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Abstract

A general method is proposed for constructing nonparametric tests of trend for proportions. Such alternatives arise in
situations where it is of interest to test for monotonicity in rates of growth. The class of tests is based on the ranks of the
observations. The general approach consists of defining two sets of rankings: the first describes the time and the other the
binary data itself. The test statistics measures the similarity between the two sets. The asymptotic null distributions are
determined for similarity measures due to Spearman, Kendall and Hamming. A limited simulation study shows that the
Spearman test has greater power.

Keywords: Tests of trend for proportions, Ranks, Spearman, Kendall, Hamming similarity measure, Asymptotic Distri-
butions

1. Introduction

There are several instances in practice when one is interested in testing for a trend in proportions. For instance, one may
be interested in the trend in birth rates, in mortality rates or in the incidence of a certain disease. As an example, we
will consider the mortality statistics in South Africa during the period 2000-2008 in Table 1. One may ask if there is an
increasing trend in the mortality rates. We refer the reader for other examples of applications to Chen et al. (1997), to
Arase et al. (2001) for controlled clinical trials and to Ku et al. (2001) for community based surveys.

In such problems, one usually observes at time values t1 < t2 < ... < tk a random sample of ni binary variables
{
yi j

}
with

yi j taking values 1 or 0 with unknown probabilities pi and 1 − pi respectively. The observed data may be viewed as :

t1 t2 · · · tk Total
y1 y2 · · · yk y
n1 − y1 n2 − y2 · · · nk − yk n − y

Total n1 n2 · · · nk n

where yi =
∑

j yi j , y =
∑

i yi. Let p̄i = yi/ni and p̄ = y/n. Without loss in generality, we shall be interested in detecting
a monotone increasing trend in pi. There are a number of different approaches to the problem as discussed in Terpestra
(1952) and Armitage (1955). One approach founded on regression and analysis of variance and discussed below leads to
the Cochran-Armitage test (Cochran 1954; Armitage 1955). Williams (1988) and Chen et al. (1997) have noted that when
the expected values ni pi, or ni (1 − pi) are small, the normal approximation may become unreliable. As a consequence the
Cochran-Armitage test becomes conservative and may lead to a type I error rate greater than to the prescribed significance
level Portier and Hoel (1984), Hothorn and Bretz (2000). Corcoran et al. (2000) have noted that the Cochran-Armitage
test is very sensitive to the choice of scores and conclude that this “makes its general use suspect”. Williams (1988)
has proposed an exact conditional test whereby the test statistic is calculated for all possible 2 x k tables with identical
marginal totals. This is the randomization model in which the groups or treatments have the experimental units assigned
to them at random. Randomization models are predominantly chosen in biomedical research. Neuhäuser (2006) proposed
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a modification of the Baumgartner-Weiβ-Schindler (1998) two-sample statistic which utilizes ranks instead of scores. A
simulation study is inconclusive and does not reveal a clear winner. In section 2, we consider the problem using ranking
methods.

Let {xi} represent arbitrary pre-selected scores, x1 < x2 < ... < xk which mimic a monotone increasing time trend. The
linear model regression of yi j expressed by

pi = α + β (xi − x̄k) (1)

and subject to the constraint that
∑

i ni (xi − x̄k) = 0 where x̄k =
∑

nixi/n, yields estimates

α̂ =

∑
i ni p̄i∑

i ni
= p̄, β̂ =

∑
i ni (xi − x̄k) ( p̄i − p̄)∑

i ni (xi − x̄k)2 .

The hypothesis of homogeneity is
H0 : pi = p, i = 1, ..k

(or equivalently β = 0). Possible alternatives are

H1 : p1 ≤ p2 ≤ ... ≤ pk.with at least one strict inequality
H2 : pi , p j, for at least one pair (i, j)

Hypothesis H2 can also be expressed as ∑
i< j

(
pi − p j

)
=

∑
i

(k + 1 − 2i) pi , 0 (2)

(Van Eeden & Hemelrijk, 1955).

Under the null hypothesis of homogeneity, the estimate of variance of β̂ is given by

V
(
β̂
)
=

p̄ (1 − p̄)∑
i ni (xi − x̄k)2

and consequently we reject H0 in favor of H1 (or equivalently β > 0) for large values of the statistic

β̂/
√

V
(
β̂
)
=

∑
i ni (xi − x̄k) ( p̄i − p̄)√

p̄ (1 − p̄)
√∑

i ni (xi − x̄k)2

which for large samples has a standard normal. If we suppose further that p̄ is small (of the order of 1% − 2%) so that p̄2

is negligible, then the statistic becomes ∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni p̄ (xi − x̄k)2
.

