
International Journal of Statistics and Probability; Vol. 1, No. 2; 2012

ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

On Second-order Approximations to the Risk in Estimating

the Exponential Mean by a Two-stage Procedure

Eiichi Isogai1 & Chikara Uno2

1 Department of Mathematics, Niigata University, Niigata, Japan

2 Department of Mathematics, Akita University, Akita, Japan

Correspondence: Eiichi Isogai, Department of Mathematics, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-

Ku, Niigata 950-2181, Japan. Tel: 81-25-262-6121. E-mail: isogai@math.sc.niigata-u.ac.jp

Received: June 25, 2012 Accepted: July 11, 2012 Online Published: July 30, 2012

doi:10.5539/ijsp.v1n2p47 URL: http://dx.doi.org/10.5539/ijsp.v1n2p47

The research of the first and second authors is financed by the Japan Society for the Promotion of Science through
its Grant-in-Aid for Science Research (C), under contract numbers 23540128 and 24540107, respectively. The
authors are grateful to the referees for their helpful suggestions

Abstract

We consider the problem of minimum risk point estimation of the mean of an exponential distribution under the

assumption that the mean exceeds some positive known number. For this problem Mukhopadhyay and Duggan

(2001) proposed a two-stage procedure and provided second-order approximations to the lower and upper bounds

for the regret. Under the same set up we give second-order approximations to the regret and compare our approxi-

mations with those of them. It turns out that our bounds for the regret are sharper. We also propose a bias-corrected

procedure which reduces the risk.
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1. Introduction

Let X1, X2, X3, . . . be a sequence of independent and identically distributed random variables from an exponential

distribution having the probability density function

f (x; λ) = λ−1 exp(−x/λ)I(x > 0),

where the mean λ ∈ (0,∞) of the distribution is assumed unknown parameter. Here and elsewhere, I( · ) would

stand for the indicator function of ( · ). As an application, consider the lifetime of a system component which

can be usefully represented by an exponential random variable. Exponential distributions have been widely used

in many reliability and life testing experiments, and so investigated by many authors (see Balakrishnan & Basu

(1995), for instance). Under the assumption that the mean λ exceeds some number λL where λL (> 0) is known to

the experimenter, Mukhopadhyay and Duggan (2001) considered the problem of minimum risk point estimation

for λ via a two-stage procedure and derived second-order lower and upper bounds of the regret function. In this

paper we consider the same problem under the same setup as Mukhopadhyay and Duggan (2001). For a review

of sequential estimation problems one may refer to Mukhopadhyay (1988), Gosh, Mukhopadhyay and Sen (1997)

and Mukhopadhyay and de Silva (2009).

On the basis of the random sample X1, . . . , Xn of size n, we want to estimate the mean λ by the sample mean

Xn = n−1∑n
i=1 Xi under the squared error loss plus linear cost

Ln(Xn; λ) = (Xn − λ)2 + cn, (1)

where c (> 0) is the known cost per unit sample. Then, the risk is given by Rn(c) = E{Ln(Xn; λ)} = λ2n−1 + cn
which is minimized when

n = n0 = c−1/2λ. (2)

The associated minimum risk is Rn0
(c) = 2cn0. The goal is to achieve this minimum risk as closely as possible.

Unfortunately λ is unknown, so we cannot use the optimal fixed sample size n0, thus making it necessary to find
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a sequential sampling rule. Mukhopadhyay and Duggan (2001) dealt with this minimum risk point estimation

problem under the assumption that λ > λL and explored a two-stage estimation methodology under the loss func-

tion (1). They then developed second-order bounds for the associated regret. In this paper we use the two-stage

procedure below proposed by Mukhopadhyay and Duggan (2001) under the assumption that λ > λL. The initial

sample size is defined by

m ≡ m(c) = max
{
m0,
[
c−1/2λL

]∗
+ 1
}
, (3)

where m0 (≥ 1) is a preassigned integer and [x]∗ denotes the largest integer less than x. Based on the pilot sample

X1, . . . , Xm, we calculate the sample mean Xm and define

N ≡ N(c) = max
{
m,
[
c−1/2Xm

]∗
+ 1
}
. (4)

If N > m, then one takes the second sample Xm+1, . . . , XN . By using the total observations X1, · · · , XN , we estimate

