International Journal of Statistics and Probability; Vol. 1, No. 2; 2012
ISSN 1927-7032  E-ISSN 1927-7040
Published by Canadian Center of Science and Education

A Functional Generalized Hill Process and Its Uniform Theory
Gane Samb Lo"? & El Hadji Déme?

I'LSTA, Université Pierre et Marie Curie, France
2 LERSTAD, Université Gaston Berger de Saint-Louis, Senegal

Correspondence: Gane Samb Lo, Université Gaston Berger, Saint-Louis BP 234, Senegal. Tel: 221-33-961-2340.
E-mail: gane-samb.lo@ugb.edu.sn, ganesamblo@ufrsat.org

Received: July 25,2012  Accepted: September 19, 2012  Online Published: October 29, 2012
doi:10.5539/ijsp.vIn2p250 URL: http://dx.doi.org/10.5539/ijsp.v1n2p250

Abstract

We are concerned in this paper with the functional asymptotic behavior of the sequence of stochastic processes

Jj=k

Tn (f) = Z f(.]) (log Xn—j+l,n - lOg Xn—j,n) s (O 1)

=1
indexed by some classes 7 of functions f : N\{0} — R, and where k = k(n) satisfies
1<k<nk/n—>0asn— co.

This is a functional generalized Hill process including as many new estimators of the extreme value index when
F is in the extreme value domain. We focus in this paper on its functional and uniform asymptotic law in the new
setting of weak convergence in the space of bounded real functions. The results are next particularized for explicit
examples of classes F .

Keywords: extreme values theory, asymptotic distribution, functional Gaussian and nongaussian laws, uniform en-
tropy numbers, asymptotic tightness, stochastic process of estimators of extreme value index, sowly and regularly
varying functions
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1. Introduction

Let X;, X»,... be a sequence of independent copies (s.i.c) of a real random variable (r.v.) X > 1 with d.f. F(x) =
P(X < x). We will be concerned in this paper with the functional asymptotic behavior of the sequence of stochastic
processes

k
To(f) = D F() (108 Xn o1 = 10 Xy 1) (1.1)

=

indexed by some classes ¥ of functions f : N* = N\{0} — R, and where k = k(n) satisfies
1<k<nk/n—0asn— oo.

The main motivation of this study is to obtain very large classes of estimators for the extreme when F lies in the
extreme value domain, all of them being margins of only one stochastic process. Indeed, for the uniform function
f() = j, k"' T,(f) is the famous Hill (1975) estimator of such an index. Recently, a first step to functional forms of
the Hill estimator has been done in Diop and Lo (2009) in the form k77 T,,(f) for f(j) = j© and respectively studied
in Diop and Lo (2009) for (r > 1/2) and in Déme, LO and Diop (2010) for (0 < 7 < 1/2) in finite distributions.
Groenboom, Lopuha and Wolf (2003). also considered a thorough study of a family of Kernel-type estimators of
the extreme value index. However, they did not consider a stochastic processes view. There exists a very large
number of estimators of the extreme velue index. We may cite those of Csorgd-Deheuvels-Mason (1985), De
Haan-Resnick (1980), Pickands (1975), Deckkers, De Haan and Einmahl (1989), Hasofer and Wang (1992), etc.
But they all go back to the Hill’s one.
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However, the asymptotic theory for the estimators of the extreme value index are set for a finite number of them,
in finite distributions for whole the extreme value domain (—oo < ¥ < +oc0). The reader is referred to following
sample citations: Csorgd, Deheuvels and Mason (1985); Csorgd and Mason (1985); Dekkers, Einmahl and De
Haan (1989); Diop and Lo (2009); De Haan and Resnick (1980); Hall (1982); Hall (1978); Hauesler and Teugels
(1985); Hasofer and Wang (1992); Lo (1989); Pickands (1975) etc.

Now the modern setting of functional weak convergence allows to handle more complex estimators in form of
stochastic processes, say {7,,(f), f € 7}, such that for any f € F, there exists a nonrandom sequence a,(f) such
that T, /a,(f) is an estimator of the extreme value index y. Such processes may be called stochastic processes of
estimators of the extreme value index.

Here, we consider one of such processes, that is (1.1). Our aim is to derive their functional asymptotic normality
when possible or simply their asymptotic distribution for suitable classes. We will see that for some classes, we
have non Gaussian asymptotic behavior, which will be entirely characterized. We shall mainly consider two classes
of functions. The first consists of those functions f satisfying

AR )= D F(Pi7 <o, (K1)
=
with the general notation A(m, f) = 332, f(j)"j™. The second includes functions f such that
lim sup B(n, f) = 0, (K2)
n—+oo

where B(n, f) = o-,l(f)‘1 max{f(j)j‘l, 1 < j <k} and o,(f) is defined below in (1.2). Under these two conditions,
we will be able to find the asymptotic distributions of 7,(f) for a fixed f, under usual and classical hypotheses of
extreme value Theory. But as to functional laws, we need uniform conditions. Define 7 the subclass of ¥ such
that

0 < inf A(2, f) < sup A(2, f) < +o0, (KU1)
Jer feFi
and 5 be a subclass of ¥ such that
lim sup B(n, f) =0, (KU2a)
n—oo fE]Fz

and such that for any couple (f1, f>) € %2,

1 k
lim ————— Vo) =T(f, KU2b
i i) ; AGAGDI? =T (i, ) (KU2b)
exists, where
k k
T ()= FP i and a(f) = ). (DI (1.2)
= =1

We will suppose at times that each 77, is totally bounded with respect to some semimetric pj,.

Our best achievement is the complete description of the weak convergence of the sequence
{Tn(f)’f € ﬁ}’h = 1’2$

in the spaces ¢ (¥,) of bounded and real functions defined on 77, in the light of the modern setting of this theory
in Theorems 3 and 4. Further we provide real case studies with explicit classes in application of the general results,
in corollaries of Section 5.

