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Abstract

This paper presents asymptotically optimal prediction intervals and prediction regions. The prediction intervals are

for a future response Yf given a p×1 vector x f of predictors when the regression model has the form Yi = m(xi)+ei

where m is a function of xi and the errors ei are iid from a continuous unimodal distribution. The prediction

intervals have coverage near or higher than the nominal coverage for many techniques even for moderate sample

size n, say n > 10(model degrees of freedom). The prediction regions are for a future vector of measurements

x f from a multivariate distribution. The nonparametric prediction region developed in this paper has correct

asymptotic coverage if the data x1, ..., xn are iid from a distribution with a nonsingular covariance matrix. For many

distributions, this prediction region appears to have good coverage for n > 20p, and this region is asymptotically

optimal on a large class of elliptically contoured distributions. Hence the prediction intervals and regions perform

well for moderate sample sizes as well as asymptotically.
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1. Introduction

This paper presents asymptotically optimal prediction intervals and prediction regions. The prediction regions

are for a future vector of measurements x f from a multivariate distribution, and are asymptotically optimal on a

large class of elliptically contoured distributions. Regression is the study of the conditional distribution Y |x of the

response Y given the p × 1 vector of predictors x. The prediction intervals are for a future response Yf given a

vector x f of predictors when the regression model has the form

Yi = m(xi) + ei (1)

for i = 1, ..., n where m is a function of xi and the errors ei are iid from a continuous unimodal distribution. Many

of the most important regression models have this form, including the multiple linear regression model and many

time series, nonlinear, nonparametric and semiparametric models. If m̂ is an estimator of m, then the ith residual is

ri = Yi − m̂(xi) = Yi − Ŷi.

Olive (2007) showed how to form asymptotically optimal prediction intervals for model (1), but for many regres-

sion models and estimators, large n is needed for the intervals to perform well. Prediction intervals derived for

multiple linear regression did perform well. This paper derives asymptotically optimal prediction intervals that

perform well for many models for moderate n.

A large sample 100(1 − δ)% prediction interval (PI) has the form (L̂n, Ûn) where P(L̂n < Yf < Ûn)
P→ 1 − δ as the

sample size n → ∞. Following Olive (2007), let ξδ be the δ percentile of the error e, i.e., P(e ≤ ξδ) = δ. Let ξ̂δ be

the sample δ percentile of the residuals. Consider predicting a future observation Yf given a vector of predictors

x f where (Yf , x f ) comes from the same population as the past data (Yi, xi) for i = 1, ..., n. Let 1 − δ2 − δ1 = 1 − δ
with 0 < δ < 1 and δ1 < 1 − δ2 where 0 < δi < 1. Then P[Yf ∈ (m(x f ) + ξδ1 ,m(x f ) + ξ1−δ2 )] = 1 − δ.
Assume that m̂ is consistent: m̂(x)

P→ m(x) as n → ∞. Then ri = Yi − m̂(xi)
P→ Yi − m(xi) = ei and, under “mild”
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regularity conditions, ξ̂δ
P→ ξδ. If an

P→ 1 and bn
P→ 1, then

(L̂n, Ûn) = (m̂(x f ) + anξ̂δ1 , m̂(x f ) + bnξ̂1−δ2 ) (2)

is a large sample 100(1 − δ)% PI for Yf .

According to regression folklore, the percentiles of the residuals are consistent estimators, ξ̂δ
P→ ξδ, under “mild”

regularity conditions, and this consistency is the basis for using QQ plots. The folklore is true for linear models:

sufficient conditions are β̂
P→ β and the xi are bounded in probability. See Olive and Hawkins (2003), Welsh (1986)

and Rousseeuw and Leroy (1987, p. 128).

Consider the multiple linear regression model Y = Xβ + e where Y is an n × 1 vector of dependent variables, X
is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown

iid zero mean errors ei with variance σ2. Let the hat matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal

element of H for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XT X)−1xi. Suppose new data is to be

collected with predictor vector x f . Then the leverage of x f is h f = xT
f (XT X)−1x f .

