
International Journal of Statistics and Probability; Vol. 1, No. 2; 2012

ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

A Methodological Note on the Convergence of Sequences of

Random Variables

Salvador Cruz Rambaud1 & Antonio Luis Rodrı́guez López-Cañizares2
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Abstract

The aim of this note is to present a new point of view for introducing all well-known modes of convergence of

sequences of random variables. In the one hand, we start from two noteworthy sets in convergence viz T j,ε and

S j,ε . The consideration of certain progressive assumptions on both T j,ε and S j,ε gives rise to a part of convergence

concepts going from uniform convergence to convergence in probability. On the other hand, some key inequalities

implies the rest of convergence concepts whose link with the former scheme lies in uniform and in probability con-

vergence which end the circle of convergence modes. Moreover, all these steps are illustrated with their respective

methodological charts.
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1. Introduction

Through time, there have been lot of textbooks describing the main modes of convergence of random variables

sequences. Thus, the reader can find a complete survey of the different modes of convergence in Parzen (1954),

Loève (1963), Neveu (1970), Rohatgi (1976), or Resnick (1999). One can say that all approaches coincide in

introducing the different concepts and then deduce the relationships between them. In our opinion, one of the most

systematized book is Karr (1993) where the modes of convergence have been classified in the following way:

• Convergence of random variables as functions.

• Convergence of distribution functions.

• Relationships among the modes

− Implications always valid.

− Counterexamples.

− Implications of restricted validity.

− Implications involving subsequences.

• Convergence of algebraic operations.

• Continuous mappings of random variables.

• Convergence of random vectors.

More recently, Kotz et al. (2006), based on Lukács, (1975), includes a complete survey of convergence modes in

their Encyclopedia of Statistical Sciences, 2nd ed.

The organization of this paper is as follows. After this introduction, Section 2 presents all the well-known modes
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of convergence through their respective theorem of characterization. The main novelty of our approach is that,

before defining and characterizing all modes of convergence, we previously know the implications between them.

This is because we introduce all known modes of convergence by progressive restrictions on both T j,ε and S j,ε .

Finally, Section 3 summarizes and concludes.

2. Survey of Convergence of Sequences of Random Variables

When dealing with stochastic convergence of a sequence of random variables {Xt}∞t=1 to X (where Xt, X : Ω→ R),

some noteworthy sets appear (we will follow Lukács, 1975, notation):

T j,ε = {ω ∈ Ω : |Xj(ω) − X(ω)| ≤ ε},
simply denoted by [|Xj − X| ≤ ε], and

S t,ε =

∞⋂
j=t

T j,ε .

With sets S t,ε and T j,ε , we can write the following chain of statements each of them implying the following one:

1) For every ε > 0, there exists an integer t, such that S t,ε = Ω.

2) For every ε > 0, there exists an integer t, such that P
(
S t,ε
)
= 1.

3) For every ε > 0, limt→∞ P
(
S t,ε
)
= 1.

4) For every ε > 0, limt→∞ P
(
Tt,ε
)
= 1.

5) For every ε > 0 and δ > 0, there exists an integer t, such that, for any x ∈ R, |Ft(x) − F(x)| ≤ [F(x + ε) −
F(x − ε)] + δ, being Ft and F the distribution function of Xt and X, respectively.

Observe that statement 3 is equivalent to:

3) For every ε > 0, limt→∞ P
(
S t,ε

)
= 0,

and then limt→∞ P
(⋃∞

j=t T j,ε

)
= 0. By the Countable Subadditivity Theorem (Billingsley, 1995, p. 25),

P

⎛⎜⎜⎜⎜⎜⎜⎝
∞⋃
j=t

T j,ε

⎞⎟⎟⎟⎟⎟⎟⎠ ≤
∞∑
j=t

P
(
T j,ε

)
.

So three new statements stronger than 3 can be introduced:

2′) For every ε > 0, limt→∞
∑∞

j=t P
(
T j,ε

)
= 0.

2′′) There exists a sequence of positive numbers {εt}∞t=1 such that

lim
t→∞ εt = 0 and

∞∑
t=1

P
(
T t,εt

)
< ∞.