This approach yields a very great number of estimators of the tail distribution 1 — F in the extreme value domain.
But, this paper will essentially focus on the functional and uniform laws of the process described above. Including
in the present work, for example, second and third order conditions as it is fashion now, and considering data
driven applications or simulation studies would extremely extend the report. These questions are to be considering
in subsequent papers.

This paper will use technical results of extreme value theory. So we will summarize some basics of this theory in
the Section 2. In this section, we introduce basic notation and usual representation of distribution functions lying
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in the extreme value domain, to be used in all the remainder of the paper. Section 3 is devoted to pointwise limit
distributions of T,,(f), while our general functional results are stated and established in Section 4. In Section 5, we
study some particular cases, especially the family {f(j) = ;7,7 > 0}. The section 6 is devoted to the tools of the
paper. In this latter, we state two lemmas, namely Lemmas 1 and 2, which are key tools in the earlier proofs.

We draw the attention of the reader that we will deal with uniform converges on families of random variables
indexed set functions denoted here by 7. It is not sure that the supremum of such families of random variables are
measurable. So we are obliged to use the convergence in outer probability rather than convergence in probability
in the case where measurability is not proved. We remind here this concept. A sequence of applications (Z,),>|
defined on (€, A, P) with values in R converges to zero in outer probability as n — +oo if and only there exists a
sequence real and nonnegative random variables (u,),>; defined on (Q, A, P) such that : Vn > 1,|Z,| < |u,| and u,
tends to zero in probability as n — +oo. This is also denoted by Z, = 0},. (See van der Vaart & Wellner, 1996) for
a complete account of such a theory)

2. Some Basics of Extreme Value Theory

The reader is referred to de Haan (1970; 2006), Resnick (1987), Galambos (1985) and Beirlant, Goegebeur and
Teugels (2004) for a modern and large account of the extreme value theory. A distribution function F is said to
be attracted to a non degenerated M iff the maximum X, , = max(Xj,...X,), when appropriately centered and
normalized by two sequences of real numbers (a, > 0),50 and (b,),»o, converges to M, in the sense that

lim P(X,, <a, x+b,)= lim F"(a,x+ b,) = M(x), 2.1
n—+oo

n—+oo

for continuity points x of M.

If (2.1) holds, it is said that F is attracted to M or F belongs to the domain of attraction of M, written F' € D(M).
It is well-known that the three possible nondegenerate limits in (2.1), called extreme value d.f., are the following.

The Gumbel d.f.

A(x) = exp(—exp(—x)), x € R, 2.2)

or the Fréchet d. f. of parameter a > 0,
¢y (x) = exp(—=x"")[o +00[(x), x € R 2.3)

or the Weibull d. f. of parameter @ > 0
Yy (x) = exp(=(X) )-eo0)(x) + (1 = Ij-0 0 (x)), x € R, 24

where I4 denotes the indicator function of the set A. Now put D(¢) = Uas0D(¢,), D) = UysoD(ry), and
I' = D(¢) U D(y) U D(A).

In fact the limiting distribution function M is defined by an equivalence class of the binary relation R on the set of
d.f’s D in R defined as follows :

V(My, My) € D, (MiRM>) & A(a,b) € R,\{0) x R, ¥(x € R),

M>(x) = M (ax + b).

One easily checks that if F" (a,x + b,) — M;(x), then F" (c,x + d,) — Mi(ax + b) = M,(x) whenever
a,/d, — aand (b, —d,)/c, > basn — oo. 2.5)

These facts allow to parameterize the class of extreme value distribution functions. For this purpose, suppose that
(2.1) holds for the three d.f.’s given in (2.2), (2.3) and (2.4). We may take sequences (a, > 0),>; and (b,),> such
that the limits in (2.5) area = y = 1/a and b = 1 (in the case of Fréchet extreme value domain), anda = —y = -1/«
and b = —1 (in the case of Weibull extreme value domain). Finally, one may interprets (1 + yx)"V = exp(—x)
for y = 0 (in the case of Gumbel extreme value domain). This leads to the following parameterized extreme value
distribution function

Gy(x) = exp(=(1 +yx)"'"), 1 +yx > 0, (2.6)

called the Generalized Extreme Value (GEV) distribution of parameter y € R.
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Now we give the usual representations of df”s lying in the extreme value domain in terms of the quantile function
of G(x)=F(e"), x > 1, thatis G™'(1 —u) = log F~'(1 —u),0 <u < 1.

Theorem 1 We have:
1) Karamata’s representation (KARARE)
(a) If F € D(¢1/y),y > 0, then

1
G711 —u) = logc + log(1 + p(u)) — ylogu + (f b 'dr), 0<u <1, 2.7)

where sup(|p(u)|, |b(w)]) — 0 as u — 0 and c is a positive constant and G™'(1 — u) = inf{x,G(x) > u}, 0 <u < 1,
is the generalized inverse of G with G™'(0) = G~ (0+).

(b)IfF € D(Yr1/y), y > 0, then yo(G) = sup{x, G(x) < 1} < +c0 and

1
yo— G (1 —u) = c(1 + plu))u” exp(f b 'dr), 0 <u <1, (2.8)

where ¢, p(-) and b(-) are as in (2.7).
2) Representation of de Haan (Theorem 2.4.1, 1970),
If G € D(N), then

1
G '(1-—u) =d- s +f s(H'de,0 <u < 1, (2.9)

where d is a constant and s(-) admits this KARARE:

1
s(u) = c(1 + p(u)) exp(f b 'df),0 <u < 1, (2.10)

¢, p(-) anf b(-) being defined as in (2.7).

We restrict ourselves here to the cases F € D(I') U D(®y/,), v > 0, since the case F' € D(¥,), vy > 0, may
be studied through the transform F(xo(F) — 1/)) € D(®y,,) for estimating y. This leads to replacle X,_;.1, by
xo(F)=1/1/X;, in (1.1). However, a direct investigation of (1.1) for F' € D(¥';/,), v > 0is possible. This requires
the theory of sums of dependent random variables while this paper uses results on sums of independent random
variables, as it will be seen shortly. We consequently consider a special handling of this case in a distinct paper.

