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Abstract

The control limits derived for the Median Absolute Deviation (MAD) based Standard deviation (S) control chart

proposed by Abu-Shawiesh was for monitoring quality characteristics when a standard value of sigma (σ) is known

or given by the management/ engineers. When sigma (σ) is unknown and we are interested in monitoring past/non-

normal data, then there is the need to modify the simple robust control limits. In this paper, the control limits for

the Shewhart X̄ and S control chart based on median absolute deviation were modified using the concept of three

sigma (3σ) limits. An evaluation performance tool was also developed to evaluate the efficiency of the modified

control chart. An algorithm implemented on S-Plus programming language was developed to compute the two

evaluation parameters used in this study. The results show that the control limits interval and the average run

length for the modified control charts is smaller than that of the existing control charts. Therefore, the modified

control limits is more efficient than the existing control limits. It is recommended that the modified control limits

be used when monitoring past/non-normal data or when there is no standard value of sigma specify by the process

engineer/ management.

Keywords: Median Absolute Deviation (MAD), Average Run Length (ARL), Control Limits Interval (CLI), pro-
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1. Introduction

Statistical process control is commonly used as a tool in improving product quality through the achievement of

process stability and capability. Monitoring and reducing variability in the process is a goal of statistical process

control. With control charts, one of an on-line process control technique, changes of quality characteristics caused

by common causes or assignable causes will be investigated. Then further corrective actions can be taken in order

to remove those causes and return the process to the target with stable operation. Determination of the common

or assignable causes of variation in control chart is possible with the use of control limits. Therefore, incorrect

estimation of the control limits will lead to incorrect inference and thus wrong action.

Specifying the control limits is the most important step in designing a control chart. Improper estimation of the

process dispersion which results in narrower or wider limits can increase the probability of type I error or the

probability of type II error. When the limits are narrow, the risk of a point falling beyond the limits increases,

falsely indicating that the process is out of control (Shahriari et al., 2009). When the limits are wider the risk

increases the points falling within the limits, this falsely indicates that the process is out of control (Shahriari et al.,

2009). The limits on a control chart can either be 0.001 probability limits or 3-sigma limits (Oakland 2008). The

0.001 probability limits were determined so that, if chance causes alone were at work the probability of a point

falling above the upper limit would be one out of a thousand and the probability of points falling below the lower

limit would be one out of a thousand. Therefore, 3-sigma limits are the practical equivalent of the 0.001 probability

limits. In this paper, the 3-sigma limits approach will be adopted.

Several authors have worked on robust control charts, among them are Figueiredo and Gomes (2006; 2009), Rocke

(1992). Abu-Shawiesh (2008) derived the control limits for the standard deviation control chart using the median

absolute deviation. However, the derived control limits was for situation when a standard value of sigma is known

or specified by the management. Using such control limits to monitor a process where the standard value of sigma

is unknown will lead to misplacement of control limits and hence false alarm of out of control. In this paper, we
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consider situation when the standard value of sigma is unknown and we are interested in monitoring past data.

Thus, we modify the control limits earlier presented by Abu-Shawiesh (2008) for the S-control chart and Adekeye

et al. (2012) for the X̄ control chart.

2. Method

Let Xi j represent a random sample of size n taken over m subgroup, i = 1, 2, ..., n and j = 1, 2, ...,m. The sample

are assumed to be independent and taken from a continuous identical distribution functions.

Ifσ2 is unknown, then an unbiased estimate ofσ2 is the sample variance (S 2) evaluated by S 2
j =

1
n−1

∑n
i=1 (Xi j − X̄ j)

2,

where X̄ j =
1
n
∑n

i=1 Xi j.

If the underline distribution is normal, then an unbiased estimator of S is C4σ, where

C4 = (2/n − 1)1/2[Γ(n/2)/Γ((n − 1)/2)] and the standard deviation of S is σ
√

1 −C2
4
.

That is, E(S ) = C4σ and V(S ) = σ2(1 −C2
4). Therefore, the 3-sigma control limits for S- chart will be

UCL = C4σ + 3σ
√

1 −C2
4

CL = C4σ

LCL = C4σ − 3σ
√

1 −C2
4

(1)

For simplification of Equation (1), let B5 = C4 − 3
√

1 −C2
4

and B6 = C4 + 3
√

1 −C2
4
.

