

Thus (L1) and (L4) together ensure the results of the theorem.

5. Special Classes

We specialize these results for the special class of the monotone functions fτ( j) = jτ, 0 < τ.We will show here, in

this example, how to derive particular laws for special classes from our general results. We know from Dème, Lo

and Diop (2010) and Diop and Lo (2009) that Tn( fτ) is asymptotically normal for τ > 1/2 while it asymptotically

follows a L( fτ) type-law for 0 < τ < 1/2 , under usual conditions of the d. f . G. We handle here the uniform

asymptotic behavior for these two range values of τ: [0, 1/2] and [1/2,+∞). For the first case, we apply Theorem

3 and for the second, Theorem 4. First, let 0 < a < b < 1/2 and put,

F0(a, b) = { f ( j) = jτ, a ≤ τ ≤ b}.
We have

Corollary 3 Let 0 < a < b < 1/2 and F0 = F0(a, b) = { f ( j) = jτ, 0 < a ≤ τ ≤ b < 1/2}. Then,
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(1) if F∈ D(G0) and if (CU2) and (CU2) hold. Then
{
(s(k/n)σn( f ))−1 (Tn( f ) − s(k/n)an( f )), f ∈ F0

}

weakly converges to {L( f ), f ∈ F0}.
(2) if F ∈ D(G1/γ), γ > 0, and if (CU1) holds. Then

{(an/σn( f ))(Tn( f )/an( f ) − γ), f ∈ F0}
weakly converges to {γL( f ), f ∈ F0}.
Proof. We apply here Theorem 3. We have

F0,1 = {g( j) = j−(b−τ), a ≤ τ ≤ b}.
For f ( j) = jτ, denote g f ( j) = j−(b−τ), that is

f ( j)/ j = gf ( j) × j−(1−b).

In this case, put

V∗∗n ( f ) = (Vn( f ) − an( f )) =

k∑
j=1

g f ( j)(E j − 1) j−(1−b) =:

k∑
j=1

Zj,n( f ).

We have

ρ2
n( f1, f2) = E

k∑
j=1

(Zj,n( f1) − Zj,n( f2))2 =

k∑
j=1

( f1( j) − f2( j))2 j−2

≤ ρ2( f1, f2) =

∞∑
j=1

( f1( j) − f2( j))2 j−2 =

∞∑
j=1

(g f1 ( j) − g f2 ( j))2 j−2(1−b).

We point out that ρ2( f1, f2) is nothing else but
∥∥∥g f1 − g f2

∥∥∥2
L2(F0,1,Q)

for the probability measure on N,

Q = A(2, b)−1
∞∑
j=1

j−2(1−b)δ j

for

A(2, b) =

∞∑
j=1

j−2(1−b) < ∞,

For such monotone functions g f : N �→ [0, 1], we have by virtue of Theorem 2.7.5 of van der Vaart and Wellner

(1996) that for some K > 0, any ε > 0,

N[](ε,F0,1, L2(Q)) ≤ exp(Kε−1).

This means that (F0, ρ) is totally bounded and (L1) is reduced to

sup
ρ( f1, f2)≤δn

ρn( f1, f2) ≤ δn → 0,

which is trivial. In the same spirit

A(2, b, ω) =

∞∑
j=1

j−2(1−b)(E j − 1)2(ω)

is almost surely finite and

Q0(ω) = A(2, b, ω)−1
∞∑
j=1

j−2(1−b)(E j − 1)2(ω)δ j,
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is a probability measure for almost all ω. And we have

0 ≤ d2
n( f1, f2)→ d2( f1, f2) =

∥∥∥g f1 − g f2

∥∥∥2
L2(F0,1,Q0)

.

This convergence is a continuous one since τ lies on the compact set [a, b] (see Subsection 7.2. in the Appendix 7

for such results). Thus, uniformly in τ ∈ [a, b], for large values of n,

0 ≤ d2
n( f1, f2) ≥ 0.25d2( f1, f2).

We may use the same results of (van der Vaart, & Wellner, 1996) to get for some K > 0 and for any ε > 0,

log N[](ε,F0, dn) ≤ log N[](ε,F0, d/2) ≤ K(ε/2)−1.