Finally, we shall also use the uniform representation of ¥, = log X1, ¥, = log X,,...by G~ '(1-U}), G (1-U)), ...
where Uy, Uy, ... are independent and uniform random variables on (0, 1) and where G is the d.f. of Y, in the sense
of equality in distribution (denoted by =)

{vi.jzl =G 0-Up.j21},

and hence
{{Yl,mYZ,nw“Yn,n},n > 1} (211)

= ({671 = Up). G (1 = Uyt ). G (U = Up)hon 2 1),

In connection with this, we shall use the following Malmquist representation (see Shorack & Wellner, 1986, p.
336) :

Uiin -
PG G n) =g AEs o En), 2.12)

{log(

Jn

where E1, ..., E, are independent standard exponential random variables.

3. Pointwise and Finite-distribution Laws of 7,(f)

Let us begin to introduce these conditions on the distribution function G, through the functions p and b in the
representations (2.7), (2.8), (2.9) and (2.10). First, define for 4 > 1,

0<gia(p,)= sup |p(u),
0<u<ik/n
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gon(b, 1) = sup |b(u)l,

0<u<k/n

and
dn(p, b, ) = max(g1,,(p, D), g2..(b, 1) log k).

We will need the following conditions for some A > 1 :

d,(p,b, ) > 0asn — oo.

k
2alfs (N D F() =0, asn — oo,
j=1

k
2(b, D)@K Y f(j) > 0asn — oo
j=1

and

k
do(p by (K D f() = O asn — oo,
j=1

(CO)

(ChH

(C2)

(C3)

From now on, all the limits are meant as n — oo unless the contrary is explicitly stated. We are able to state:

Theorem 2 Let F € D(A). If (CO) and (C3) holds, then

(s(k/m)an (1)~ (Ta(f) = an(f)s(k/n)) = N(O,1)

when (K2) holds and
(s(k/m)a (N (Tu(f) = an(f)sk/n)) — L(f),

when (K1) is satisfied, and where
L) = A2 N7 FGTE = .
=1

Let F € D(¢1/y). If (C1) and (C2) hold, then

(@D oa PNTa(H)an(f) =) = NO,7?)

under (K2) and
(@ ()T ONT ()] an(f) =) = ¥ L(f)

under (K1).
Proof. Let us use the representation (2.11). We thus have, for any n > 1,
{l0g Xmjurn = Vasjern 1 < j <} = {GTH = Uj) 1 < j < ).
First, let F € D(A). By (2.8), we get
k k Ujiin
Tu(f) = ) FW) = sWU 1)) + Y £() f s(/tdt = S (1) + §,(2).
=1 =1 v

Jn

Using (2.10), we have for Uy, < v,u < Uy,
Uk+1.n .
s(u)/s(v) = (1 + p))/(1 + p(v)) exp(— 17 b(1)dr).
U],rx
Putting
g1..0(p) = sup{lp)|,0 < u < Ups1,,} and g2,,0(p) = sup{|b(u)],0 < u < U1},
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we get, since 10g(U11,,/U1,,) = Op(logk) as n — oo,

s)/s(v) = (1 + O(g1.1,0)) exp(=0,(g2.10 l0g k)).

This implies
sup  [s(u)/s(v) — 1] = Op(max(g1,0, 82,10 l0gk)) (3.2)
Uy pn<u,v<Ui,
as n — oo and W) — s)
s(u) — s(v
sup  |—————| = Op(max(g1 0, g2.n.0 10g k)). (3.3)
Uy p<uv<Uy, S(k/n)

Since nk™'Uyy1,, — 1 a.s. as n — oo, we may find for any & > 0 and for any A > 1, an integer Ny such that for any
n > Ny,
P(g1,10 < 81.4(P, ), &20 < 82(b, ) 21— €. (3.4)

Hence (C3) implies

an(f)stk/n) —
where d,(p, b, A) = max(gi.,, g2.n log k). Next

S, (1 v
Y 4 (pbe ) ™ ) =10,
=

Ul‘rl,n

S.2 L
o = D) [ s stk
=1 i
Ujrin

T (Pstkin) ~
k J
o (DY FO) f {s(t)/s(k/m) = 1} Jrd
j=1

U./v”

Ujiin

k
— o Y50
=1 v

=5,2,D)+S5,2,2).

jin

We have, by (3.2) and the Malmquist representation (2.12),

k
142, 2)] < 0p(Ndu(p, b, ) x ()™ Y F()JTEj < 0p(1) %
j=1

k k
{d,,(p, b X (N FGDITE = D+ da(p. b, )X (7] f(j)f‘} :
j=1 j=1

The first term tends to zero since o, (f) ! Z]j;] fHjiYE 7 — 1) converges in distribution to a finite random variable
by Lemma 1 in Section 6 and d,(p,b, 1) — 0 by (C0O). The second also tends to zero by (C3). Finally, by the
Malmquist representation (2.12), one arrives to

k
S/ D) =N Y. FITE;:

j=1
And this leads to .
S42. 1)~ {au(Hou(DY = a0 Y JUE; - 1),
j=1
which converges in distribution to a N (0, 1) random variable under (K2) and to £(f) under (K1) by Lemma 1 in

Section 6. By sammerizing all these facts, we have proved that

(@(N)sk/m) " (Tl f) = an(Hsthk/n)
converges in distribution to a (0, 1) random variable under (K2) and to £(f) under (K1).