2′′′) There exists a sequence of positive numbers {εt}∞t=1 such that

∞∑
t=1

εt < ∞ and

∞∑
t=1

P
(
T t,εt

)
< ∞.

With respect to statement #1, we can enunciate

Theorem 1 The following two conditions are equivalent:

(i) For every ε > 0, there exists an integer t, such that S t,ε = Ω.

(ii) For every ε > 0, there exists an integer t, such that |Xj(ω) − X(ω)| ≤ ε, for every j ≥ t and ω ∈ Ω.

Proof. It is obvious taking into account the definition of the set S t,ε .

Definition 1 A sequence of random variables {Xt}∞t=1 is said to be uniformly convergent to X, denoted by Xt
u−→ X,

if it satisfies any of the two equivalent conditions in Theorem 1.
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With respect to statement #2, we can enunciate

Theorem 2 The following two conditions are equivalent:

(i) For every ε > 0, there exists an integer t, such that P
(
S t,ε
)
= 1.

(ii) There is a set A ⊆ Ω, P(A) = 1, such that, for very ε > 0, there is an integer tε such that, for t ≥ tε , then

|Xt(ω) − X(ω)| ≤ ε,
for every ω ∈ A.

Proof. See Cruz (2011, p. 215-221).

Definition 2 A sequence of random variables {Xt}∞t=1 is said to be almost surely uniformly convergent to X, denoted

by Xt
a.s.u.−→ X, if it satisfies any of the two equivalent conditions in Theorem 2.

With respect to statement #2′, we can enunciate

Theorem 3 The following three conditions are equivalent:

(i) For every ε > 0,
∑∞

j=1 P
(
T j,ε

)
< ∞.

(ii) For every ε > 0, limt→∞
∑∞

j=t P
(
T j,ε

)
= 0.

(iii) There exists a sequence of positive numbers {εt}∞t=1 such that

lim
t→∞ εt = 0 and

∞∑
t=1

P
(
T t,εt

)
< ∞.

Proof. (i)⇒ (ii). It is obvious taking into account that

lim
t→∞

∞∑
j=t

P
(
|Xj − X| > ε

)
= lim

t→∞

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=1

P
(
|Xj − X| > ε

)
−

t−1∑
j=1

P
(
|Xj − X| > ε

)⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(ii)⇒ (iii). By hypothesis, for every ε > 0,

lim
t→∞

∞∑
j=t

P
(
|Xj − X| > ε

)
= 0.

• For ε = 1, there exists t1, such that
∑∞

j=t P
(
|Xj − X| > 1

)
< 1

2
, for all t ≥ t1.

• For ε = 1
2
, there exists t2, such that

∑∞
j=t P
(
|Xj − X| > 1

2

)
< 1

4
, for all t ≥ t2.

• For ε = 1
3
, there exists t3, such that

∑∞
j=t P
(
|Xj − X| > 1

3

)
< 1

8
, for all t ≥ t3.

• In general, for ε = 1
r , there exists tr, such that

∑∞
j=t P(|Xj − X| > 1

r ) < 1
2r , for all t ≥ tr.

Obviously, as 1
2
> 1

4
> 1

8
> · · · > 1

2r > · · · and, as the corresponding probabilities are increasing, in order to reach

smaller sums, it is necessary that t1 < t2 < t3 < · · · < tr < · · · . Consider the following sequence of real numbers:

• εt1 = εt1+1 = · · · = εt2−1 = 1.

• εt2 = εt2+1 = · · · = εt3−1 =
1
2
.

• εt3 = εt3+1 = · · · = εt4−1 =
1
4
.

• In general, εtr = εtr+1 = · · · = εtr+1−1 =
1
2r .

Obviously, {εt}∞t=0 converges to zero. On the other hand, for every δ > 0, there exists a r ∈ N, such that 1
2r < δ. In

this case,
tr+2−1∑
j=tr+1

P
(
|Xj − X| > ε j = εtr+1

)
+

tr+3−1∑
j=tr+2

P
(
|Xj − X| > ε j = εtr+2

)
+ · · · <

<

∞∑
j=tr+1

P
(
|Xj − X| > ε j = εtr+1

)
+

∞∑
j=tr+2

P
(
|Xj − X| > ε j = εtr+2

)
+ · · · <
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<
1

2r+1
+

1

2r+2
+ · · · = 1

2r < δ.