λ by XN . The risk is given by E{LN(XN ; λ)} = E{(XN − λ)2 + cN} and the regret is defined by

ω(c) = E[LN(XN ; λ)] − Rn0
(c) = E[(XN − λ)2] + cE(N) − 2cn0. (5)

The purpose of this paper is to provide second-order approximations to the regret ω(c) as c tends to zero and

compare them with the results of Theorem 3.2 of Mukhopadhyay and Duggan (2001). Our bounds for the regret

are proved to be sharper than those of them. We can also show that the purely sequential procedure in Woodroofe

(1977) is more efficient than the two-stage procedure in regret under a certain condition. In order to reduce the risk

we propose a bias-corrected procedure. In Section 2 we present the main results with second-order approximations

to the regret and compare them with those of Mukhopadhyay and Duggan (2001). Section 3 gives brief simulation

results. In Section 4 we describe conclusions. In the appendix we supply all the proofs of the theorems in Section

2.

2. Second-order Approximations

In this section we provide the main results with second-order approximations to the regret for the two-stage and

bias-corrected procedures. The following theorem gives a second-order approximation to the regret.

Theorem 1 We have as c→ 0
ω(c)

c
= 2 +

λ

λL
+ εc,

where
|εc| ≤ λL

λ
+ o(1).

Comparison. (i) We compare our bounds for the regret with those of Mukhopadhyay and Duggan (2001) who

provided the following lower and upper bounds for the regret:

B1 + o(1) ≤ ω(c)/c ≤ B2 + o(1) as c→ 0,

where B1 = −12 + (λ/λL) and B2 = 8 + (λ/λL). Let

A1 = 2 + (λ/λL) − (λL/λ) and A2 = 2 + (λ/λL) + (λL/λ).

Then from Theorem 1 we get the bounds for the regret

A1 + o(1) ≤ ω(c)/c ≤ A2 + o(1) as c→ 0 (6)

and

A1 − B1 = 14 − (λL/λ) > 13 and B2 − A2 = 6 − (λL/λ) > 5,

since 0 < λL/λ < 1. Therefore our bounds are sharper than those of Mukhopadhyay and Duggan (2001) for

sufficiently small c.

(ii) For the purely sequential procedure

N∗ = inf
{
n ≥ m : n ≥ c−1/2Xn

}
(7)
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without the condition λ > λL, Woodroofe (1977) showed that {E[LN∗(XN∗ ; λ)] − Rn0
(c)}/c = 3 + o(1) as c → 0,

provided m ≥ 3. It follows from (6) that if A1 > 3, or equivalently, (λ/λL) − (λL/λ) > 1, then the purely

sequential procedure N∗ is superior to the two-stage procedure N in regret for sufficiently small c. Obviously, if

(λ/λL) > (
√

5 + 1)/2 then it holds that (λ/λL) − (λL/λ) > 1. Thus if λL is sufficiently small compared to λ then the

purely sequential procedure should be used.

Now we shall consider the bias of XN .

Theorem 2 We have as c→ 0

E(XN) = λ − c1/2 + O(c3/4).

Taking the bias of XN into account, we propose the following bias-corrected procedure:

δN = XN + c1/2.

Then the associated risk is given by E[LN(δN ; λ)] = E[(δN − λ)2 + cN]. The following theorem shows that the

bias-corrected procedure reduces one sample cost compared with the two-stage procedure (3) and (4). Thus the

bias-correction is a little bit more effective in reducing the risk for sufficiently small cost.

Theorem 3 As c→ 0 we have

E[LN(XN ; λ)] − E[LN(δN ; λ)] = c + O(c5/4).