Now let F € D(¢1/,), we have by (2.7) and the usual representations,

k k k Ujiin
() = 0 {1081+ pU) = Toxt1 + pCU| + v Y D08 UsetlUs) + Y56 [ bioynas
j=1 j=1

J=1 Ujn

=S,(H+S5,2)+S,03).
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We have, for large values of £,

k
IS 2 (D/Tn (O < 281m0()Tn(f) Z J,
=1

where g; 0 is defined in (3.1), which tends to zero in probability by (C1) and (3.2). Next

k
1S4(3)/Tu(D] < 8200 GYTu(F) Y FGI0EU 114/ U )

j=1
k k
= 220B) (N Y FDTTNE; = 1)+ oo D FGIT
j=1 j=1

where g;,0 defined in (3.1). Then S,(3)/0,(f) — 0 by (C3) and Lemma 1 and the methods described above.
Finally, always by Lemma 1,

k
((S23) = yan(H} [l ) = Yol £ D" NI (B} = 1) = yVis(f).
j=1

We recall that V,,(f) and V,*(f) are both defined in Lemma 1 and its proofs in Equations (6.1 - 6.4). We conclude
the proof by noticing that the right member this latter equation converges in distribution to a N'(0,y?) random
variable under (K2) and to yL(f) under (K1), by Lemma 1.

From these proofs, we get two intermediate results towards the functional laws. The first concerns the asymptotic
law in finite distributions.

Corollary 1 Suppose that the hypotheses (C0), (C1), (C2) and (C3) hold and for any (fi, f>) € 7"12 U 7'22,

1 1 k - o e— .
S o) ; SR = T fo) exists.

Then the finite-distributions of {(s(k/n)a () N (Tu(f) = a,(f)sk/n)), f € F1} weakly converge to those of the
process L, for F € D(A) and the finite-distributions of{O',,(f)’l(T,,(f) —ay(f), f € 1} weakly converge to those
of the process y.L, for F € D(gi,y).

And the finite-distributions of {(s(k/n)a, ()" (Tu(f) — an(f)sk/n)), f € Fr} weakly converge to those of a Gaus-
sian process G of covariance function

k
1
I'(fi, ) = lim ————— Vo)
(fis f) = lim ——es ,Z; nYADY,
and, for F € D(A), the finite-distributions of (o,(f) " (Tu(f) — a,(f), f € F2} weakly converge to those of yG, for
F € D(¢1/y).
Proof. Put V,(0, f) = (s(k/m)ou (/) (Tu(f) = an(f)stk/n)) and V, (1, f) = au(f)"(Tu(f) = an(f)) for a fixed
f € Fn,h = 1,2. For a finite family (f1, f5,.... fs) € f € F,h = 1,2,0 < s € N*, we have by the proof of Theorem
1,foreach1 <i<s,

Viu(0, fi) = V,(f) + op(1), (3.5
for F € D(A) and

Va(1, f) = vV, (f) + op(1) (3.6)
for F' € D(¢1/,). From now, we conclude by applying Lemma 2 which establishes the asymptotic laws of (V;;(f1),
...y V2(f5)) under the assumptions of the Lemma.

This corollary makes a good transition towards the functional law. In order to state a further step, we need the
following uniform conditions on the distribution function F. Define for some A > 1,

sup d,(p,b, 1) — 0. (CU0)
feFn
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sup g1.1(f, D(@4(f)” Z F() =0, (cul)
1<% =
Sup g2,(b- V(@ ()" Z o) (Cu2)
and
SUp d (p-b. ory (/) Zf(]) -0, (CU3)

j=1

These conditions are set so that the op(1) in (3.5) and (3.6) hold uniformly in our classes. We thus begin to state
this:

Corollary 2 Assume that the uniform conditions (KU 1), (KU?2a), (KU2b), (CUO) (CU1), (CU2) and (CU3) hold
- when appropriate - in Theorem 2. Finally let ¥, be a nonvoid family of functions satisfying (KU1) or, a nonvoid
Sfamily of functions satisfying (KU2a — b). Suppose that {V;(f), [ € Fa} weakly converges in £>(¥,). Then,
uniformly in f € ¥,
(sCk/m)ou() ™ (Ta(f) = an(f)stk/n)) = Vi(f) + 0p(1)
for F € D(A) and
(an(N /T (INTu(N]an =) = ¥V, () + 0p(1)

Jor F € D(¢1,,).
Proof. Put
(0, £) = (s(k/m)an () (Tu(f) = an(f)s(k/n))

and

Vn(l,f) = (an(f)/o—n(f))(Tn(f)/an -
When the uniformity hypotheses (KU1) or,(KU2a) and (KU2b) hold, we surely have

Va(0, ) = V()1 + 0p(1) + 0p(1) and V,,(1, ) = ¥V, (/)1 + 0p(1)) + 0p(1),

uniformly in f € 7. Now let 7, a subset of 7, such that {V;;(f), f € F,} weakly converges, say to G in (7).
Then ||(G||*ﬁ < oo. Since, by the continuity theorem, | v F ||(G||*ﬁ , we get

Va0, f) = V,(f) + 0p(D), (3.7

uniformly in f € ¥, for F € D(A). The other cases are proved similarly.
4. The Functional Law of T,,(f)
We shall use here (3.7). Recall and denote

SJ~
(f)

Vo) = a7 V) = an(f) = Z -1 = ZZ,n(f)

Then, our main tools for handling these stochastic processes are Theorem 2.11.1 and Theorem 2.11.9 of (van der
Vaart & Wellner, 1996) on uniform laws of sums of independent stochastic processes. We will then need the basic
frame of these theorems.

Next, we shall possibly consider sub-families ¥ of of ¥, (h = 1,2) formed by functions f: N\ 0 +— R, \ 0
satisfying this measurability assumption, that is for each & = 1,2, for each 6 > 0 and for each (ey,...,e,;) €
{—1,0,1}", foreach p = 1,2,

k
sup el AT = o (s EL, (MES)
N 2)eFhpfi,2)<6 2 ’
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is measurable, where p is a semimetric space on ¥ . Precisely, we introduce the two classes. Let subfamilies 7,
of 75, (h = 1,2) such that each of them is equipped with a semimetric p;, such that (Fy,, o) is totally bounded, and
that the measurability of (MES) holds. We may also need the random semimetric

k

d(fis ) = ) DA = o LTV E; = 1.