This ensures (L2). The covariance function is, for f1( j) = jτ1 and f2( j) = jτ2 ,

Γ∗( f1, f2) = lim
n→∞

k∑
j=1

f1( j) f2( j) j−2 =

∞∑
j=1

j−(2−τ1−τ2) ≤
∞∑
j=1

j−2(1−b) = A(2, b).

As to the measurability hypothesis, it is readily seen that the following supremum

sup
( f1, f2)∈Fh, ρ( f1, f2)≤δn

k∑
j=1

e j

∣∣∣σ−1
n ( f1) f1( j) j−1 − σ−1

n ( f2) f2( j) j−1
∣∣∣p Ep

j (5.1)

is achieved through the rational values of τ in [a, b], and then, is measurable. This achieves the proof.

Corollary 4 Let 1/2 < a < b > 1 and F1(a, b) = { f ( j) = jτ, 0 < a ≤ τ ≤ b}.
(1) If F∈ D(G0) and if (CU3). Then

{
(s(k/n)σn( f ))−1 (Tn( f ) − s(k/n)an( f )), f ∈ F0

}

weakly converges to a Gaussian process G of covariance function Γ.

(2) If F∈ D(G1/γ), γ > 0, and if (CU1) holds. Then

{(an/σn( f ))(Tn( f )/an( f ) − γ), f ∈ F0}
weakly converges to the Gaussian process γG.

Proof. We apply here Theorem 4. But, we begin by returning to the simple scheme, that is, to fixed f ∈ F1(a, b).
Let f ( j) = jτ.We have

B(n, f ) = O((log k)−1),

τ = 1/2,

B(n, f ) = O(k−(2τ−1))

for 0 < τ < 1/2 and

B(n, f ) = O(k−τ),

for τ > 1. Then (K1) holds and this leads to the normal case in Theorem 2 for each τ ≥ 1/2. Next, for f1( j) = jτ1
and f2( j) = jτ2 , τ1 > 1/2, τ2 > 1/2,

lim
n→∞

k(n)∑
j=1

{σn( f1)σn( f2)}−1 f1( j) f2( j) j−2 =

√
(2τ1 − 1)(2τ2 − 1)

τ1 + τ2 − 1
= Γ( f1, f2) < ∞.

And for τ1 = 1/2 and τ2 > 1/2

k(n)∑
j=1

{σn( f1)σn( f1)}−1 f1( j) f2( j) j−2 ∼
√

2τ2 − 1(log k)k(2τ2−1)/2,
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that is, F1(a, b) satisfies (KU2a). This also implies that we have the finite-distributions weak normality for τ > 1/2.
It also fulfills (KU2b) since

B(n) = sup
f∈F1(a,b)

B(n, f ) ≤ k−b → 0.

Consider here

V∗∗n ( f ) = σn( f )−1(Vn( f ) − an( f )) =

k∑
j=1

f ( j)/( jσn( f ))(E j − 1) =:

k∑
j=1

Zj,n( f )

We have

ρ2
n( f1, f2) = E

k∑
j=1

(Zj,n( f1) − Zj,n( f2))2 = 2 − 2

σn( f 1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2

→ 2(1 − Γ( f1, f2)) =

∞∑
j=1

{( f1( j)/( jσn( f1)) − ( f2( j)/( jσn( f2))}2 .

By routine calculations and by a continuity argument based on the remark that our τ′s are in the compact set [a, b],

we may show that

ρ2
n( f1, f2) < 3(1 − Γ( f1, f2)) (5.2)

for large values of n. Since we use this type of arguments many times, we show in Subsection 7.2 of the appendix

7 the exact proof of (5.2). But

1 − Γ( f1, f2) = (1 −
√

(2τ1 − 1)(2τ2 − 1)

τ1 + τ2 − 1
)

For τ1 − τ2 = δ > 0,

1 − Γ( f1, f2) =
(2τ2 − 1) + δ − √(2τ2 − 1)2 + 2δ(2τ2 − 1)

τ1 + τ2 − 1
.

We use a Taylor expansion of a first order, to get for 1/2 < a < τ1, τ2 < b, 3(1−Γ( f1, f2)) ≤ B(a, b)δ, where B(a, b)

depends only on a and b. Thus for a fixed δ, for large values of k,

ρ2
n( f1, f2) ≤ B(a, b)δ.