The difference between observed and expected frequencies ni ( p̄i − p̄) are multiplied by the score effect (xi − x̄k) in the
numerator whereas the square of the score effects are weighted by the expected frequencies in the denominator. The
statistic provides a test of trend in frequencies as opposed to a test of trend on the proportions.

Since the sample correlation between {p̄i − p̄} and {xi − x̄k} is given by∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni (p̄i − p̄)2 ∑
i ni (xi − x̄k)2

= β̂

√∑
i ni (xi − x̄k)2∑
i ni (p̄i − p̄)2

we may view the test of monotonicity as equivalent to a test that the correlation is 0.

Alternatively, the test of homogeneity may be conducted by treating the data as coming from a 2 x k contingency table.
That tests rejects H0 in favor of H2 for large values of the statistic∑

i

(ni p̄i − ni p̄)2

ni p̄
+

∑
i

(ni (1 − p̄i) − ni (1 − p̄))2

ni (1 − p̄)

=

∑
i ni ( p̄i − p̄)2

p̄ (1 − p̄)
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which for large samples ni → ∞, has a chi square distribution with (k − 1) degrees of freedom. In that case there is no
need to define scores. We note that even though H1 is included in H2, “one-sided” tests which focus strictly on H1 will in
general be more powerful.

The regression model may be extended to apply to two or more groups of individuals. For example, to model the birth
rates of men and women in the population, the functional regression model becomes

pi = α + β (xi − x̄k) + γ
(
α′ + β′ (xi − x̄k)

)
(3)

where γ takes value 1 for the first group and 0 otherwise.

In section two, we propose a general approach for constructing nonparametric test statistics based on the ranks of the
observations to test H0 against H2. We obtain the asymptotic null distributions for these test statistics whenever either
the sample sizes gets large or the number of time points k gets large. In section three, we report on the results of some
simulation studies and note that the test statistics perform well under a variety of different underlying patterns. We present
an application and conclude with some final remarks.

2. The Construction of the Test Statistics

In the previous section we considered the problem of testing for trend in proportions when scores provide a proxy for
time. In this section we consider the problem from an entirely new perspective using methods based on the ranks of the
data. The approach by-passes the use of scores. We first provide an introduction to statistical methods based on ranks.

A complete ranking of n objects is a permutation of the integers (1, ..., n) . For any two rankings µ = (µ (1) , ..., µ (n))′ , ν =
(ν (1) , ..., ν (n))′ , we may define the following measures of similarities due to Spearman, Kendall and Hamming respec-
tively:

AS (µ, ν) =

n∑
i=1

(
µ(i) − n + 1

2

) (
ν(i) − n + 1

2

)
AK(µ, ν) =

∑
i< j

sgn (µ( j) − µ(i)) sgn (ν( j) − ν(i))

AH(µ, ν) =

n∑
i=1

n∑
j=1

(
I
[
µ(i) = j

] − 1
n

) (
I
[
ν(i) = j

] − 1
n

)
where sgn(x) is either 1 or −1 depending on whether x > 0 or x < 0 and where I [·] is the indicator function which is
1 or 0 depending on whether the statement in brackets holds or not. Measures of similarity can be used to define rank
correlations to provide tests of trend and of independence. A review of related results may be found in Alvo and Cabilio
(1992).

In what follows, we make use of the notion of tie compatibility (see Alvo & Cabilio, 1999) to extend the measures of
similarity defined above to the case where ties occur in the data.

Definition 1. A tied ordering of n objects is a partition into e sets, 1 ≤ e ≤ n, each of which contains di objects,
d1 + d2 + ... + de = n, so that the di objects in each set share the rank i, 1 ≤ i ≤ e. Such a tie pattern is denoted by δ
= (d1, d2, ..., de) .The ranking denoted by νδ = (νδ (1) , νδ (2) , ..., νδ (n)) , resulting from such an ordering, is a tied ranking,
and is one of n!/(d1!d2!...de!) possible permutations.