J=1

Now suppose that (%, [lll) be a normed space verifying the Riesz property. Let us define, as in van der Vaart
and Wellner (1996, p. 211), the bracketing number Nj(g, Fi.0, L7) as the minimal number of sets N, in a partition

&

Fno = U F.; of the index set into sets ", such that, for every partitioning set 7",
j=1

k
DUE" sup 1Zu(fi) - Zu()P < £

i=1 [l
We have our first version of the functional laws of T,(f).
Theorem 3 Suppose that for each h = 1,2, we have

k(n)

sup Z(fl D/Goa() = LWDIGoa(H)) = 0 (L)

S IET gon(i:12)<6, =1

On
f JiogNy(e, T dy)de — 0, (L2)
0

as n T oo, where Ny(€, Fro,d,) is the e-entropy number of Fo with respect to the semi-metric d,, that is the
minimal number of d,-balls of radius at most € needed to cover Fy,.

Let F € D(A) and suppose that (CUQ) and (CU3) hold. Then

as o6, L 0asn T +oo, and

{(s/mau(H) ™ (Tuf) = sk/man(f). f € T
converges to a Gaussian process in {*(F,,) with covariance function

k(n)

[ o) = Jim D ou (ol iDAG < 1.
j=1

And {(s(k/n)o;,(f))‘1 (T, (f) — stk/m)a,(f)), f € ?'1,0} converges to a stochastic process { L(f), f € F10}in {(F1)
with covariance function U(f1, f>). The finite distributions of (L(f1), ..., L(fs)) are characterized by the generating
moments function

+00

N S
(15 ts) = | JoxpOY 170 = D 6 i)™, @.1)

j=1 s=1 s=1
forlt <1/S,s=1,..,8S.
Let F' € D(¢1/,) and suppose that (CUI) and (CU2) hold. Then

{@n(N/onNTu()an =), f € F20}

converges to a Gaussian process in £ (%) with covariance function T

And {(a,(f)] oo (PT () an — )]y, f € Fio} converges to a stochastic process in £°(Fi9) with covariance func-
tion y’T and finite distribution characterized by (4.1).

Proof. We begin by applying Corollary 2. For T:(f) = (s(k/n)o,(f)" (Tu(f) — a.(f)s(k/n)) for F € D(A) or
T,(f) = (an(N/ou(OINT(f)/an = y) for F € D(G)y), we have

T,(f) = V() + op(D),
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uniformly in f € 5, and hence uniformly in f € 75,0 (h = 1,2). From there, we apply Theorem 2.11.1 of (van der
Vaart & Wellner, 1996) on the uniform behavior of the stochastic processes

k o ] k
Vith = ViD= = D I Y 2,0,
=1 " Jj=1

indexed by f € F;,0. All the assumptions of Theorem 2.11.1 of (van der Vaart & Wellner, 1996) have already been
taken into account in our statement, except this one,

E (|- Kzl o) = 0 asn— o, (L3)

for any 7 > 0, and the convergence of the covariance function. But the HZ j,n” are measurable and

E (2l = max{f()/jij = Wou(f) = 0,

because of (KU1) and
E|Z;all

because of (KU?2a). This proves (L3). As to the covariance functions which are

<B,—0

k(n)

L(fis ) = Y Aea(fen) ! ADADI

J=1

we notice by the Cauchy-Schwartz inequality that they are bounded by the unity. For 7 = 1, we have

To(fi, f2) = D ADADIT LT,

1
VA2, fDAR, 2) 3

while for & = 2, the condition (KU2a) guarantees the desired result. We thus conclude that {T;(f), f € Fno}
weakly converges in £*(F,0) for each & = 1, 2. Now, by Theorem 2 and Corollary 1, we know that the weak limit
is either £ defined by (4.1) or a Gaussian process Gof covariance function I".

Now, we present the second version which is more general since we do not require the measurability assumption
so that we consider the whole spaces 7, (h = 1,2).

Theorem 4 If (7, ||||) is a normed space verifying the Riesz property, then the results of Theorem 3 hold when

f JIogNy(e, Fir, Lde — 0, (L4)
0

as n — oo, in place of (L2), provided that the Z;, have finite second moments.

Proof. 1t is achieved by applying Theorem 2.11.9 of van der Vaart and Wellner (1996) in the proof of Theorem 3,
that requires (L1), (L2), (L4) and that the Z;,, have finite second moments. But (L2) and the last condition hold.
Thus (L1) and (L4) together ensure the results of the theorem.

5. Special Classes

We specialize these results for the special class of the monotone functions f;(j) = j*, 0 < 7. We will show here, in
this example, how to derive particular laws for special classes from our general results. We know from Deme, Lo
and Diop (2010) and Diop and Lo (2009) that 7,,(f;) is asymptotically normal for 7 > 1/2 while it asymptotically
follows a L(f;) type-law for 0 < 7 < 1/2 , under usual conditions of the d.f. G. We handle here the uniform
asymptotic behavior for these two range values of 7: [0, 1/2] and [1/2, +00). For the first case, we apply Theorem
3 and for the second, Theorem 4. First, let 0 < a < b < 1/2 and put,

Fola,b) ={f(j)=j,a<T<b}
We have

Corollary 3 Let 0 < a < b < 1/2 and Fo = Fola,b) = {f(j) = j5,0<a <7t < b < 1/2}. Then,
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(1) if Fe D(Gy) and if (CU2) and (CU2) hold. Then
{(ste/ma (N (Tu() = stk/man(f), f € Fo)
weakly converges to { L(f), f € Fo}.