We may now take the metric ρ( f1, f2) = ‖τ1 − τ2‖, for which (F1(a, b), ρ2) is a Riesz space totally bounded and we

surely obtain

sup
ρ2( f1, f2)≤δn

ρn( f1, f2) ≤ 4B(a, b)δn → 0.

This gives the (L1) hypothesis. Now, to conclude the proof by establishing the functional law as already described

in Corollary 1, we have to prove that (L4) holds for (F1(a, b), ρ2) with partitions not depending on n, so that (L2)

is unnecessary. Since the proof concerning (L4) is very technical, we state it Subsection 7.1 of the Appendix 7.

6. Technical Lemmas

Define the following conditions

A(2, f ) =

∞∑
j=1

f ( j)2 j−2 ∈]0,+∞[, (K1)

with the notation (well-defined since f > 0)

A(n, f ) =

∞∑
j=1

f ( j)n j−n

and

lim sup
n→+∞

σn( f )−1 max{ f ( j) j−1, 1 ≤ j ≤ k} = lim sup
n→+∞

B(n, f ) = 0 (K2)

We begin by this simple lemma where we suppose that we are given a sequence of independent and uniformly

distributed random variables U1,U2, ... as in (2.11).
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Lemma 1 Let

Vn( f ) =

k∑
j=1

f ( j) log(
U j+1,n

U j,n
). (6.1)

If (K2) holds,
σ−1

n ( f )(Vn( f ) − an( f )) � N(0, 1)

and if (K1) holds,
σ−1

n ( f )(Vn( f ) − an( f )) � L( f ),

where an( f ) and σn( f ) are defined in (1.2) and

L(τ) = A(2, f )

∞∑
j=1

f ( j) j−1(E j − 1),

is a centered and reduced random variable with all finite moments.

Proof. By using the Malmquist representation (2.12), we have

Vn( f ) =

k∑
j=1

f ( j) j−1E j. (6.2)

It follows that E(Vn( f )) = an( f ) and Var(Vn( f )) = σ2
n( f ). Put

V∗n ( f ) = σn( f )−1(Vn( f ) − an( f )). (6.3)

Then

V∗n ( f ) = σn( f )−1
k∑

j=1

f ( j) j−1(E j − 1). (6.4)

First suppose that (K1) holds, that is σn( f )→ A(2, f )−1/2 ∈ [0, 1]. Then

V∗n ( f )→ A(2, f )−1/2
∞∑
j=1

f ( j) j−1(E j − 1) = L( f ).

Now, we have to prove that L( f ) is a well-defined random variable with all finite moments. The moment charac-

teristic function of V∗n ( f ) is

ψV∗n ( f )(t) = exp(−A(2, f )−1/2
k∑

j=1

f ( j) j−1(it))
k∏

j=1

(1 − it × f ( j) j−1A( f )−1/2)−1.

By using the development of log(1 − ·), and, by the Lebesgues Theorem, one readily proves that

ψV∗n (τ)(t) = exp(

k∑
j=1

∞∑
n=2

(it)n

n
f ( j)n j−nA(2, f )−n/2)→ ψ∞(t) = exp(

∞∑
n=2

(it)n

n
A(n, f )A(2, f )−n/2). (6.5)

We note that if A(2, f ) < ∞, then A(n, f ) is also finite for any n ≥ 2, since the general term (in j) of A(n, f ) is less

than that of A(2, f ), for large values of j. This concludes the proof when (K1) holds.

Now suppose that (K2) holds. Let us evaluate the moment generating function of V∗n ( f ) :

φV∗n ( f )(t) =
k∏

j=1

φ(E j−1)(t f ( j) j−1σn( f )−1). (6.6)

Recall that, in this case, σn( f ) ↑ ∞. It follows from (K2), that for any u0 > 0 for a fixed t, for k large enough,

∣∣∣t f ( j) j−1 σn( f )−1
∣∣∣ ≤ u0 (6.7)
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uniformly in j ≥ 1. At this step, we use the expansion of φ(E j−1) in the neighborhood of zero :

ψ(E j−1)(u) = 1 + u2/2 + u3g(u),

where there exists u0 such that

0 ≤ u ≤ u0 ⇒ |g(u)| ≤ 1.