3. Simulation Results

In this section we shall present brief simulation results. We consider the case λ = 1 and let m0 = 3, 10 in (3). The

two-stage procedure N defined by (3) and (4) and the purely sequential procedure N∗ in (7) was carried out with

1,000,000 independent replications for λL = 0.2, 0.4, 0.6 when n0 = 30, 50 and 100, namely c = 0.0011, 0.0004

and 0.0001, respectively. In six tables, N̄, X̄N , δ̄N , ω̄1(c)/c, ω̄2(c)/c, ω̄3(c)/c are the averages of N, XN , δN , L1(c)/c,

L2(c)/c, L3(c)/c, respectively, where

L1(c) = LN(XN ; λ) − Rn0
(c), L2(c) = LN(δN ; λ) − Rn0

(c) and L3(c) = LN∗(XN∗ ; λ) − Rn0
(c)

while s( · ) denotes the standard error of the estimator of ( · ). For 0 < λL < (
√

5 − 1)/2 = 0.618 the inequality

(λ/λL) − (λL/λ) > 1 holds. The tables seem to show that (i) the regret becomes smaller as λL grows larger, (ii) our

bias-corrected procedure reduces one sample cost in risk, (iii) m0 in (3) almost does not affect the regret and (iv)

our theorems and the results in comparison in Section 2 are verified.

Table 1. Two-stage (m0 = 3) and purely sequential procedures for n0 = 30

λL 0.2 0.4 0.6

m (m0 = 3) 6 12 18 m 3 18

N̄ 30.484217 30.513074 30.531488 N̄∗ 29.443295 29.722876

[s(N̄)] 0.012231 0.008641 0.006987 [s(N̄∗)] 0.006161 0.005539

X̄N 0.961975 0.965453 0.967265 X̄N∗ 0.957040 0.965231

[s(X̄N)] 0.000201 0.000191 0.000186 [s(X̄N∗)] 0.000204 0.000186

bias of X̄N -0.038025 -0.034547 -0.032735

bias of δ̄N -0.004692 -0.001213 0.000599

ω̄1(c)/c 8.313601 4.437137 2.473775 ω̄3(c)/c 8.732682 2.075925

[s(ω̄1(c)/c)] 0.060634 0.049632 0.043377 [s(ω̄3(c)/c)] 0.075117 0.043303

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 7.032105 3.364334 1.509687

[s(ω̄2(c)/c)] 0.057991 0.047971 0.042621
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Table 2. Two-stage (m0 = 3) and purely sequential procedures for n0 = 50