(2) if F € D(Gy},),y > 0, and if (CUI) holds. Then

{(an/o—n(f))(Tn(f)/an(f) - 7)’f € 7:0}

weakly converges to {y L(f), f € Fo}.
Proof. We apply here Theorem 3. We have

Foa=1g()=j " a<t<h)

For f(j) = j*, denote g;(j) = j~¢0, that is

F)j=gr()x j .

In this case, put
k k
V() = (Valh) = an(F) = D g GIE; = 1) =2 Y Z3,(f).
j=1 j=1
We have . .
P2 ) =B D Zin(h) = Zin(B)F = D (H(G) = AT

= =

<PX(fi. ) = Z(fl ) - LG = Z(gfl () — g (220D,

j=1 j=1
2
Ly (F0,1,Q)

We point out that p>(f;, ) is nothing else but “ g&h — & for the probability measure on N,

Q=A@.b ),

=1

for
A(Z, b) — Z j—2(|—b) < 0o,

=1

For such monotone functions gy : N ~ [0, 1], we have by virtue of Theorem 2.7.5 of van der Vaart and Wellner
(1996) that for some K > 0, any € > 0,

Niy(e, Fo1, La(Q)) < exp(Ke™).
This means that (¥, p) is totally bounded and (L1) is reduced to

sup  pu(f1, 2) £ 0, = 0,
P(f1.£2)<6,

which is trivial. In the same spirit

AQ.b,w) =) THPE - 1 (w)
j=1
is almost surely finite and

Qo) = A, b,w)™ ) PIPUE; — 1P (s,

=1
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is a probability measure for almost all w. And we have

0.<d2(fi, ) = d*(fi ) = |lg5 = 85

This convergence is a continuous one since 7 lies on the compact set [a, b] (see Subsection 7.2. in the Appendix 7
for such results). Thus, uniformly in 7 € [a, b], for large values of n,

0 < d*(fi, o) = 0.25d*(fi, fo).

We may use the same results of (van der Vaart, & Wellner, 1996) to get for some K > 0 and for any € > 0,
log Nyj(€, Fo. d,) < log Nyj(e, Fo.d/2) < K(e/2)™".

This ensures (L2). The covariance function is, for fi(j) = j™ and f>2(j) = j,

k oo oo
T(fi, fo) = lim " ADLRGT = Y 70 < 3" 70 = A.b).
j=1 j=1 j=1

As to the measurability hypothesis, it is readily seen that the following supremum

k

sup el WA = pGh E .1
12T, p(f1./2)<6, 52

is achieved through the rational values of 7 in [a, b], and then, is measurable. This achieves the proof.
Corollary 4 Let 1/2 <a < b > 1 and F1(a,b) ={f(j) = j,0<a <7 < b}.
(1) If Fe D(Gy) and if (CU3). Then

{(ste/ma (N (T = stk/man(f), f € Fo)

weakly converges to a Gaussian process G of covariance functionT.

(2) If Fe D(Gyj,),y > 0, and if (CUI) holds. Then

{@n/ (DT (N an(f) = 1), | € Fo}

weakly converges to the Gaussian process yG.

Proof. We apply here Theorem 4. But, we begin by returning to the simple scheme, that is, to fixed f € F(a, D).
Let f(j) = j°. We have

B(n, f) = O((logk)™),
T=1/2,
B(n, f) = O(k™ )
for0 <7< 1/2and
B(n, ) = O(k™™),

for 7 > 1. Then (K1) holds and this leads to the normal case in Theorem 2 for each T > 1/2. Next, for f(j) = j™
and f2(j) = j7, 71 > 1/2, 72> 1/2,

k(n)

211 - )21 -1
lim Yt ol fiGfa 2 = HEL—Den
=

T1+1—1

) T ) < oo

And forty =1/2and 7, > 1/2

k(n)

D Heafe AV ADA(DI? ~ N2 = Tlog kk®™ D7,

=1
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that is, 71 (a, b) satisfies (KU?2a). This also implies that we have the finite-distributions weak normality for 7 > 1/2.
It also fulfills (KU2b) since
B(n)= sup B(n,f) < kK —0.
feFi(ab)

Consider here
k k
Vi () = ol Valh) = an(h) = 3 FDIGoalNE; = 1) = " Ziu(f)
j=1 j=1
We have

k
2 _ ) —_ . 2 — - T < <
pn(f.,fz>—E}§:l<2,,n<fl) ZinlP2)) =2 = e e )

k
D RDAGDI
j=1

- 2(1 =T(f1, /) = Z (AW Goa(f1)) = (LD Goa(BL)F -
j=1

By routine calculations and by a continuity argument based on the remark that our 7’5 are in the compact set [a, b],
we may show that

p2(fi, ) < 3(1 =T(f1, ) (5.2)

for large values of n. Since we use this type of arguments many times, we show in Subsection 7.2 of the appendix
7 the exact proof of (5.2). But

21— D21 — 1
=T fy = (1 = Y0 - D@ = D,

T1+T2—1

Forti -1, =6>0,

Ry -1 +6- \/(21'2 - 1)2+25Q1 - 1)
T1+1—1 '

1 -T(f1.2) =

We use a Taylor expansion of a first order, to get for 1/2 < a < 7,72 < b, 3(1 -T'(f1, f2)) < B(a, b)6, where B(a, b)
depends only on @ and b. Thus for a fixed ¢, for large values of &,

P2(fi, ) < B(a, b)s.

We may now take the metric p(fi, f>) = ||t1 — 72||, for which (71 (a, b), p>) is a Riesz space totally bounded and we
surely obtain

Sup pn(f17f2) S 4B(a’ b)6n - 0
P2(f1./2)<6,

This gives the (L1) hypothesis. Now, to conclude the proof by establishing the functional law as already described
in Corollary 1, we have to prove that (L4) holds for (¥ (a, b), p») with partitions not depending on n, so that (L2)
is unnecessary. Since the proof concerning (L4) is very technical, we state it Subsection 7.1 of the Appendix 7.