Then the parameter of Equation (1) becomes

UCL = B6σ
CL = C4σ
LCL = B5σ

(2)

Suppose we use σ̂ = S̄
C4

which is an unbiased estimator of σ, then the control limits for the S -chart in Equation (1)

will be reduced to

UCL = S̄ + 3( S̄
C4

)
√

1 −C2
4

CL = S̄

LCL = S̄ − 3( S̄
C4

)
√

1 −C2
4

(3)

where S̄ = 1
m
∑m

j=1 S j. For simplification of Equation (3), let B3 = 1 − ( 3
C4

)
√

1 −C2
4

and B4 = 1 + ( 3
C4

)
√

1 −C2
4
,

then the control limits for S -Chart for analyzing past data in Equation (3) becomes

UCL = B4S̄
CL = S̄
LCL = B3S̄

(4)

To monitor the process average, the 3-sigma control limits for monitoring past data (retrospective analysis) are

UCL = ¯̄X + 3 σ√n

CL = ¯̄X
LCL = ¯̄X − 3 σ√n

(5)

where ¯̄X = 1
m
∑m

j=1 X̄ j. When S̄ /C4 is used to estimate σ, then the control limits on the corresponding X̄-charts

will be

UCL = ¯̄X + 3 S̄
C4

√
n

CL = ¯̄X
LCL = ¯̄X − 3 S̄

C4

√
n

(6)

92



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 2; 2012

Let A3 = 3/C4

√
n, then Equation (6) is reduced to:

UCL = ¯̄X + A3S̄
CL = ¯̄X
LCL = ¯̄X − A3S̄

(7)

The constants B3, B4, and A3 are obtainable from the appropriate SQC Table for various value of n. The above

control limits are for situation when the process to be monitored is normal. In practice, the normality assumption

is often violated by real life data, therefore, using the above control limits to monitor real life data might leads

to wrong signal and invalid inference. The median absolute deviation (MAD) has been claimed in the literature

to be the best estimate when the data under consideration is non-normal. When MAD is used as an estimate of

variability, then

σ̂ = bnMAD (8)

where MAD = 1
m
∑m

j=1 MADj, bn is a function of the sample size n and

MADj = 1.4826[Median|Xi j − MDj|]. (9)

where MDj = Median(Xi j).

Thus, the control limits and the central line for the Shewhart S-control chart based on the Median Absolute Devia-

tion as proposed by Abu-Shawiesh (2008) were obtained by substituting Equation (8) into Equation (2). Therefore,

the S- control chart limits based on MAD are

UCLS = B6bnMAD
CLS = C4bnMAD
LCLS = B5bnMAD

(10)

If we are interested in monitoring past data, i.e. carrying out a retrospective analysis on a process data, the

expression in Equation (10) will lead to misplacement of control limits. To solve this problem, the expression in

Equation (4) will be used. On substituting the MAD based estimate of sigma in Equation (8) into Equation (4),

then we have

UCLS = B4bnMAD
CLS = bnMAD
LCLS = B3bnMAD

(11)

The corresponding control limits for the X̄ charts depending on whether the sigma is known or unknown is consider

as follow.

If σ is known, then the derived control limits by Adekeye et al. (2012) will be used. However, if σ is unknown,

then the control limits will be derived from Equation (5). Substituting Equation (8) into Equation (5), we have

UCL = ¯̄X + 3 bn MAD√
n

CL = ¯̄X
LCL = ¯̄X − 3 bn MAD√

n

(12)

Let A6 =
3∗bn√

n , then the control limits in Equation (12) will be reduced to:

UCL = ¯̄X + A6MAD
CL = ¯̄X
LCL = ¯̄X − A6MAD

(13)

In general, if the data under consideration is non-normal and there is no management specification, then the control

limits in Equations (13) and (11) should be used to monitor the process mean and variability, respectively. Table

1 gives value of the constants (bn and A6) needed for the computation of the modified control limits in Equations