Using the uniform bound in (6.7), we get

φ(E j−1)(t f ( j) j−1σn( f )−1) = 1 +
1

2
(t f ( j) j−1σn( f ))−1)2 + (t f ( j) j−1σn( f ))−1)3g0, j,n(t), (6.8)

where
∣∣∣g0, j,n(t)

∣∣∣ ≤ 1 for all 1 ≤ j ≤ k. By the uniform boundedness of the error term, we have

log φ(E j−1)(t f ( j) j−1σn( f ))−1) =
1

2
(t f ( j) j−1σn( f ))−1)2 + (t f ( j) j−1σn( f ))−1)3g0, j,n(t) + (t f ( j) j−1σn( f ))−1)3g1, j,n(t),

where, always
∣∣∣g1, j,n(t)

∣∣∣ ≤ 1 for all 1 ≤ j ≤ k. Finally

φV∗n ( f )(t) = exp(

k∑
j=1

log φ(E j−1)(t f ( j) j−1σn( f ))−1) = exp(t2/2 + g2, j,n(t) × t3σn( f )−3
k∑

j=1

f ( j)3 j−3),

with
∣∣∣g1, j,n(t)

∣∣∣ ≤ 2 for all 1 ≤ j ≤ k. Since

0 ≤ σn( f )−3
k∑

j=1

f ( j)3 j−3) ≤ B(n, f ) × σn( f )−2
k∑

j=1

f ( j)2 j−2 = B(n, f )→ 0.

Hence

φV∗n ( f )(t)→ exp(t2/2)

and

V∗n ( f )→ N(0, 1).

Lemma 2 Let (a, b) ∈ R2 and suppose that for any couple ( f1, f2) ∈ F 2
h , h = 1, 2,

lim
n→∞

1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2 = Γ( f1, f2) exists.

Then for h = 1, aV∗n ( f1) + bV∗n ( f2) weakly converges to

aL( f1) + bL( f2).

and for h=2, aV∗n ( f1) + bV∗n ( f2) weakly converges to a normal random of variance :

v(a, b, f1, f2) = a2 + b2 + 2abΓ1( f1, f2).

In both cases, the finite-distributions of {V∗n ( f ), f ∈ Fh} weakly converge to those of the process L for h = 1 and,
for h = 2, to those of a Gaussian process of covariance function

Γ( f1, f2) = lim
n→∞

1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2

provided these numbers are finite.

Proof. The case h = 1 is straightforward. For h = 2, we slightly change the proof of the previous lemma from

(6.6). Put Vn(a, b, f1, f2) = aV∗n ( f1) + bV∗n ( f2) and

c(n, j) = σn( f1)−1a f1( j) j−1 + σn( f2)−1b f2( j) j−1.
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We always have, for ( f1, f2) ∈ F 2
2 ,

sup
j
|c(n, j)| → 0

and

k∑
j=1

c(n, j)2 = a2 + b2 + 2ab
1

σn( f1)σn( f2)

k∑
j=1

f1( j) f2( j) j−2 → v(a, b, f1, f2) = a2 + b2 + 2abΓ( f1, f2).

By using the same arguments in (6.6) and (6.8), we have

φVn(a,b, f1, f2)(t) = exp(

k∑
j=1

logψ(E j−1)(tc(n, j)) = exp(

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∑

j=1

c(n, j)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ t2/2 + g3, j,n(t) × t3(

k∑
j=1

c(n, j)3)),

with
∣∣∣g3, j,n(t)

∣∣∣ ≤ 2 for all 1 ≤ j ≤ k. Since

0 ≤
k∑

j=1

c(n, j)3 ≤ {aB(n, f1) + bB(n, f2)} ×
k∑

j=1

c(n, j)2 → 0,

we get

φVn(a,b, f1, f2)(t)→ exp(v(a, b, f1, f2)t2/2).

This achieves the proof. Now, these methods are reproducible for any finite linear combination

a1V∗n ( f1) + a2V∗n ( f2) + ... + amV∗n ( fm).

In all cases, we find the same finite distribution laws. For h = 1, (V∗n ( f1), ...,Vn( fm)) converges in law to (L( f1),

..., L( fm)) and for h = 2, (V∗n ( f1), ..., V∗n ( fm)) converges to a Gaussian vector of variance-covariance matrix

(Γ( fi, f j), 1 ≤ i, j ≤ m) provided these numbers are finite.