λL 0.2 0.4 0.6

m (m0 = 3) 10 20 30 m 3 30

N̄ 50.494496 50.495585 50.506280 N̄∗ 49.595943 49.677777

[s(N̄)] 0.015784 0.011158 0.009106 [s(N̄∗)] 0.007490 0.007220

X̄N 0.977877 0.979337 0.979838 X̄N∗ 0.977173 0.978651

[s(X̄N)] 0.000150 0.000146 0.000144 [s(X̄N∗)] 0.000149 0.000144

bias of X̄N -0.022123 -0.020663 -0.020162

bias of δ̄N -0.002123 -0.000663 -0.000162

ω̄1(c)/c 7.818174 4.612660 3.222004 ω̄3(c)/c 6.704822 3.010618

[s(ω̄1(c)/c)] 0.088550 0.079614 0.074541 [s(ω̄3(c)/c)] 0.110638 0.074978

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 6.605852 3.546366 2.205815

[s(ω̄2(c)/c)] 0.086159 0.077817 0.073200

Table 3. Two-stage (m0 = 3) and purely sequential procedures for n0 = 100

λL 0.2 0.4 0.6

m (m0 = 3) 20 40 60 m 3 60

N̄ 100.468660 100.476463 100.466908 N̄∗ 99.688633 99.706543

[s(N̄)] 0.022352 0.015800 0.012905 [s(N̄∗)] 0.010175 0.010120

X̄N 0.989363 0.989761 0.989630 X̄N∗ 0.989473 0.989654

[s(X̄N)] 0.000103 0.000101 0.000101 [s(X̄N∗)] 0.000102 0.000101

bias of X̄N -0.010637 -0.010239 -0.010370

bias of δ̄N -0.000637 -0.000239 -0.000370

ω̄1(c)/c 7.118705 4.334002 3.448066 ω̄3(c)/c 4.070238 2.953309

[s(ω̄1(c)/c)] 0.178955 0.149970 0.147216 [s(ω̄3(c)/c)] 0.178955 0.147767

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 5.991331 3.286131 2.373969

[s(ω̄2(c)/c)] 0.154811 0.148287 0.145660

Table 4. Two-stage (m0 = 10) procedure for n0 = 30

λL 0.2 0.4 0.6

m (m0 = 10) 10 12 18

N̄ 30.502143 30.493566 30.539402

[s(N̄)] 0.009483 0.008645 0.006996

X̄N 0.964419 0.965011 0.967180

[s(X̄N)] 0.000193 0.000191 0.000185

bias of X̄N -0.035581 -0.034989 -0.032820

bias of δ̄N -0.002247 -0.001656 0.000513

ω̄1(c)/c 5.326909 4.517480 2.447595

[s(ω̄1(c)/c)] 0.052342 0.049847 0.043378

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 4.192069 3.418111 1.478373

[s(ω̄2(c)/c)] 0.050344 0.048110 0.042650
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Table 5. Two-stage (m0 = 10) procedure for n0 = 50

λL 0.2 0.4 0.6

m (m0 = 10) 10 20 30

N̄ 50.487837 50.500755 50.500892

[s(N̄)] 0.015808 0.011166 0.009109

X̄N 0.977925 0.979272 0.979923

[s(X̄N)] 0.000150 0.000146 0.000144

bias of X̄N -0.022075 -0.020728 -0.020077

bias of δ̄N -0.002075 -0.000728 -0.000077

ω̄1(c)/c 8.001983 4.553595 3.414406

[s(ω̄1(c)/c)] 0.088908 0.079646 0.075093

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 6.794460 3.480803 2.406726

[s(ω̄2(c)/c)] 0.086547 0.077820 0.073753

Table 6. Two-stage (m0 = 10) procedure for n0 = 100

λL 0.2 0.4 0.6

m (m0 = 10) 20 40 60

N̄ 100.519676 100.479207 100.485107

[s(N̄)] 0.022326 0.015825 0.012899

X̄N 0.989482 0.989591 0.989861

[s(X̄N)] 0.000103 0.000102 0.000101

bias of X̄N -0.010518 -0.010409 -0.010139

bias of δ̄N -0.000518 -0.000409 -0.000139

ω̄1(c)/c 7.159623 4.759837 3.649018

[s(ω̄1(c)/c)] 0.156130 0.150685 0.148065

A1 6.8 4.1 3.07

A2 7.2 4.9 4.27

ω̄2(c)/c 6.056022 3.678078 2.621164

[s(ω̄2(c)/c)] 0.154323 0.148963 0.146534

4. Conclusions

For the problem of minimum risk point estimation of the mean of an exponential distribution under the assumption

that the mean exceeds some positive known number, we used the two-stage procedure proposed by Mukhopadhyay

and Duggan (2001) and provided the second-order approximation to the regret as cost tends to zero. We found

that this approximation gives the sharper lower and upper bounds for the regret than those of Mukhopadhyay and

Duggan (2001). We also proposed the bias-corrected procedure and showed that this procedure is a little bit more

effective than the two-stage procedure in reducing the risk for sufficiently small cost. Furthermore, it turned out

that the regret decreases as the lower bound λL for the true value λ increases.

5. Appendix

In this appendix we shall give all the proofs of the results in Section 2. Let

S m =

m∑
i=1

Xi/λ, T = c−1/2Xm = (n0/m)S m and Uc = [T ]∗ + 1 − T. (8)

Then (4) becomes N = max{m, T + Uc}. The two-stage procedure defined by (3) and (4) belongs to the general

procedure of Mukhopadhyay and Duggan (1999). In the notations of Uno and Isogai (2012), set

θ = λ, h = c1/2, q∗m = q = 1, U(m) = Xm, pm = 2m and c3 = 0.
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Then Theorem 1 of Uno and Isogai (2012) yields

E(N − n0) = 2−1 + O(n−1
0 ) as c→ 0. (9)

Throughout this appendix K denotes a generic positive constant, not depending on c.

A.1. Three Lemmas. We shall provide three lemmas in order to prove the theorems. Lemma 1 can be obtained

from Mukhopadhyay and Duggan (1999; 2001), Uno and Isogai (2012), (2) and (3).

Lemma 1 The following statements hold.

(i) For h = (λL/λ) exp{1 − (λL/λ)} ∈ (0, 1)

P(N = m) = O(hm) as c→ 0

and hence, msP(N = m)→ 0 as c→ 0 for all fixed s > 0.