For the multiple linear regression model, let ξ̂δ be the sample quantile of the residuals. Following Olive (2007), let

an = bn =

(
1 +

15

n

) √
n

n − p

√
(1 + h f ). (3)

Then a large sample semiparametric 100(1 − δ)% PI for Yf is

(Ŷ f + anξ̂δ/2, Ŷ f + anξ̂1−δ/2). (4)

A PI is asymptotically optimal if it has the shortest asymptotic length that gives the desired asymptotic coverage.

The PI (4) is asymptotically optimal on a large class of unimodal continuous symmetric error distributions. For

more general distributions, an asymptotically optimal PI can be created by applying the shorth(c) estimator to

the residuals where c = �n(1 − δ)� and �x� is the smallest integer ≥ x, e.g., �7.7� = 8. See Grübel (1988). That

is, let r(1), ..., r(n) be the order statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let

(r(d), r(d+c−1)) = (ξ̃δ1 , ξ̃1−δ2 ) correspond to the interval with the smallest length. Following Olive (2007), a 100

(1 − δ)% PI for Yf is

(Ŷ f + anξ̃δ1 , Ŷ f + anξ̃1−δ2 ) (5)

where an is given by (3). This prediction interval performs well for moderate n for multiple linear regression and

several estimators, including least squares.

A problem with prediction intervals is choosing an and bn so that the intervals have short length and coverage close

to or higher than the nominal coverage for a wide variety of regression models when n is moderate. Section 2.1

shows how to modify (4) and (5) to achieve these goals while Section 2.2 covers prediction regions for a future

vector of measurements x f . Examples and simulations are in Section 3.

2. Method

The idea for finding the asymptotically optimal prediction intervals and regions is simple. Find the target popula-

tion 100(1 − δ)% covering region. For small n, the coverage of the training data will be higher than that for the

future case to be predicted. In simulations for a large group of models and distributions, the undercoverage could

be as high as min(0.05, δ/2). Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (6)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then use the prediction interval or region that covers

100qn% of the training data. The coverage of the training data is 100qn% and converges to 100(1− δ)% as n→ ∞,

even if the model assumptions fail to hold.

2.1 Asymptotically Optimal Prediction Intervals

The technique used to produce asymptotically optimal PIs that perform well for moderate samples is simple. Find

Ŷ f and the residuals from the regression model. Since the leverage of xi is closely related to the Mahalanobis

distance of xi from the sample mean x of the n predictor vectors, leverage and extrapolation are useful for a wide
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range of regression models. For a wide range of regression models, extrapolation occurs if h f > 2p/n: if x f is too

far from the data x1, ..., xn, then the model may not hold and prediction can be arbitrarily bad. This result suggests

replacing (3) by

an = bn =

(
1 +

15

n

) √
n + 2p
n − p

. (7)

Let δn = 1 − qn where qn is given by (6). Then

(L̂n, Ûn) = (m̂(x f ) + bnξ̂δn/2, m̂(x f ) + bnξ̂1−δn/2) (8)

is a large sample 100(1 − δ)% PI for Yf that is similar to (2) and (4).

Let c = �nqn�. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let (r(d), r(d+c−1)) = (ξ̃δ1 , ξ̃1−δ2 ) correspond to the

interval with the smallest length. Then the asymptotically optimal 100 (1 − δ)% large sample PI for Yf is

(m̂(x f ) + bnξ̃δ1 , m̂(x f ) + bnξ̃1−δ2 ), (9)

and is similar to (5).