(iii)⇒ (i). In effect, for every ε > 0, there exists tε such that εt ≤ ε, for all t ≥ tε . Thus,

∞∑
t=1

P (|Xt − X| > ε) =
tε−1∑
t=1

P (|Xt − X| > ε) +
∞∑

t=tε

P (|Xt − X| > ε) <
tε−1∑
t=1

P (|Xt − X| > ε) +
∞∑

t=tε

P (|Xt − X| > εt) < ∞.

Now the proof of this theorem is complete.

Definition 3 A sequence of random variables {Xt}∞t=1 is said to be completely convergent to X, denoted by Xt
c−→ X,

if it satisfies any of the three equivalent conditions in Theorem 3. Complete convergence was introduced for the

first time in Hsu and Robbins (1947, p. 25-31), and Dugué (1957, p. 127-138).

Moreover, statement #2′′′ (labelled
(∑∞

t=1 εt
)
-complete convergence and denoted by Xt

∑∞
t=1 εt−→ X) implies condition

(iii) in Theorem 3 and so complete convergence. It is obvious taking into account that
∑∞

t=1 εt < ∞ implies

limt→∞ εt = 0. But, in general, the converse is not true, as the following example shows.

Example Let Ω = [0, 1], for F the Borel sets of this interval, and for P the Lebesgue measure. Consider the

following sequence of random variables:

Xt(ω) =

{
0, 0 ≤ ω ≤ 1 − 1

t ,
1
t , 1 − 1

t < ω ≤ 1,
t = 1, 2, . . .

For every ε > 0, there exists a tε such that 1
t < ε, for all t ≥ tε . Therefore,

∞∑
t=1

P (|Xt | > ε) < 1 +
1

2
+ · · · + 1

tε − 1
< ∞.

Thus, {Xt}∞t=1 converges completely to 0. On the other hand, let {εt}∞t=1 be a sequence of positive real numbers

such that
∑∞

t=1 εt < ∞. So, the number of addends εt lesser than their corresponding 1
t is infinite, because, on the

contrary,
∑∞

t=1 εt should be∞. Thus,
∞∑

t=1

P (|Xt | > εt) >
∞∑

t=1

1

t
= ∞.

Thus, {Xt}∞t=1 does not converge (
∑∞

t=1 εt)-completely to 0.

With respect to statement #3, we can enunciate

Theorem 4 The following three conditions are equivalent:

(i) For every ε > 0, limt→∞ P
(
S t,ε
)
= 1.

(ii) P (limt→∞ Xt = X) = 1.

(iii) For every ε > 0, there exists a set A ∈ F such that P(A) < ε and Xt
u−→ X on A.

Proof. See Theorem 2.1.2 in Lukács (1975, p. 30) and Egoroff’s Theorem in Aliprantis (2006).

Definition 4 A sequence of random variables {Xt}∞t=1 is said to be almost surely convergent to X, denoted by

Xt
a.s.−→ X, if it satisfies any of the two first equivalent conditions in Theorem 4.

Definition 5 A sequence of random variables {Xt}∞t=1 is said to be almost uniformly convergent to X, denoted by

Xt
a.u.−→ X, if it satisfies the third condition in Theorem 4.

With respect to statement #4, we can enunciate

Theorem 5 The following two conditions are equivalent:

(i) For every ε > 0, limt→∞ P
(
Tt,ε
)
= 1.

(ii) For every ε > 0, limt→∞ P (|Xt − X| > ε) = 0.

Proof. It is obvious.
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Definition 6 A sequence of random variables {Xt}∞t=1 is said to be convergent in probability to X, denoted by

Xt
P−→ X, if it satisfies any of the two equivalent conditions in Theorem 5.