(ii) N/n0
P−→ 1 as c→ 0, where “

P−→ ” stands for convergence in probability.

(iii) m→ ∞ and m/n0 = (λL/λ) + O(c1/2) as c→ 0.

(iv) m−1/2(S m −m)
D−→ N(0, 1) as c→ 0, where “

D−→ ” stands for convergence in distribution and N(0, 1) denotes
a standard normal random variable.

(v) For any fixed s > 0, {|m−1/2(S m − m)|s; c > 0} is uniformly integrable.

By using Lemma 2.2 (i) of Mukhopadhyay and Duggan (1999) and Lemma 4 (ii) of Uno and Isogai (2012), we

have

Lemma 2 (i) n−1/2
0

(N − n0)
D−→ N(0, λ/λL) as c→ 0.

(ii) For any fixed s ≥ 1, {|n−1/2
0

(N − n0)|s; 0 < c ≤ c0} is uniformly integrable for some sufficiently small c0 > 0.

Lemma 3 is needed to show the second-order approximation to the regret. Let Yi = 2Xi/λ. Then Y1,Y2, . . .
are independent and identically distributed random variables according to the chi-square distribution χ2

2 with two

degrees of freedom and 2S m =
∑m

i=1 Yi ∼ χ2
2m.

Lemma 3 Let
Δc = −2n−1

0 E
[(

Uc − 2−1
)

(S m − m)2
]
.

Then we have as c→ 0

n−1
0 E[(N − n0)(S m − m)] = 1 + O(c1/4),

n−1
0 E[(N − n0)(S m − m)2] = 2 − 2−1Δc + 2−1(λL/λ) + O(c1/2) and

n−2
0 E[(N − n0)2(S m − m)2] = 3 + O(c1/4).

Proof. Note that

N − n0 = (T − n0 + Uc)I(N > m) + (m − n0)I(N = m)

= (T − n0 + Uc) − (T − n0 + Uc)I(N = m) + (m − n0)I(N = m) and

T − n0 = (n0/m)(S m − m).

It follows from the Marcinkiewicz-Zygmund inequality (Gut (2005)) that

E[|S m − m|2p] ≤ Kmp for any fixed p ≥ 1, (10)

where K is a positive constant, depending only on p. The Cauchy-Schwarz inequality, (10) and Lemma 1 (iii)

imply

E[|T − n0|p] ≤ (n0/m)p
{
E[|S m − m|2p]

}1/2 ≤ Kmp/2 for all fixed p ≥ 1. (11)

We shall show the first assertion. By using Lemma 1 (i), 0 ≤ Uc ≤ 1, (10), (11) and Cauchy-Schwarz’s inequality,

we get

n−1
0 E[(N − n0)(S m − m)]

= n−1
0 E[(T − n0)(S m − m)] + n−1

0 E[Uc(S m − m)]

−n−1
0 E[(T − n0 + Uc)(S m − m)I(N = m)] + {(m/n0) − 1}E[(S m − m)I(N = m)]

= m−1E[(S m − m)2] + O(c1/4) = 1 + O(c1/4),
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which shows the first assertion. Next we shall prove the second part. Lemma 3 of Uno and Isogai (2012) shows

that E(Uc) = 2−1 + O(c1/2) as c→ 0. Taking this result into account, we have

n−1
0 E[(N − n0)(S m − m)2]

= n−1
0 E[(T − n0)(S m − m)2] + n−1

0 E[(Uc − 2−1)(S m − m)2] + 2−1n−1
0 E[(S m − m)2]

−n−1
0 E[(T − n0 + Uc)(S m − m)2I(N = m)] + {(m/n0) − 1}E[(S m − m)2I(N = m)]. (12)

Lemma 1 (iii) implies that 2−1n−1
0 E[(S m −m)2] = 2−1(m/n0) = 2−1(λL/λ)+O(c1/2). The definition of Δc gives that

n−1
0 E[(Uc − 2−1)(S m − m)2] = −Δc/2. By using Lemma 1 (i), (10), (11) and 0 ≤ Uc ≤ 1, we have as c→ 0

|n−1
0 E[(T − n0 + Uc)(S m − m)2I(N = m)]|
≤ n−1

0 {P(N = m)}1/2
{
E[(T − n0)4]

}1/4 {
E[(S m − m)8]

}1/4
+n−1

0 {P(N = m)}1/2
{
E[(S m − m)4]

}1/2
= o(c1/2) and

{(m/n0) − 1}E[(S m − m)2I(N = m)] = o(c1/2).