To see that the PI (9) is asymptotically optimal, assume that the sample percentiles of the residuals converge to the

population percentiles of the iid unimodal errors: ξ̂δ
P→ ξδ. Also assume that the population shorth (ξδ1 , ξ1−δ2 ) is

unique and has length L. Since bn → 1, m̂(x f )
P→ m(x f ), and qn = 1 − δ for large enough n, it is enough to show

that the shorth of the residuals converges to the population shorth of the ei: (ξ̃δ1 , ξ̃1−δ2 )
P→ (ξδ1 , ξ1−δ2 ). Let Ln be the

length of (ξ̃δ1 , ξ̃1−δ2 ). Let 0 < τ < 1 and 0 < ε < L be arbitrary. Assume n is large enough so that qn = 1 − δ. Then

P(Ln > L + ε) → 0 since (ξ̂δ1 , ξ̂1−δ2 ) covers 100 (1 − δ)% of the data and Ln = ξ̃1−δ2 − ξ̃δ1 ≤ ξ̂1−δ2 − ξ̂δ1
P→ L as

n → ∞ since the sample percentiles are consistent and the shorth is the smallest interval covering 100 (1 − δ)%
of the data. If P(Ln < L − ε) > τ eventually, then the shorth is an interval covering 100 (1 − δ)% of the cases

that is shorter than the population shorth with positive probability τ. Hence at least one of ξ̂1−δ2 or ξ̂δ1 would

not converge, a contradiction. Since ε and τ were arbitrary, Ln
P→ L. If P(ξ̃δ1 < ξδ1 − ε) > τ eventually, then

P(ξ̃1−δ2 < ξ1−δ2 − ε/2) > τ eventually since Ln = ξ̃1−δ2 − ξ̃δ1
P→ L = ξ1−δ2 −ξδ1 . But such an interval (of length going

to L in probability with left endpoint less than ξδ1 − ε and right endpoint less than ξ1−δ2 − ε/2) contains more than

100(1 − δ)% of the cases with probability going to one since the population shorth is the unique shortest interval

covering 100(1− δ)% of the mass. Hence there is an interval covering 100(1− δ)% of the cases that is shorter than

the shorth, with probability going to one, a contradiction. The case P(ξ̃δ1 > ξδ1 + ε) > τ can be handled similarly.

Since ε and τ were arbitrary, ξ̃δ1
P→ ξδ1 . The proof that ξ̃1−δ2

P→ ξ1−δ2 is similar.

The above results show that PI (9) and the shorth of the residuals behave well when the sample percentiles are

consistent. Even if these assumptions do not hold, the PI covers 100qn% of the training data, and often the

coverage of the future case will be close to 100(1 − δ) if the future case Yf is similar to the training data.

For asymptotic optimality, can not have extrapolation. Also, even if the coverage converges to the nominal cover-

age, the length of the PI need not be asymptotically shortest unless the highest 1−δ density region of the probability

density function of the iid errors is an interval. The highest density region is an interval for unimodal distributions,

but need not be an interval for multimodal distributions for all δ. Also see Cai, Tian, Solomon and Wei (2008).

Notice that the technique computes a PI for coverage qn ≥ 1 − δ which converges to the nominal coverage 1 − δ
as n → ∞. Suppose n ≤ 20p. Then the nominal 95% PI uses qn = 0.975 while the nominal 50% PI uses

qn = 0.55. Prediction distributions depend both on the error distribution and on the variability of the estimator m̂.

This variability is typically unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate the errors

for small n. For small n, ignoring estimator variability and using qn = 1 − δ resulted in undercoverage as high as

min(0.05, δ/2). Letting the “coverage” qn decrease to the nominal coverage 1 − δ inflates the length of the PI for

small n, compensating for the unknown variability of m̂.

The geometry of the “asymptotically optimal prediction region” is simple. The region is the area between two

parallel lines with unit slope. Consider a plot of m(xi) versus Yi on the vertical axis. The identity line with zero

intercept and unit slope is E(Yi) = m(xi). Let (Li,Ui) be the asymptotically optimal population 95% prediction

interval containing m(xi). For example, if the errors are iid N(0, σ2), then Yi|m(xi) ∼ N(m(xi), σ
2), and (Li,Ui) =
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(m(xi) − 1.96σ,m(xi) + 1.96σ). Then the upper line has unit slope and passes through (m(xi),Ui) while the lower

line has unit slope and passes through (m(xi), Li).