6. Technical Lemmas
Define the following conditions
A2, =D GRS €0, +eol, (K1)
j=1

with the notation (well-defined since f > 0)
A )= F i
=1

and
limsupO'n(f)’1 max{f(j)j’l, 1 <j<k}=limsupB(n,f)=0 (K2)

n—+co n—+oo

We begin by this simple lemma where we suppose that we are given a sequence of independent and uniformly
distributed random variables Uy, U, ... as in (2.11).
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Lemma 1 Let

k
_ . Ujsin
Va(f) = ;f(» log(—=5) 6.1)
If (K2) holds,
T AVl f) = an(£)) ~ N(O, 1)
and if (K1) holds,

o (DVa(f) = an() ~ L),
where a,(f) and o,(f) are defined in (1.2) and

L@ = AN Y fG)i(E; - ),

=
is a centered and reduced random variable with all finite moments.

Proof. By using the Malmquist representation (2.12), we have

k
V)= . FDiE;. 6.2)
j=1
It follows that E(V,(f)) = a,(f) and Var(V,(f)) = o2(f). Put
Va(H) = oD (Valf) = an(f) (6.3)
Then
k
Valf) = o Y DT E = D), (6:4)

=

First suppose that (K1) holds, that is o,(f) = A(2, f)~'/? € [0, 1]. Then

Valf) = AQ, )72 Y FGT E = 1) = L.

J=1

Now, we have to prove that L(f) is a well-defined random variable with all finite moments. The moment charac-
teristic function of V;;(f) is

k k
v = exp(=AQ, )2 )" FGi | [ —irx £t AT
j=1 Jj=1

By using the development of log(1 — -), and, by the Lebesgues Theorem, one readily proves that

o

k . \n ©  .p
o0 = (Y S W Gy A ) - e = eny) D pac p. 65)
j=1 n=2

n

n=2

We note that if A(2, f) < oo, then A(n, f) is also finite for any n > 2, since the general term (in j) of A(n, f) is less
than that of A(2, f), for large values of j. This concludes the proof when (K1) holds.

Now suppose that (K2) holds. Let us evaluate the moment generating function of V;/(f) :

k
i@ = [ [ b, @i euh™. (6.6)

j=1

Recall that, in this case, 0,(f) T oo. It follows from (K?2), that for any ©y > 0O for a fixed #, for k large enough,

|t £ au(H | < uo (6.7)
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uniformly in j > 1. At this step, we use the expansion of ¢, in the neighborhood of zero :

YE-n@) = 1+17/2 + u’g(w),

where there exists ug such that
O<u<uy=|glw) <1.

Using the uniform bound in (6.7), we get

1
be,-ntf(Dj ou(HH =1+ E(tf(j)j’lcrn(f))’l)z +tfG)i " () g0, (D), (6.8)

where |g0, j,n(t)| < 1forall 1 < j < k. By the uniform boundedness of the error term, we have

1
log ¢,-1y(tf ()i ou(fNH = 5(rf(j)j“an<f»-‘)2 +(tfDJ T g0,jn(0) + A fG) T Tl g1 a0,

where, always |g1, j,,,(t)l < lforall 1 < j < k. Finally
k k
Bv; () = exp(Y 1og izt F()J Ta(H)) = exp(t/2+ g2, () X Pr(£) D F (P,
j=1 =1

with |g1;,()| < 2 forall 1 < j < k. Since

k k
0< o) Y FGPT) < B, Y x ou(£)2 ) ()77 = Bn, f) = 0.
j=1 Jj=1

Hence
bv:cp () — exp(t/2)

and
Vi (f) = N(O, 1).

Lemma 2 Let (a, b) € R? and suppose that for any couple (f1, f>) € 7—”}12, h=1,2,

. I QPP .
S ) ; FDR(DT =T, fo) exists.

Then for h = 1, aV,;(f1) + bV, (f2) weakly converges to
al(fi) +bL(f2).
and for h=2, aV;(f1) + bV, (f2) weakly converges to a normal random of variance :
va,b, fi, o) = @ + b +2abl'y(fi, fo).

In both cases, the finite-distributions of {V,;(f), f € Fi} weakly converge to those of the process L for h = 1 and,
for h =2, to those of a Gaussian process of covariance function

n—e 0, (f1)o

1 k
r ) — 1 . o =2
(fis f) = lim s ]Zl ADARG

provided these numbers are finite.

Proof. The case h = 1 is straightforward. For 7 = 2, we slightly change the proof of the previous lemma from
(6.6). Put Viy(a, b, f1, f2) = aV,(f1) + bV, (f2) and

cn, j) = o(f) Lafi()i ™t + ou(B) T BAG T
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We always have, for (fi, ) € F2,
sup|c(n, )l = 0
J

and

k
Z c(n, j)* = a® + b* + 2ab

J=1

1 k - - o—
Ta )T f2) ,Z_;f (DLW = ab, fi, f2) = @ + b7 + 2abT(fi. fo).

By using the same arguments in (6.6) and (6.8), we have

J=1 J=1 J=1

k k k
Bv,anfi o) = exp(Y loge, 1)(te(n, ) = exp({z c(n, j)z} 212+ 83,10 X £ e, 1),

with |g3,j,,,(t)| <2forall 1 < j<k. Since

k k
0< " en, j)* < {aB(n, fi) + bB(n, f)} X Y c(n, j)* = 0,
j=1 Jj=1

we get
Bvab fi (1) = exp(v(a, b, fi, L) ]2).

This achieves the proof. Now, these methods are reproducible for any finite linear combination

aj V:(ﬁ) + Cle;:(fz) + ...+ amV;:(fm)

In all cases, we find the same finite distribution laws. For h = 1, (V;;(f1), ..., V.(fi)) converges in law to (L(f1),
ey L(fw)) and for A = 2, (V,;(f1), ..., V,(f)) converges to a Gaussian vector of variance-covariance matrix
(I'(fi, f7), 1 < i, j < m) provided these numbers are finite.