7. Appendix

7.1 Check Hypothesis (L4) for τ > 1/2

We shall consider F2(a, b) as a normed vector by identifying fτ( j) = jτ with τ and setting fτ1
+ fτ2 = fτ1+τ2

and

fτ1
≤ fτ2

i f f τ1 ≤ τ2.We put without lost of generality that b − a = 1 and that ε2 = 1/p. Next we divide F2(a, b)

into p intervals [0, τ1[, [τ1, τ2[, ..., [τp−1, τp]. Now, put

σ2
n(1, τ) = k−2τ+1σ2

n( fτ)

and consider τi < ν < τ < τi+1 and let i = 1 for short, τ − ν = δ and

d2
n( fν, fτ, j) = ( fν( j)/σn( fν) − fτ( j)/σn( fτ))2 j−2(E j − 1)2 (7.1)

{
k−2ν+1

σ2
n(1, ν)

j2ν−2 +
k−2τ+1

σ2
n(1, ν)

j2τ−2 − 2
k−ν−τ+1

σn(1, ν)σn(1, τ)
jτ+ν−2

}
(E j − 1)2

= {T0(n, τ, j) + T0(n, ν, j) − 2T1(n, ν, τ)} (E j − 1)2.

Let us handle T0(n, τ, j). By adding to it this null term

0 =
{
−σ−2

n (1, ν)k−2τ+1 j2τ−2 − σ−2
n (1, ν)k−2τ+1 j2τ−2

}
+ {−σ−2

n (1, ν)k−2ν+1 j2ν−2 + −σ−2
n (1, ν)k−2ν+1 j2ν−2},

we get

T0(n, τ, j) = (
1

σ2
n(1, τ)

− 1

σ2
n(1, ν)

)k−2τ+1 j2τ−2 (7.2)

+
k−2ν+1

σ2
n(1, ν)

j2ν−2(1 − ( j/k)2δ) +
k−2ν+1

σ2
n(1, ν)

j2ν−2, (7.3)

where we used in the previous line (7.2) the following identity

k−2τ+1 j2τ−2 = k−2ν+1 j2ν−2 + k−2ν+1 j2ν−2(1 − ( j/k)2δ). (7.4)
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Using again (7.4) in (7.2), we arrive at

T0(n, τ, j) (7.5)

= T0(n, ν, j) + (
1

σ2
n(1, τ)

− 1

σ2
n(1, ν)

)k−2ν+1 j2ν−2

+(
1

σ2
n(1, τ)

− 1

σ2
n(1, ν)

)k−2ν+1 j2ν−2(1 − ( j/k)2δ) +
k−2ν+1

σ2
n(1, ν)

j2ν−2(1 − ( j/k)2δ).

We use the same techniques to also get

T1(n, ν, τ) (7.6)

= T0(n, ν, j) + (
1

σn(1, τ)σn(1, ν)
− 1

σ2
n(1, ν)

)k−2ν+1 j2ν−2

+(
1

σn(1, τ)σn(1, ν)
− 1

σ2
n(1, ν)

)k−2ν+1 j2ν−2(1 − ( j/k)δ) +
k−2ν+1

σ2
n(1, ν)

j2ν−2(1 − ( j/k)δ)

Let us handle the σ−2
n (1, τ) − σ−2

n (1, ν) in (7.1). We get, by using the same methods,

σ−2
n (1, τ) − σ−2

n (1, ν) = σ−2
n (1, τ)σ−2

n (1, τ)k−2ν+1
k∑

j=1

j2ν−2(1 − ( j/k)2δ).

We already noticed that σ2
n(1, τ) → (2τ − 1)−1 ∈ [B = (2b − 1)−1, A = (2a − 1)−1] uniformly in τ ∈ [a, b] by a

continuity convergence argument. For ε chosen such that 2a − 1 − 2ε > 0, we get

k−2ν+1
k∑

j=1

j2ν−2(1 − ( j/k)2δ) ≤
k∑

j=1

j−1( j/k)2a−1(1 − ( j/k)2ε2

) = k2a−1
k∑

j=1

j2a−2 − k2ε2

j2a−2+2ε2

.