On the other hand, the implication #4⇒ #5 can be seen in Theorem 1.2.2. of (Lukács, 1975, p. 8) and, with respect

to statement #5, we can enunciate

Theorem 6 For every x where F is continuous, the following two conditions are equivalent:

(i) For every ε > 0 and δ > 0, there exists an integer t, such that |Ft(x) − F(x)| ≤ [F(x + ε) − F(x − ε)] + δ.
(ii) For every ε > 0, there exists an integer t, such that |Ft(x) − F(x)| ≤ ε.

Proof. (i)⇒ (ii). It is obvious taking into account the continuity of the function F.

(ii)⇒ (i). It suffices to take the value of ε as [F(x + ε) − F(x − ε)] + δ.
Definition 7 A sequence of random variables {Xt}∞t=1 is said to be convergent in distribution to X, denoted by

Xt
d−→ X, if it satisfies any of the two equivalent conditions in Theorem 6.

Summarizing:

Xt
u−→ X

Xt
a.s.u.−→ X

Xt
c−→ X

Xt

∑∞
t=1 εt−→ X

Xt
a.s.−→ X

Xt
a.u.−→ X

Xt
P−→ X

Xt
d−→ X

�

��

�

�

�

�

�

Chart 1. Implications among general modes of convergence

Next, we can write the following chain of statements each of them implied by the following one:

1) For every ε > 0 and δ > 0, there exists an integer t, such that P(|Xt − X| ≤ ε) ≥ 1 − δ.
2) For every s > 1, limt→∞ EP|Xt − X|s = 0.

3) For every r > s > 1, limt→∞ EP|Xt − X|r = 0.

Observe that

• Statement #1 is equivalent to convergence in probability.
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• Statement #2 (convergence in the s-th mean) implies convergence in probability, because the following relation

(Chebyshev’s inequality):

0 ≤ P(|Xt − X| ≥ ε) ≤ EP(|Xt − X|s)
ε s ,

holds for any ε > 0.

• Statement #3 (convergence in the r-th mean) implies convergence in the s-th mean, because of the following

relation:

EP(|Xt − X|s) ≤ [EP(|Xt − X|r)]s/r.

Finally, convergence in the r-th mean implies convergence of r-th moments:

EP|Xt |r −→ EP|X|r.
Summarizing:

Xt
u−→ X

Xt
mr

−→ X�|Xt |r −→ |X|r

|Xt |s −→ |X|s

|Xt | −→ |X|

�

�

Xt
ms

−→ X

Xt
m1

−→ X

Xt
P−→ X

�

�

�

�

Chart 2. Implications among modes of convergence of r.v. as functions

Chart 3 shows the implications always valid among the different modes of convergence. All these issues can be

found in Karr (1993), Resnick (1999), and Rohatgi (1976). Observe that this new chart is the association of Charts

1 and 2 through the uniform convergence and convergence in probability.

Finally, in order to complete Chart 3, it is necessary to point out that the counterexamples for the implications that

do not hold can be found in Karr (1993).
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Xt
u−→ X Xt

a.s.u.−→ X

Xt
c−→ X

Xt

∑∞
t=1 εt−→ X

Xt
a.s.−→ X

Xt
a.u.−→ X

Xt
P−→ X

Xt
d−→ X

�

��

�

�

�

�

�

Xt
mr

−→ X

�

|Xt |r −→ |X|r

|Xt |s −→ |X|s

|Xt | −→ |X|

�

�

�

�

�

Xt
ms

−→ X

Xt
m1

−→ X

�

�

Chart 3. Implications among all modes of convergence

3. Conclusion

Convergence of sequences of random variables is an important issue in Mathematical Statistics. Its development

can be justified by the need of defining a characteristic mode of convergence for statistical problems. In spite of

the importance of almost sure convergence, there have been a proliferation of several other convergence concepts

which have not had a common origin. In order to avoid this inconvenience, this paper uses two methodological

resources. Firstly, we focus our attention on two noteworthy sets in convergence, T j,ε and S j,ε , and secondly we

use some key inequalities involving random variables. As a result, we can introduce all convergence concepts “in

a natural way” with an added effect: this methodology allows us to see the proximity between two “consecutive

concepts” and so to check the possibility of introduce a novel concept between them. Therefore, the methodological

value of this paper can be located in both teaching and research processes.
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