(11) and (13). It should be noted that the value of the constants B3, B4, and C4 can be obtained in any standard

statistical quality control text book.
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Table 1. Derived constants for computation of the modified control limits

n bn A6

2 1.196 2.5371

3 1.495 2.5893

4 1.363 2.0445

5 1.206 1.6180

6 1.200 1.4697

7 1.140 1.2926

8 1.129 1.1975

9 1.107 1.1070

10 1.087 1.0312

11 1.078 0.9751

12 1.071 0.9275

13 1.066 0.8870

14 1.061 0.8507

15 1.056 0.8180

16 1.053 0.7897

17 1.049 0.7633

18 1.047 0.7403

19 1.044 0.7185

20 1.042 0.6990

21 1.040 0.6808

22 1.038 0.6639

23 1.036 0.6481

24 1.034 0.6332

25 1.033 0.6198

2.1 Evaluation Parameters

The most universal and applicable way to measure performance of control charts is the use of Average Run Length

(ARL). In this study, the evaluation parameters used to evaluate the control charts performance is the control limit

interval and average run length. The control limit interval hereafter refer to as CLI, is the difference between the

control limits value. Therefore, for the S-control charts, the control limit interval will be determined using the

expression:

CLIS = [
6
√

1 −C2
4

C4

]bnMAD (14)

Similarly, the control limit interval for the X̄ control chart will be determined using the expression:

CLIX̄ = [
6bn√

n
]MAD (15)

A control chart will be adjudged to be superior if its Control Limit Interval is the smallest out of all the control

charts under consideration.

3. Results

To evaluate the performance of the X̄ and MAD control chart, 300 data sets were generated and arranged in 10

sample size with 30 subgroups using the Normal, Exponential, Chi-square and Weibul distributions. The mean,

standard deviation and MAD for the generated data in 10 sample size with 30 subgroups were computed and

implemented using the derived control limits in Equation (11) for S-control chart and Equation (13) for the X̄
control charts. Using Equation (14) and Equation (15), the control limits interval was computed for the control

charts under consideration.

A programme for the computation of the modified control limits, control limit interval and average run length was

written and implemented on S-Plus software. This is available on request from the Author. The summary of the
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Control Limits Interval (CLI) and the Average Run Length (ARL) for the X̄ and S control charts using the modified

control limits and the control limits of Abu-Shawiesh (2008) and Adekeye et al. (2012) are presented in Table 2.

Table 2. Average Run Length(ARL) and Control Limits Interval (CLI)

X̄ and S Control Limits Modified X̄ and S Control Limits

X̄ S X̄ S

Distribution of Data Set ARL CLI ARL CLI ARL CLI ARL CLI

Standard Normal 419.80 6.08 1.53 1.41 2.96 1.92 1.53 1.45

Normal 305.62 5.88 1.00 1.37 2.84 1.86 1.52 1.40

Exponential 284.05 7.34 2.40 1.71 1.66 2.32 1.40 1.75

Weibull 8.80 5.95 1.46 1.38 1.27 1.88 1.46 1.42

Chi-square 14.71 4.85 1.64 1.13 2.06 1.53 1.65 1.16

4. Discussion

The evaluation parameters used in this study (the control limits interval and the average run length) show in-

siginificant difference for the S control charts when compared with the earlier results by Abu-shawiesh (2008) and

Adekeye et al. (2012). However, for the X̄ control charts, there is considerable improvement as seen in the control

limits interval and the average run length for all the data set considered in this study. Furthermore, it can be seen

that the average run length decreases as the data set deviates from normality. This is an indication that the median

absolute deviation is more efficient and hence more appropriate than the standard deviation for highly skewed data.

Thus, researchers or control chart users are advised to first carry out an exploratory data analysis on process data

(real life data) before the use of control chart. This will help to guide against misplacement of control limits.

5. Conclusion

We have modified the simple robust control limits for monitoring process data when the standard value of sigma

is not given and Median Absolute Deviation (MAD) is used to give an estimate. From the results in Table 2, it

is clear that the average run length for the X̄ chart for the modified control limits is more efficient than the earlier

control limits for all the distributional data sets under consideration. Therefore, the modified control limits derived

in this work for the X̄ chart can be used when monitoring past/non-normal data or when there is no standard value

of sigma specify by the process engineer/ management.
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