By using the asymptotic approximations to the corresponding integrals, we get, as n→ ∞,

k2a−1
k∑

j=1

j2a−2 − k2ε2

j2a−2+2ε2

= k−2a+1K{(1 + o(1))
k2a−1 − 1

2a − 1
} − (1 + o(1)k−2ε2 k2a−1+2ε2

2a − 1 + 2ε2
)

→ {(2a − 1)−1 − (2a − 1 + 2ε2)−1} ≤ (2ε2)/(2a − 1)2.

We conclude that, for large value of n,

k−2ν+1
k∑

j=1

j2ν−2(1 − ( j/k)2δ) ≤ Kε2 (7.7)

and hence ∣∣∣σ−2
n (1, τ) − σ−2

n

∣∣∣ ≤ Kε2,

for some positive universal constant K. This constant is generic and may change from line to line. In the same

spirit, we have, for this term in (7.1),

{σn(1, τ)σn(1, ν)}−1 − σ−2
n (1, ν) = σn(1, ν)−1σn(1, τ)−1 − σ−1

n (1, ν) = − σ−2
n (1, τ) − σ−2

n (1, ν)

σn(1, ν)2σn(1, τ)(σn(1, τ) + σn(1, ν))
.

The methods used above lead to

∣∣∣{σn(1, τ)σn(1, ν)}−1 − σ−2
n (1, ν)

∣∣∣ ≤ Kε2. (7.8)

Now returning to Formulae (7.1), (7.2) and (7.1), we see that the terms T0(n, ν, j) disappears as T0(n, ν, j) −
2T0(n, ν, j) + T0(n, ν, j) = 0. Computing the expectation of the remainder terms, we get

Ed2
n( fν, fτ, j) ≤ 2

∣∣∣∣∣∣
1

σ2
n(1, τ)

− 1

σ2
n(1, ν)

∣∣∣∣∣∣ j−1( j/k)2a−1
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+2

∣∣∣∣∣∣
1

σn(1, τ)σn(1, ν)
− 1

σ2
n(1, ν)

∣∣∣∣∣∣ j−1( j/k)2a−1 + 2 j−1( j/k)2a−1(1 − ( j/k)2δ).

The left-member does not depend on (ν, τ) ∈ [τi−1, τi] so that, with the application (7.7) and (7.8), we obtain

max
(ν,τ)∈[τi−1,τi]

d2
n( fν, fτ, j) ≤ K

{
( j/k)2a−1ε2 + 2 j−1( j/k)2a−1(1 − ( j/k)2ε2

)
}

(E j − 1)2.

Finally, by (7.7),
k∑

j=1

E sup
(ν,τ)∈[τi−1,τi]

d2
n( fν, fτ, j) ≤ Kε2,

for large values of n. Then

logN[](ε,Fh, Ln
2) ≤ p ≤ Kε−2.

And this ensures (L4) of Theorem 4.

7.2 Continuous Convergence

In order to prove (5.2), suppose for each N > 0, there exists a value n ≥ N and a couple ( f1, f2) such that

ρ2
n( f1, f2) < (1 − Γ( f1, f2)) (H)

We may lessen the notations and put ρ2
n( f1, f2) = ρ2

n(τ1, τ2) for f1( j) = jτ1 and f2( j) = jτ2 ∈ (a, b)2. It is easy to

prove that

ρ2
n(τ1, τ2)→ 2(1 − Γ(τ1, τ2)),

continuously, that is,

ρ2
n(τ1,n, τ2,n)→ 2(1 − Γ(τ1, τ2)).

if (τ1,n, τ2,n) → (τ1, τ2), as n → +∞. But, with our hypothesis (H), we can find a sequence of integers n1 < n2 <
... < nk < nk+1 < .. such that and a sequence of couples (τ1,nk , τ2,nk ) ∈ (a, b)2, k = 1, 2, ... such that for any k,

ρ2
n(τ1,nk , τ2,nk ) < (1 − Γ(τ1,nk , τ2,nk ). (H1)

By the Bolzano-Weierstrass Theorem, we may extract from (τ1,nk , τ2,nk ) a subsequence, denoted (τ1,n∗k , τ2,n∗k ) con-

verging to some (τ1, τ2) ∈ (a, b)2 and by the continuity result

ρ2
n∗(τ1,n∗k , τ2,n∗k )→ 2(1 − Γ(τ1, τ2)).

This violates (H1) and then proves (5.2).
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