Example 1. Suppose that n = 7 objects have the ranking (3172465) , that is object 1 is ranked 3, object 2 is ranked 1,
object 3 is ranked 7, and so on. Suppose that ties are allowed and that the ordering assumes the form ⟨(24) (157) (6) (3)⟩ ,
where now the parentheses indicate members of the same tie class, so that objects 2 and 4 receive rank 1, objects 1, 5, and
7 receive rank 2, and objects 6 and 3 receive ranks 3 and 4 respectively. The tied ranking then becomes (2141232) . In this
case e = 4, d1 = 2, d2 = 3, d3 = d4 = 1.

The ranking which describes the time points may be viewed as a tied ranking with tie pattern

δ1 = (n1, n2, ..., nk) (4)

and with ordering ⟨
(1, ..., n1) (n1 + 1, ..., n1 + n2) ...

 k−1∑
i=1

ni + 1, ...,
k∑

i=1

ni

⟩ (5)

On the other hand, the binary variables yi j have with e = 2 the simple tie pattern

δ2 = (y, n − y) (6)
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We now define tie compatibility whereby a tie ranking could be conceived as having arisen from a complete ranking in
which some objects are grouped as being of equivalent standing. A re-ranking will then produce the tied ranking. All
complete rankings which could give rise in this way to the specified tied ranking are then said to be compatible to it. More
precisely, we have the following.

Definition 2. A complete ranking of n objects is compatible with a tied ranking of these objects with tie pattern δ =
(d1, d2, ..., de) , if every pair of objects which receive distinct ranks is given the same relative ranking in both rankings. We
shall denote by C (µ) and C (ν) the class of complete rankings compatible to µ, ν respectively.

Example 2. Suppose that k = 2, n1 = 3, n2 = 2, and we observe 2 successes 1 failure at time t1, and 1 success 1 failure at
time t2. The compatibility class corresponding to the time ranking ν contains the 12 permutations obtained by permuting
ranks 1, 2, 3 among themselves and ranks 4, 5 among themselves

C (ν) =
{

(123|45) , (132|45) , (213|45) , (231|45) , (321|45) , (312|45) ,
(123|54) , (132|54) , (213|54) , (231|54) , (321|54) , (312|54)

}
On the other hand, there are a total of 6 patterns of rankings with (2 successes, 1 f ailure) at time t1, and (1 success, 1 f ailure)
at time t2 as follows:

(341|52) , (351|42) , (451|32) , (342|51) , (352|41) , (452|31) .

Permuting the entries in blocks 1 and 2 respectively, we obtain a total of 72 compatible rankings in the class C (µ).

Definition 3. The measure of similarity for the case of tied rankings µδ1 , νδ2 is defined to be the conditional expectation

A
(
µδ1 , νδ2

)
= E

[A(µ, ν)|C (µ) ,C (ν)
]

where the expectation is computed by averaging over the complete rankings compatible to µδ1 , νδ2 .

In the next section, we compute the statistics corresponding to tied rankings for each of the similarity measures defined
above.

2.1 The Test Statistic Corresponding to Spearman Similarity

To that end we note that

AS
(
µδ1 , νδ2

)
=

n∑
i=1

E
[(
µ(i) − n + 1

2

)
|C (µ)

]
E

[(
ν(i) − n + 1

2

)
|C (ν)

]

The average of the compatible ranks at time t1 is g1 =
(

n1+1
2

)
, at time t2 it is g2 = n1 +

(
n2+1

2

)
and so on. In general at time

tl the average rank is gl =
∑l−1

i=1 ni +
(

nl+1
2

)
, l = 1, .., k. Clearly,

∑k
i=1 nigi =

n(n+1)
2 . Hence, the conditional expectation

E [ν(l)|C (ν)] = gl, l = 1, ..., ni

Turning attention now to the binary observations, the average rank for the n − y which take value 0 is l1 =
n−y+1

2 whereas
the average rank for the y observations which take value 1 is l2 = n − y +

(
y+1

2

)
= n − y

2 +
1
2 It follows that at time ti,

E
[
µ(l)|C (µ)

]
=

{
l1 l = 1, ..., ni − yi,
l2 l = ni − yi + 1, ..., ni,

Since l2 − l1 = n
2 and

∑k
i=1 nigi =

n(n+1)
2 , we have that

AS
(
µδ1 , νδ2

)
=

k∑
i=1

[
gi −

n + 1
2

] [
l2yi + (ni − yi) l1

]
=

n
2

k∑
i=1

[
gi −

n + 1
2

]
yi
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We shall define the Spearman statistic to be

S =

k∑
i=1

[
gi −

n + 1
2

]
yi

=

k∑
i=1

nici (pi − p) (7)

where ci = gi − n+1
2 and

∑k
i=1 nici = 0.