The geometry of the “prediction region” for PI (9) is a natural sample analog of the population “asymptotically

optimal prediction region”. A response plot of Ŷi = m̂(xi) versus Yi has identity line Ê(Yi) = m̂(xi). The region

corresponding to pointwise prediction intervals is between two lines with unit slope passing through the points

(m̂(xi), Ûi) and (m̂(xi), L̂i), respectively, where (L̂i, Ûi) is the asymptotically optimal prediction interval (9) for Yf

if x f = xi. For the multiple linear regression model, expect the points in the response plot to scatter in an evenly

populated band for n > 5p. Other regression models, such as additive models, may need a much larger sample size

n. See Section 3.1 for an example and simulations.

2.2 Prediction Regions

Asymptotically optimal prediction regions use ideas similar to those in the previous subsection. Some notation is

needed. Let the ith case xi be a p × 1 random vector, and suppose the n cases are collected in an n × p matrix X
with rows xT

1
, ..., xT

n .

The classical estimator (x,S) of multivariate location and dispersion is the sample mean and sample covariance

matrix where

x =
1

n

n∑
i=1

xi and S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T. (10)

Some important joint distributions for x are completely specified by a p × 1 population location vector μ and a

p× p symmetric positive definite population dispersion matrix Σ. An important model is the elliptically contoured

ECp(μ,Σ, g) distribution with probability density function f (z) = kp|Σ|−1/2g[(z − μ)TΣ−1(z − μ)] where kp > 0 is

some constant and g is some known function. The multivariate normal (MVN) Np(μ,Σ) distribution is a special

case.

Let the p× 1 column vector T (X) be a multivariate location estimator, and let the p× p symmetric positive definite

matrix C(X) be a dispersion estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (11)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of center T (X) is Di(T (X), Ip)

where Ip is the p× p identity matrix. Often the data X will be suppressed. Then the classical Mahalanobis distance

uses (T,C) = (x,S). Following Johnson (1987, pp. 107-108), the population squared Mahalanobis distance

U ≡ D2(μ,Σ) = (x − μ)TΣ−1(x − μ), (12)

and for elliptically contoured distributions, U has probability density function (pdf)

h(u) =
πp/2

Γ(p/2)
kpup/2−1g(u). (13)

The volume of the hyperellipsoid

{z : (z − x)T S−1(z − x) ≤ h2} is equal to
2πp/2

pΓ(p/2)
hp

√
det(S), (14)

see Johnson and Wichern (1988, pp. 103-104).

Note that if (T,C) is a
√

n consistent estimator of (μ, d Σ), then

D2(T,C) = (x − T )T C−1(x − T ) = (x − μ + μ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x − μ + μ − T )

= d−1D2(μ,Σ) + OP(n−1/2).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the percentiles of d−1D2(μ,Σ). For multivariate

normal data, D2(μ,Σ) ∼ χ2
p.

Suppose (T,C) = (xM , b SM) is the sample mean and scaled sample covariance matrix applied to some subset of

the data. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (15)

93



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

has volume equal to
2πp/2

pΓ(p/2)
hp

√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM) (16)

by (14). A future observation (random vector) x f is in region (15) if Dx f ≤ h.

A large sample (1 − δ)100% prediction region is a setAn such that P(x f ∈ An)
P→ 1 − δ. Let qn be given by (6).

If (T,C) is a consistent estimator of (μ, dΣ), then (15) is a large sample (1 − δ)100% prediction region if h = D(up)

where D(up) is the qnth sample quantile of the Di. If x1, ..., xn and x f are iid, then region (15) is asymptotically

optimal on a large class of elliptically contoured distributions in that its volume converges in probability to the

volume of the minimum volume covering region {z : (z − μ)TΣ−1(z − μ) ≤ u1−δ} where P(U ≤ u1−δ) = 1 − δ
and U has pdf given by (13). The classical parametric multivariate normal large sample prediction region uses

Dx f (x,S) ≤
√
χ2

p,1−δ.

Notice that for the data x1, ..., xn, if C−1 exists, then 100qn% of the n cases are in the prediction region, and

qn → 1−δ even if (T,C) is not a good estimator. Hence the coverage qn of the data is robust to model assumptions.