Since 2S m ∼ χ2
2m, we have that n−1

0 E[(T −n0)(S m−m)2] = 8−1m−1E[(2S m−2m)3] = 2. Thus, combining the above

results with (12) yields the second part. Finally we shall show the third statement. In the same way as the second

part we have

n−2
0 E[(N − n0)2(S m − m)2]

= n−2
0 E[(T − n0)2(S m − m)2] + 2n−2

0 E[(T − n0)Uc(S m − m)2]

+n−2
0 E[U2

c (S m − m)2] + o(c1/2)

≡ I1 + 2I2 + I3 + o(c1/2), say. (13)

It is easy to see

I1 = m−2E[(S m − m)4] = 3m−1(m + 2) = 3 + O(c1/2).

Also we get as c→ 0

|I2| ≤ (n0m)−1E[|S m − m|3] ≤ K n−1
0 m1/2 = O(c1/4) and

|I3| ≤ n−2
0 E[(S m − m)2] = n−2

0 m = O(c1/2).

Hence from the above relations and (13) we have the third statement. This completes the proof.

A.2. Proof of Theorem 1. Along the lines of the proof of Mukhopadhyay and Duggan (2001) we shall show the

theorem. Since E(N) ≤ c−1/2λ + m < ∞ for all c > 0 by (4), Wald’s lemma with (2) and (8) implies

E[(XN − λ)2] = cE

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S N − N)2

⎤⎥⎥⎥⎥⎥⎦ + cE(S N − N)2

= cE

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S N − N)2

⎤⎥⎥⎥⎥⎥⎦ + cE(N).

Hence we have from (5) and (9)

ω(c)

c
= E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S N − N)2

⎤⎥⎥⎥⎥⎥⎦ + 2E(N − n0)

= E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S N − N)2

⎤⎥⎥⎥⎥⎥⎦ + 1 + O(c1/2). (14)

Using conditioning arguments such as (3.12)–(3.13) of Mukhopadhyay and Duggan (2001), we have

E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S N − N)2

⎤⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S m − m)2

⎤⎥⎥⎥⎥⎥⎦ + E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (N − m)

⎤⎥⎥⎥⎥⎥⎦ . (15)
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By Taylor’s theorem, we get

(
N
n0

)−2

− 1 = −2n−1
0 (N − n0) + 3n−2

0 (N − n0)2W−4, (16)

where W is a random variable lying between 1 and N/n0. It follows from Lemma 3 that

E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S m − m)2

⎤⎥⎥⎥⎥⎥⎦
= −2n−1

0 E
[
(N − n0)(S m − m)2

]
+ 3n−2

0 E
[
(N − n0)2(S m − m)2

]
+3n−2

0 E
[
(N − n0)2(W−4 − 1)(S m − m)2

]
= 5 + Δc − (λL/λ) + 3n−2

0 E
[
(N − n0)2(W−4 − 1)(S m − m)2

]
+ O(c1/4). (17)

Since for any fixed r > 0 g(x) = x−r (x > 0) is a convex function, we get that W−r ≤ 1 + (N/n0)−r. (4) implies that

N ≥ T = (n0/m)S m. It follows from (3) that m ≥ c−1/2λL which gives that m > r if 0 < c < c1 ≡ (λL/λ)
2. Hence

we have for any fixed r > 0

E(W−r) ≤ 1 + E[(N/n0)−r] ≤ 1 + mrE(S −r
m ) ≤ 1 + mrΓ(m − r)/Γ(m)

≤ K for all 0 < c < c1. (18)

Lemma 1 (ii) and (iv) imply that W
P−→ 1 and (W−4 − 1)2m−2(S m − m)4 P−→ 0 as c → 0. Also Lemma 1 (v) and

(18) yield

sup
0<c<c1

E
[{

(W−4 − 1)2m−2(S m − m)4
}2]