2.2 The Test Statistic Corresponding to Kendall Similarity

We now consider the test statistic when using Kendall’s similarity measure. Note that within a given time period, the
difference between ties is zero and hence there is no contribution to the distance. Between different time periods we have

n∑
i< j

E
[
sgn (µ( j) − µ(i)) |C (µ)

]
E

[
sgn (ν( j) − ν(i)) |C (ν)

]
=

k∑
i< j

[
(ni − yi) y j −

(
n j − y j

)
yi

]
=

k∑
i< j

[
niy j − n jyi

]
Now

k∑
j=i+1

n j =

n − ni −
i−1∑
j=1

n j


=

[
n − gi −

ni − 1
2

]
Hence,

AK
(
µδ1 , νδ2

)
=

k∑
i=1

yi

[
gi −

ni + 1
2

]
−

k∑
i=1

yi

[
n − gi −

ni − 1
2

]

= 2
k∑

i=1

[
gi −

n + 1
2

]
yi

Hence, the Kendall and Spearman statistics are equivalent.

2.3 The Test Statistic Corresponding to Hamming Similarity

In this section, we consider a test statistic based on the Hamming similarity. Returning to Example 2, we may define a
matrix of scores given by

t1
t1
t1
t2
t2


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
0 0 0 1/2 1/2

0 0 0 1/2 1/2


where rows indicate time periods and columns indicate rank. At time t1, there are 3 observations and hence ranks 1, 2, 3
will occur 1/3 of the time. Similarly, at time t2, ranks 4, 5 occur with probability 1/2. Entries outside the block diagonals
are 0.

Hence, in general we have for time ti, l =
∑i−1

q=1 nq + 1, ...,
∑i

q=1 nq

E
[
I (ν(l) = j) |C (ν)

]
=


1
ni
,
∑i−1

q=1 nq + 1 ≤ j ≤ ∑i
q=1 nq

0, otherwise
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We now consider the data ranking in accordance with the model. First the complete rankings corresponding to successes
(and correspondingly failures) can be permuted among themselves in

y!
Πyi!

(n − y)!
Π (ni − yi)!

ways. Since entries in time blocks can be permuted in Πni! ways, we have that the total number of compatible rankings is
given by the product

y! (n − y)!
Πyi! (ni − yi)!

Πni!

Define the set of integers

Bi =


i−1∑
q=1

nq + 1, ...,
i∑

q=1

nq

 , i = 1, ..., k

A0y = {1, 2, ..., n − y}
A1y = {n − y + 1, ..., n}

and let

w0i = Card (A0Y ∩ Bi)

w1i = Card (A1Y ∩ Bi)

where w0i = 0 if y = n and w1i = 0 if y = 0.

It follows that at time ti and l =
∑i−1

q=1 nq + 1, ...,
∑i

q=1 nq,

E
[
I (µ(l) = j) |C (µ)

]
= P (µ (l) = j|C (µ))

=


yi

niy
, jϵA1y

(ni−yi)
ni(n−y) , jϵAy

In fact, at time ti, jϵA0y, we have

P (µ (l) = j|C (µ)) =

y!(n−y−1)!(ni−1)!
Πyi!Π j,i(n j−y j)!(ni−yi−1)!

Π j,in j!

y!(n−y)!
Πyi!(ni−yi)!

Πni!

In Example 2, we obtain a total of 72 compatible rankings. Averaging the frequency of occurrences of each ranking leads
to the following matrix of scores:

t1
t1
t1
t2
t2


1/6 1/6 2/9 2/9 2/9
1/6 1/6 2/9 2/9 2/9
1/6 1/6 2/9 2/9 2/9
1/4 1/4 1/6 1/6 1/6
1/4 1/4 1/6 1/6 1/6


Noting that each row at time ti is repeated ni times, and since w0i +w1i = ni, the Hamming similarity measure for tied data
becomes

AH
(
µδ1 , νδ2

)
=

n∑
i, j

(
E

[
I (µ(i) = j) |C (µ)

]
E

[
I (ν(i) = j) |C (ν)