Of course the volume of the prediction region could be large if a poor estimator (T,C) is used or if the xi do not

come from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or qn = 1 − δ + 0.05 for n ≤ 20p
and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ, then (15) is a large sample prediction region, but taking qn given by

(6) improves the finite sample performance of the region. Taking qn ≡ 1 − δ does not take into account variability

of (T,C), and for small n the resulting prediction region tended to have undercoverage as high as min(0.05, α/2).

Using (6) helped reduce undercoverage for small n due to the unknown variability of (T,C).

The Olive and Hawkins (2010) RMVN estimator (TRMVN ,CRMVN) is an easily computed
√

n consistent estimator

of (μ, cΣ) under regularity conditions (E1) that include a large class of elliptically contoured distributions, and

c = 1 for the Np(μ,Σ) distribution. Also see Zhang, Olive and Ye (2012). The RMVN estimator also gives a useful

estimate of (μ,Σ) for Np(μ,Σ) data even when certain types of outliers are present.

Three new prediction regions will be considered. The nonparametric region uses the classical estimator (T,C) =

(x,S) and h = D(up). The semiparametric region uses (T,C) = (TRMVN ,CRMVN) and h = D(up). The parametric

MVN region uses (T,C) = (TRMVN ,CRMVN) and h2 = χ2
p,qn

where P(W ≤ χ2
p,qn

) = qn if W ∼ χ2
p. All three regions

are asymptotically optimal for Np(μ,Σ) distributions with nonsingular Σ. The first two regions are asymptotically

optimal for a large class of elliptically contoured distributions. For distributions with nonsingular covariance matrix

cXΣ, the nonparametric region is a large sample (1 − δ)100% prediction region, but regions with smaller volume

may exist. See Section 3.2 for examples and simulations.

3. Results

3.1 Regression

Figure 1. Pointwise prediction interval bands for Ozone data

Example 1 Chambers and Hastie (1993, pp. 251, 516) examine an environmental study that measured the four

variables Y = ozone concentration, x1 = solar radiation, x2 = temperature, and x3 = wind speed for n = 111
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consecutive days. Figure 1 shows the response plot made in Splus with the pointwise large sample 95% PI bands

for the additive model Y = m(x) + e where the additive predictor m(x) = α +
∑3

j=1 S j(x j) for some functions S j

to be estimated. Here m̂(x) = estimated additive predictor (EAP). Note that the plotted points scatter about the

identity line in a roughly evenly populated band, and that 3 of the 111 PIs (9) corresponding to the observed data

do not contain Y .

A small simulation study compares the PI lengths and coverages for sample sizes n = 50, 100 and 1000 for PIs (8)

and (9). Values for PI (8) were denoted by scov and slen while values for PI (9) were denoted by ocov and olen.

The five error distributions in the simulation were 1) N(0,1), 2) t3, 3) exponential(1) −1, 4) uniform(−1, 1) and 5)

0.9N(0, 1) + 0.1N(0, 100). The value n = ∞ gives the asymptotic coverages and lengths and does not depend on

the model. So these values are same for multiple linear and nonlinear regression as well as additive models.

Software for the simulations is described in Section 4. The multiple linear regression model with E(Yi) = 1 +

xi1 + · · · + xi7 was used. The vectors (x1, ..., x7)T were iid N7(0, I7) where Ip is the p × p identity matrix. Another

regression model was Yi = m(xi)+ ei, E(Yi) = m(xi) = β1xi1 + β2x2
i1 + β3xi2 + β4x2

i2 + β5xi3 + β6x2
i3. This model was

fit as an additive model in x1, x2, and x3. The model was also fit with nonlinear regression where the mean function

is known up to the six parameters, although then the second order multiple linear regression model is appropriate.

For the additive model, the additive predictor m(xi) = α +
∑3

j=1 S j(xi j). Both the nonlinear regression and additive

model had the same mean function m(xi) = xi1 + x2
i1. Thus β = (1, 1, 0, 0, 0, 0)T , α = 0, S 1(xi1) = xi1 + x2

i1,

S 2(xi2) = 0 and S 3(xi3) = 0. For these two models, the vectors (x1, x2, x3)T were iid N3(0, I3).