≤ K
{

sup
0<c<c1

E(W−32) + 1

}1/2 {
sup

0<c<c1

E
[
{m−1/2(S m − m)}16

]}1/2

≤ K,

which provides the uniform integrability of {(W−4 − 1)2m−2(S m −m)4; 0 < c < c1}. Hence we have that E[(W−4 −
1)2m−2(S m − m)4] = o(1) as c→ 0. By using Lemmas 1 and 2 we get as c→ 0

n−2
0 E
[
(N − n0)2(W−4 − 1)(S m − m)2

]
≤ (m/n0)

{
E[n−2

0 (N − n0)4]
}1/2 {

E
[
(W−4 − 1)2m−2(S m − m)4

]}1/2
= o(1).

Combining this result with (17), we have as c→ 0

E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (S m − m)2

⎤⎥⎥⎥⎥⎥⎦ = 5 + Δc − (λL/λ) + o(1). (19)

We obtain from (9), (16), (18) and Lemmas 1 and 2

E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−2

− 1

⎫⎪⎪⎬⎪⎪⎭ (N − m)

⎤⎥⎥⎥⎥⎥⎦
= −2n−1

0 E[(N − n0)(N − m)] + 3n−2
0 E[(N − n0)2W−4(N − m)]

= −2E
{
n−1

0 (N − n0)2
}
+ 2{(m/n0) − 1}E(N − n0)

+3n−1/2
0

E
[
n−3/2

0
(N − n0)3W−4

]
+ 3E[n−1

0 (N − n0)2W−4]{1 − (m/n0)}
= −2(λ/λL) + {(λL/λ) − 1} + 3(λ/λL){1 − (λL/λ)} + o(1)

= −4 + (λ/λL) + (λL/λ) + o(1),

which, together with (14), (15) and (19), yields

ω(c)

c
= 2 + (λ/λL) + Δc + o(1) as c→ 0.
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Since εc = (ω(c)/c) − (2 + (λ/λL)) we get that εc = Δc + o(1). We shall prove the inequality for Δc in Lemma 3.

Using that |Uc − 2−1| ≤ 2−1, we have from Lemma 1 (iii)

|Δc| ≤ 2n−1
0 E[2−1(S m − m)2] = m/n0 = λL/λ + O(c1/2).

Therefore we get that |εc| ≤ |Δc| + o(1) ≤ λL/λ + o(1) as c→ 0. This completes the proof of Theorem 1.

A.3. Proof of Theorem 2. By conditioning arguments,

E(XN) = E
{

m
N

Xm +
λ(N − m)

N

}
= λ + c1/2E

⎡⎢⎢⎢⎢⎢⎣
(

N
n0

)−1

(S m − m)

⎤⎥⎥⎥⎥⎥⎦ . (20)

By Taylor’s theorem, (
N
n0

)−1

− 1 = −n−1
0 (N − n0) + n−2

0 (N − n0)2W−3,

where W is a random variable lying between 1 and N/n0. We have from Lemmas 1 and 3, (10), (11) and (18) and

the fact that E(S m − m) = 0

E

⎡⎢⎢⎢⎢⎢⎣
(

N
n0

)−1

(S m − m)

⎤⎥⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
(

N
n0

)−1

− 1

⎫⎪⎪⎬⎪⎪⎭ (S m − m)

⎤⎥⎥⎥⎥⎥⎦
= −n−1

0 E[(N − n0)(S m − m)] + n−2
0 E[(N − n0)2W−3(S m − m)]

= −1 + m−1/2E[W−3m−3/2(S m − m)3]

+2n−2
0 E[(T − n0)UcW−3(S m − m)] + n−2

0 E[U2
c W−3(S m − m)] + O(c1/4)

= −1 + O(c1/4),

which, together with (20), yields the theorem. Therefore the proof of Theorem 2 is complete.

A.4. Proof of Theorem 3. From Theorem 2,

E{LN(δN ; λ)} = E[(XN − λ + c1/2)2] + cE(N)

= E{LN(XN ; λ)} + 2c1/2E(XN − λ) + c

= E{LN(XN ; λ)} + 2c1/2
{
−c1/2 + O(c3/4)

}
+ c

= E{LN(XN ; λ)} − c + O(c5/4),

which implies the theorem. This completes the proof.
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