]) − 1

=

k∑
i=1

[
w1i

yi

niy
+ w0i

(ni − yi)
ni (n − y)

]
− 1

=

k∑
i=1

w1i

[
p̄i

y
− (1 − p̄i)

(n − y)

]

=
1

np̄ (1 − p̄)

k∑
i=1

[
niwi (p̄i − p̄)

]
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where wi =
w1i
ni
. We may define the Hamming statistic as

H =
1

p̄ (1 − p̄)

k∑
i=1

[
niwi ( p̄i − p̄)

]
(8)

The weights {wi} which depend on y may also be expressed as

wi =


0 n − y + 1 >

∑i
q=1 nq

1
ni

(∑i
q=1 nq − (n − y)

) ∑i−1
q=1 nq + 1 ≤ n − y + 1 ≤ ∑i

q=1 nq

1 n − y + 1 <
∑i−1

q=1 nq + 1
(9)

and in this form we see that most of the weight is assigned to later time points. In the next section, we determine the
asymptotic null distribution of the Spearman and Hamming statistics.

3. The Asymptotic Distribution of the Test Statistics Under the Null Hypothesis

In this section, we consider the asymptotic distribution of the Spearman and Hamming test statistics under the null hy-
pothesis. Let {yi} be k independent binomials (ni, pi) and suppose we would like to test H0 vs H1. In most applications the
asymptotic situation of interest occurs when

ni → ∞,with
ni

n
→ λi > 0, i = 1, ..., k. (10)

In Theorem 1, we shall show that the Spearman statistic has an asymptotic normal distribution under either (10) or under
the condition that the {ni} are bounded while k → ∞.
Theorem 1. Suppose that both y→ ∞ and n−y→ ∞ as n→ ∞. Under Ho the Spearman test statistic has asymptotically
a standard normal distribution, i.e. ∑k

i=1 nici (p̄i − p̄)√∑k
i=1 c2

i ni pi (1 − pi)
→d N (0, 1)

under either i) (10) or ii) the {ni} are bounded and k → ∞.

We may estimate pi either by p̄i or by p̄. In the first case, the test rejects whenever∑k
i=1 ciyi√∑k

i=1 c2
i ni p̄i (1 − p̄i)

≥ zα

where zα is the upper 100 (1 − α) % percentage point from a standard normal distribution. The expression for the estimate
of the asymptotic power becomes

1 − Φ

zα −
∑k

i=1 nici pi√∑
c2

i ni pi (1 − pi)


= Φ


∑k

i=1 nici pi√∑k
i=1 c2

i ni pi (1 − pi)
− zα


It is seen that the power converges to 1 with increasing n.

Alternatively, we may use the statistic ∑k
i=1 nici ( p̄i − p̄)√

p̄ (1 − p̄)
√∑k

i=1 nic2
i

(11)

which in the simulation studies reported appears to more closely attain the prescribed significance level. In the case of
equal sample sizes, ni = n0 say, the test statistic (11) takes the simpler form∑k

i=1

(
i − k+1

2

)
( p̄i − p̄)

√
n0

√
p̄ (1 − p̄)

√
k(k2−1)

12
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Theorem 2. Under the null hypothesis and under (10) , the conditional mean and variance of
∑k

i=1 wiyi given that∑k
i=1 yi = y, are given respectively by yp̄ and

p̄ (1 − p̄)
k∑

i=1

ni (wi − p̄)2

In the next theorem we demonstrate that asymptotically the Hamming statistic converges to a normal distribution.

Theorem 3. Suppose that both y→ ∞ and n−y→ ∞ as n→ ∞. Under Ho, the Hamming test statistic has asymptotically
a standard normal distribution, i.e. ∑k

i=1
[
niwi ( p̄i − p̄)

]√
p̄ (1 − p̄)

∑k
i=1 ni (wi − p̄)2

→d N (0, 1)

under either i) (10) or ii) the {ni} are bounded and k → ∞.

Both test statistics share the same general form as the regression statistic, namely∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni (xi − x̄k)2
√

p̄ (1 − p̄)
, x̄k =

∑
nixi/n (12)

where for Spearman, xi = gi and for Hamming xi = wi.

We may also consider the asymptotic null distribution of the Spearman and Hamming test statistics under the condition
that k → ∞.in lieu of (10) .