The Olive (2007) PIs (4) and (5) are tailored for multiple linear regression but are liberal (too short) for moderate

n for many other techniques. The new PIs (8) and (9) are meant to have coverage near or higher than the nominal

coverage for moderate n and for a wide variety of techniques and are longer than PIs (4) and (5). For multiple

linear regression, the new PIs (8) and (9) were conservative (too long with roughly 98% coverage for the 95% PI

and 70% or 60% coverage for the 50% PI) for n = 50 and 100 compared to (4) and (5) for least squares, least

absolute deviations L1 and an M-estimator using the Splus functions l1fit and rreg. See MathSoft (1999, pp.

293-295).

Table 1. PIs for additive models

error 95% PI 95% PI 50% PI 50% PI

type n slen olen scov ocov slen olen scov ocov

1 50 5.126 4.998 0.959 0.950 1.862 1.674 0.596 0.520

1 100 4.691 4.515 0.968 0.957 1.662 1.528 0.570 0.516

1 1000 3.994 3.944 0.954 0.949 1.379 1.351 0.514 0.505

1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50

2 50 9.444 8.630 0.951 0.943 2.385 2.153 0.576 0.512

2 100 8.245 7.596 0.962 0.954 2.042 1.878 0.577 0.532

2 1000 6.523 6.388 0.950 0.946 1.584 1.553 0.499 0.489

2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50

3 50 5.186 4.823 0.958 0.948 1.573 1.275 0.611 0.526

3 100 4.677 4.156 0.967 0.955 1.382 1.063 0.603 0.533

3 1000 3.771 3.227 0.954 0.952 1.112 0.774 0.509 0.512

3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50

4 50 2.634 2.598 0.961 0.958 1.237 1.087 0.593 0.506

4 100 2.318 2.272 0.972 0.968 1.155 1.028 0.561 0.480

4 1000 1.936 1.926 0.959 0.954 1.014 0.969 0.499 0.486

4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50

5 50 19.689 17.747 0.944 0.935 2.976 2.693 0.608 0.548

5 100 18.754 16.230 0.955 0.946 2.352 2.164 0.580 0.534

5 1000 13.855 12.930 0.946 0.943 1.602 1.569 0.510 0.504

5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50

The PIs (8) and (9) for nonlinear regression and additive models appear to have coverage near the nominal values

in the simulations. For n = 50 and 100, the PIs for nonlinear regression were usually roughly 10% longer than

those for additive models. The PIs for the additive model were computed using the R function gam. See Hastie
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and Tibshirani (1990) and Wood (2006). The PI (8) is not asymptotically optimal with error type 3. It is not

known whether m̂ is a consistent estimator of m, but the prediction intervals appear to have the correct asymptotic

coverage and length. Some consistency results for the additive model and models of the form Y = m(x) + e where

m is smooth are given in Müller, Schick and Wefelmeyer (2012) and Wang, Liu, Liang and Carroll (2011).

The simulation used 5000 runs and gave the proportion p̂ of runs where Yf fell within the nominal 100(1 − δ)%
PI. The count mp̂ has a binomial(m = 5000, p = 1 − τn) distribution where 1 − τn converges to the asymptotic

coverage (1 − τ). The standard error for the proportion is
√

p̂(1 − p̂)/5000 = 0.0031 and 0.0071 for p = 0.05 and

0.5, respectively. Hence an observed coverage p̂ ∈ (.941, .959) for 95% and p̂ ∈ (.479, .521) for 50% PIs suggests

that there is no reason to doubt that the PI has the nominal coverage.

Table 1 shows that for n = 1000, the coverages and lengths are near the asymptotic n = ∞ values. For the 95%

PI (9), the coverages were in or near (.94, .96) while the 50% PI (9) was sometimes slightly conservative. The

coverage for the 50% PI (8) was near 60% for n = 50. PI (9) is recommended since its asymptotic optimality does

not depend on the symmetry of the error distribution.