7. Appendix
7.1 Check Hypothesis (L4) for T > 1/2

We shall consider #>(a, b) as a normed vector by identifying f-(j) = j* with 7 and setting f;, + fr, = fr,+r, and
fri < for if f T1 < 2. We put without lost of generality that b — a = 1 and that &> = 1/p. Next we divide %>(a, b)
into p intervals [0, 7([, [71, T2[, ..., [Tp-1, Tp]. Now, put

oX(1,7) = k7 o2(f)

and consider 7; < v < 7 < 741 and let i = 1 for short, 7 — v = ¢ and

dy(fon ferJ) = BDITW(FD) = DTl DT E) = 1P 1)
PR S kT v-2 2
(™™ s ot

= {To(n, 7, j) + To(n,v, j) = 2T1(n, v, D} (Ej = 1)*.
Let us handle Ty(n, 7, j). By adding to it this null term

O — {_0—;2(1,V)k_2T+1j2T_2 _ U;Z(l,v)k_2T+]j2T_2} + {_0_;2(1’v)k—zv+]j2\/—2 + _0_;2(1’y)k—2v+1j21/—2}’

we get
1 1
T T, N — _ k72T+l 27-2 72
o(n, 7, j) (03(1,7) Crﬁ(l,y)) J (71.2)
k—2v+1 _— » —2v+1 I

+ i (1 = (k)™ + i, 7.3
U%(I’V)J (I =G/™) O_%(l’V)J (7.3)

where we used in the previous line (7.2) the following identity
k—2‘r+lj2‘r—2 — k—2v+lj2v—2 + k—2v+lj2v—2(1 _ (]/k)Zé) (74)
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Using again (7.4) in (7.2), we arrive at

To(n, 7, j) (7.5)
= To(n, v, j) + (0_3(1’1-) _ 0-5(11,,/)) —2v+1 2v-2
1 1 oyl 2v-2 s KL, 26
Hamn  aan 7 U A =G,
We use the same techniques to also get
Ty(n,v,7) (7.6)

_ 1 ) —2v+1j2v—2
o.(1, D)o, (1,v)  o2(1,v)

1 1 —2v+1

_ =2v+1 2v-2,1 _ 5 ov-201 ¢ 5
ey~ a2 A= GO + S 7 = Gk

= To(n,v, j) +(

Let us handle the 0,%(1,7) — 0,%(1, ) in (7.1). We get, by using the same methods,

k
0 (1D =02 (Ly) = 0,2 (1Lne, (L ok T P20 = (k™).
j=1

We already noticed that o2(1,7) — (2r—1)"! € [B = (2b - 1)"!,A = (2a — 1)7'] uniformly in 7 € [a,b] by a
continuity convergence argument. For € chosen such that 2a — 1 — 2¢ > 0, we get

k

k k
k72V+1 Z j2v—2(1 _ (J/k)25) < Z j*l(j/k)zafl(l _ (J/k)ZEZ) — kZa—l Z j2a72 _ k282j2a72+2£2'
j=1 j=1 j=1

By using the asymptotic approximations to the corresponding integrals, we get, as n — oo,

2a-1 : 20-2 _ 1267 2a-2428 _ 1 -2a+] - RN il
k ;J -k =k K{(1+o(1))2a—_1}—(1+0(1)k m)
—»{2a-1D)"=Qa-1+25)"1 < 2e)/Q2a - 1)
We conclude that, for large value of n,
k
K2+ Z P21 = (P < K a7

=1
and hence
| -2 -2 2
o, (1,7)-0o, | < Ke*,

for some positive universal constant K. This constant is generic and may change from line to line. In the same
spirit, we have, for this term in (7.1),

0-172(19 T) - 0;2(1’ V)

(@, D™ =020, ) = a0 = 0L = e e T

The methods used above lead to
(1, Do (1) = 037 (1,v)| < K&, (1.8)

Now returning to Formulae (7.1), (7.2) and (7.1), we see that the terms Ty(n,v, j) disappears as To(n,v, j) —
2To(n,v, j) + To(n,v, j) = 0. Computing the expectation of the remainder terms, we get

1

_ 1N 2a-1
2(Lo  o2(Ln|’ U7k

EdX(fy, frn ) <2
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1
ou(L, D)o (1,v)  o2(1,v)

. J IR 277 G (= G,

The left-member does not depend on (v, 7) € [1;-1, 7;] so that, with the application (7.7) and (7.8), we obtain

max dy(fir fro ) < K{G/R07E + 257G/ (A = GHOP) (B = 1)

v elrionTil

Finally, by (7.7),

E  sup d*(f,. frr )) < K€2,

=1 el

for large values of n. Then
logNp(e, Fi, Ly) < p < Ke2.

And this ensures (L4) of Theorem 4.
7.2 Continuous Convergence

In order to prove (5.2), suppose for each N > 0, there exists a value n > N and a couple (fi, f) such that

02(fis o) < (1 =T(fi, /o)) (H)

We may lessen the notations and put pﬁ(fl,fz) = pﬁ(n,rz) for fi(j) = j™ and f>2(j) = j € (a, b)2. Itis easy to
prove that

p2(71,72) = 2(1 = [(71,72)),

continuously, that is,
Pr(T 1 T20) = 2(1 = T(71,72)).
if (T1,0, T2n) — (71,72), as n — +oo. But, with our hypothesis (H), we can find a sequence of integers n; < ny <

... <ng < ngyr < .. such that and a sequence of couples (71 ,,, T2.,,) € (a, b)?, k = 1,2, ... such that for any £,

Pr T T2n) < (1= T(T1 s Tom)- (H1)

By the Bolzano-Weierstrass Theorem, we may extract from (74, T2,,) a subsequence, denoted (Tl,n;, Tz,n;) con-
verging to some (71, T2) € (a, b)? and by the continuity result

P (Tr Ton) = 2(1 = T(11,72)).

This violates (H1) and then proves (5.2).
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