4. Simulation Study

Comparing Table 2 with Table 3, it is seen that the significance level actually attained by the Spearman similarity measure
when the {pi} in the variance expressions are estimated by p are closer to the prescribed 5% level than when {pi} are used.
From Table 4 we note that the level actually attained by the Hamming similarity measure is closer to the prescribed 5%
level than Spearman’s.

In Table 5 we report on simulations for the power when k = 5. Three cases were considered: proportions which are
strictly increasing, proportions which are non-decreasing and some which have no particular pattern. It can be seen that
the Spearman measure is clearly only superior in the first two cases. Predictably the power is smaller when the {pi} are
closer together than when they are further apart.

5. Applications

Returning to the example on mortality rates in South Africa, we calculated values of 260.1 and 70.3 for the Spearman and
Hamming similarity measures respectively. These yielded p-values < 10−4.

Another application deals with water quality at Hong Kong beaches. Table 6 shows the geometric E. Coli count for each
of 6 beaches in the Sai Kung district of Hong Kong during the period 1986-2009. A beach is classified as good if the count
is at most 24. The Spearman test statistic yielded a value of 22.98 which points to strong evidence of an upward trend in
the annual proportion of good beaches. The Hamming test statistic on the other hand yielded a value of 2.90 which has a
p-value equal to 0.0018.

6. Conclusion

An approach has been proposed for constructing nonparametric tests of trend in proportions. Similarity measures due to
Spearman, Kendall and Hamming led to new test statistics. It was shown that the Spearman and Kendall measures led to
identical test statistics. The asymptotic null distributions for the Spearman and Hamming test statistics were shown to be
normal. Simulations were performed to check on the significance level attained. It was seen that the Hamming measure
was closer to the prescribed level. On the other hand, the Spearman similarity measure attained greater power under a
variety of alternatives. Two applications were considered.
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Appendix

Proof of Theorem 1.

i) The Spearman statistic (7) is expressible as a linear combination of independent binomials,
∑k

i=1 ciyi where ci = gi −
n+1

2 and gi =
∑i−1

i=1 ni +
(

ni+1
2

)
. Hence, under (10), we have approximately yi ≈d N (ni pi, ni pi (1 − pi)) . In view of the

independence of the {yi} , ∑
ciyi ≈d N

(∑
cini pi,

∑
c2

i ni pi (1 − pi)
)

and hence
(
∑

ciyi −
∑

cini pi)√∑
c2

i ni pi (1 − pi)
→d N (0, 1) .

Under H0,
∑

cini pi = 0 and hence ∑
ciyi√∑

c2
i ni pi (1 − pi)

→d N (0, 1) .

The theorem follows.

ii) For this part, note that the Spearman statistic is expressible as

k∑
i=1

ni∑
j=1

ciyi j

where the
{
yi j

}
are Bernoulli (pi) . We need to show that

max1≤i≤k c2
i∑k

i=1
∑ni

j=1 c2
i

→ 0, as k → ∞

Note that if ni ≤ M, for all i,

c2
i ≤ g2

i +
(n + 1)2

4

≤ M2
(
i − 1

2

)2

+
1
4
+

(n + 1)2

4
= O

(
k2

)
Moreover, since n =

∑k
i=1 ni ≤ Mk

k∑
i=1

ni∑
j=1

c2
i =

k∑
i=1

nig2
i −

n (n + 1)2

4

≥
k∑

i=1

nig2
i −

M3k3

4

=

k∑
i=1

ni

 i−1∑
j=1

n j


2

+

k∑
i=1

(ni + 1)

 i−1∑
j=1

n j

 + k∑
i=1

ni

(
ni + 1

2

)2

− M3k3

4

≥
k∑

i=1

ni (i − 1)2 + 2
k∑

i=1

(i − 1) = O
(
k3

)
It follows that

max1≤i≤k c2
i∑k

i=1
∑ni

j=1 c2
i

= O(
1
k

)→ 0, as k → ∞

and the theorem is proved.
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Proof of Theorem 2.