3.2 Prediction Regions

Rousseeuw and Van Driessen (1999) introduce the DD plot of the classical Mahalanobis distances MD versus the

robust distances RD. Olive (2002) shows that if consistent estimators are used and n is large, then the plotted points

will follow the identity line with unit slope and zero intercept if the data distribution is multivariate normal, and

the plotted points will follow some other line through the origin if the data distribution is from a large class of

elliptically contoured distributions but not multivariate normal.

Example 2 Buxton (1920) gives five measurements on 87 men: height, head length, nasal height, bigonal breadth
and cephalic index. The 5 outliers have heights that were recorded to be about 19mm and head lengths recorded as

the heights. The DD plot of the classical Mahalanobis distances MD versus the RMVN distances RD can be used

to visualize the prediction regions. Figure 2 shows the DD plot where points to the left of the vertical line are in

the nonparametric large sample 90% prediction region. Points below the horizontal line are in the semiparametric

region. The horizontal line at RD = 3.33 corresponding to the parametric MVN 90% region is obscured by the

identity line. This region contains 78 of the cases. Since n = 87, the nonparametric and semiparametric regions

used the 95th quantile. Since there were 5 outliers, this quantile was a linear combination of the largest clean

distance and the smallest outlier distance. The semiparametric 90% region blows up unless the outlier proportion

is small.

Figure 3 shows the DD plot and 3 prediction regions after the 5 outliers were removed. The classical and robust

distances cluster about the identity line and the three regions are similar, with the parametric MVN region cutoff

again at 3.33, slightly below the semiparametric region cutoff of 3.44.

Figure 2. Prediction regions for Buxton data
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Figure 3. Prediction regions for Buxton data without outliers

Example 3 Cook and Weisberg (1999, pp. 351, 433, 447) give a data set on 82 mussels sampled off the coast of

New Zealand. The variables are X1 = log(S ), X2 = log(M), X3 = L, X4 = log(W), and X5 = height where S is the

shell mass, M is the muscle mass in grams, L is the length L, W is the shell width and H is the height of the shell

in mm. Figure 4 shows a DD plot of the data with multivariate prediction regions added. This plot suggests that

the data may come from an elliptically contoured distribution that is not multivariate normal. The semiparametric

and nonparametric 90% prediction regions consist of the cases below the RD = 5.86 line and to the left of the

MD = 4.41 line. These two lines intersect on a line through the origin that is followed by the plotted points. The

parametric MVN prediction region is given by the points below the RD = 3.33 line and does not contain enough

cases. Points to the left of a vertical line MD = 3.33 would give a modified classical MVN prediction region.

Parametric prediction regions for multivariate normal data tend to have severe undercoverage if the data is not

multivariate normal. This undercoverage problem becomes worse as p increases, since if the cutoff h is too small,

then the volume of the prediction region depends on hp by (14).

Figure 4. DD plot of the Mussels data

Simulations for the prediction regions used x = Aw where A = diag(
√

1,
√

2, ...,
√

p), w ∼ Np(0, Ip), w ∼
LN(0, Ip) where the marginals are iid lognormal(0,1), or w ∼ MVTp(1), a multivariate t distribution with 1 degree

of freedom so the marginals are iid Cauchy(0,1). All simulations used 5000 runs and δ = 0.1.
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Table 2. Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm

MVN 600 30 0.906 0.919 0.902 0.503 0.512

MVN 1500 30 0.899 0.899 0.900 1.014 1.027

LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

For large n, the semiparametric and nonparametric regions are likely to have coverage near 0.90 because the

coverage on the training sample is slightly larger than 0.9 and x f comes from the same distribution as the xi. For

n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9. The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semiparametric region, and i = 3 was the

parametric MVN region. The volume ratio converges in probability to 1 for Np(μ,Σ) data, and the ratio converges

to 1 for i = 1 on a large class of elliptically contoured distributions. The parametric MVN region often had

coverage much lower than 0.9 with a volume ratio near 0, recorded as 0+. The volume ratio tends to be tiny when

the coverage is much less than the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric region often had

good coverage and volume ratio near 0.5.

Simulations and Table 2 suggest that for Np(μ,Σ) data, the coverages (ncov, scov and mcov) for the 3 regions are

near 90% for n = 20p and that the volume ratios voln and volm are near 1 for n = 50p. With fewer than 5000 runs,

this result held for 2 ≤ p ≤ 80. For the non-elliptically contoured LN data, the nonparametric region had voln well

under 1, but the volume ratio blew up for w ∼ MVTp(1).

4. Discussion

4.1 General Comments

There are not many practical competitors for the new prediction intervals and regions. Parametric prediction inter-

vals and regions usually assume normality and tend to have severe undercoverage when the normality assumption

does not hold. For confidence intervals and testing, misspecification of normality is sometimes not too important

if the estimators are asymptotically normal, but for parametric prediction intervals and regions, correct specifica-

tion of the parametric model is important. For example, do not use a parametric prediction region based on the

multivariate normal distribution if the plotted points in the DD plot fail to cover the identity line.

Another competitor for regression is bootstrap prediction intervals. These PIs take hundreds of times longer to

compute than PI (9), and convergence problems are greatly multiplied for models such as nonlinear regression

models. Also bootstrap PIs may not be valid if a fixed number B of bootstrap samples are used. Di Bucchianico,

Einmahl and Mushkudiani (2001) use the minimum volume ellipsoid (MVE) estimator to cover m out of n cases

to produce MVE tolerance regions, but the technique can only be used on tiny data sets.

The location model is a special case of both the regression model (1) and of the multivariate location and dispersion

model. Let an =

(
1 +

15

n

) √
n + 1

n − 1
. Let c = �n(1 − δ)�. Let shorth(c) = (Y(d),Y(d+c−1)). Let MED(n) be the sample

median. If Y1, ..., Yn are iid, then the recommended large sample 100(1 − δ)% PI for Yf is the closed interval

[Ln,Un] = [(1−an)MED(n)+anY(d), (1−an)MED(n)+anY(d+c−1)]. This PI is (5) using the least absolute deviations

estimator, but with a closed interval.

Simulations were done in Splus and R. See R Development Core Team (2008). The Buxton data and programs in

the collection of functions rpack.txt are available at (www.math.siu.edu/olive/ol-bookp.htm). For multiple linear

regression, the function pisim simulates PIs (4) and (5) while the Splus function pisim4 simulates PIs (8) and

(9) using OLS, L1 and M-estimators. The function pisim3 was used to create Table 1 while pisim5 uses nls

to simulate PIs for nonlinear regression. Care is needed when using pisim5 since for some versions of R/Splus,

the nls function will fail to converge for some runs. Using nruns = 500 is less likely to cause an error than

nruns=5000. The function predsim was used for Table 2. The function ddplot4 was used to produce Figures 2, 3

and 4. The function lpisim simulates the PI for the location model while covrmvn computes the RMVN estimator.
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4.2 Conclusions

Parametric prediction intervals and regions are notorious for severe undercoverage. The new techniques are de-

signed to have good coverage at the training data, even if the model assumptions fail to hold. The Olive (2007)

PIs (4) and (5) are tailored for multiple linear regression but are too short for many other techniques for moderate

n. PIs (8) and (9) are generally longer than PIs (4) and (5) and have coverage near or higher than the nominal

value for many techniques even for moderate n, say n > 10 (model degrees of freedom). PIs (8) and (9) are quite

conservative for multiple linear regression for moderate n. These PIs are useful since the error distribution does

not need to be known.

The new nonparametric and semiparametric prediction regions appear to have good coverage for n > 20p and may

be the first easily computed prediction regions that are effective when the underlying multivariate distribution is

unknown.

For the prediction regions, use the DD plot to check the multivariate normality assumption and to check for the

presence of outliers. If n > 20p and the plotted points cluster tightly about a line through the origin, then the

nonparametric and semiparametric prediction regions may have good coverage. For regression with additive errors,

if n is large and the plotted points cluster about the identity line in the response plot, then the new prediction

intervals may have good coverage.
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