Turning attention to the Hamming statistic (8), we note that under H0 and conditional on
∑k

i=1 yi = y, the joint probability
distribution of the {yi} is the multivariate hypergeometric

Πk
i=1

(
ni
yi

)
(

n
y

) (13)

It follows that

E (yi|H0, y) =
ni

n
y

Var (yi|H0, y) =
ni (n − ni)
n2 (n − 1)

y (n − y)

Cov
(
yi, y j|H0, y

)
= −

nin j

n2 (n − 1)
y (n − y) , i , j

Hence,

E

 k∑
i=1

wiyi|H0, y

 =

 k∑
i=1

wi
ni

n
y


= yp̄

and

Var

 k∑
i=1

wiyi|H0, y

 =
∑

i

w2
i Var (yi|H0, y) +

∑
i, j

wiw jCov
(
yi, y j|H0, y

)
=

y (n − y)
n2 (n − 1)

∑
i

ni (n − ni) w2
i −

∑
i, j

nin jwiw j


=

y (n − y)
n2 (n − 1)

n ∑
i

niw2
i −

(∑
niwi

)2


= p̄ (1 − p̄)
k∑

i=1

ni (wi − p̄)2

Proof of Theorem 3.

Given (10), it follows that (13) converges to a multinomial distribution independent of p given by(
y

y1y2...yk

)
λ

y1
1 λ

y2
2 ...λ

yk
k

Suppose now that the observed weights {wi} are the values obtained from an i.i.d. sample from a population with mean
µ and variance σ2. Consider a bootstrap random sample of size y, say W∗1 , ...,W

∗
y obtained with replacement from that

population of observed weights {wi} in accordance with the distribution

P (W∗ = wi) = λi, i = 1, ..., k

The central limit theorem then asserts that for large y, the sum of the bootstrap sample

S ∗ =
y∑

i=1

W∗i

is asymptotically normal. Now y will get large a.s. since n→ ∞ for otherwise y/n 9 p a.s. and thus contradict the strong
law of large numbers.

To relate the Hamming distribution to that of the bootstrap, let xi denote the number of times wi is selected in the resam-
pling. It follows that the vector (x1, ..., xk) has a multinomial distribution (y; λ1, ..., λk) and S ∗ can be equivalently written
as

S ∗ =
k∑

i=1

wixi =d

k∑
i=1

wiyi.
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Consequently, under the null hypothesis for large n and conditional on y∑k
i=1

[
niwi (p̄i − p̄)

]√
p̄ (1 − p̄)

∑k
i=1 ni (wi − p̄)2

→d N (0, 1)

and hence this is also true unconditionally. Note that

k∑
i=1

ni (wi − p̄) =

 k∑
i=1

w1i

 − np̄ = 0.

ii) For this part, it follows that since 0 ≤ wi ≤ 1, for all i and

k∑
i=1

niw2
i ≥ y (14)

max1≤i≤k w2
i∑k

i=1
∑ni

j=1 w2
i

= O(
1
y

)→ 0

and the theorem is proved.
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Table 1. Mortality statistics for South Africa 2000-2008

Year Number of deaths Population size
2000 416, 155 43, 789, 115
2001 454, 882 43, 997, 828
2002 502, 050 44, 187, 637
2003 556, 779 44, 344, 136
2004 576, 709 42, 718, 530
2005 598, 131 42, 768, 678
2006 612, 778 43, 647, 658
2007 603, 094 43, 586, 097
2008 592, 073 43, 421, 021

Table 2. Significance level for Spearman’s similarity when pi is estimated by pi

p 10 20 30 50
0.1 0.018 0.035 0.045 0.053

0.2 0.048 0.057 0.055 0.055

0.3 0.062 0.060 0.058 0.054

0.4 0.067 0.057 0.057 0.055

0.5 0.071 0.055 0.059 0.053

Table 3. Significance level for Spearman’s similarity when pi is estimated by p

p 10 20 30 50
0.1 0.044 0.045 0.050 0.053

0.2 0.051 0.054 0.052 0.053

0.3 0.052 0.053 0.052 0.052

0.4 0.052 0.049 0.052 0.052

0.5 0.048 0.052 0.049 0.051

Table 4. Significance level for Hamming’s similarity

p 10 20 30 50
0.1 0.056 0.064 0.061 0.056

0.2 0.054 0.056 0.056 0.055

0.3 0.054 0.052 0.052 0.052

0.4 0.054 0.055 0.052 0.053

0.5 0.053 0.053 0.050 0.050
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Table 5. Power for Spearman (S) and Hamming (H) similarity measures using a 5% significance level

ni = 10 ni = 30
p1 p2 p3 p4 p5 H S H S

0.1 0.2 0.4 0.5 0.6 0.77 0.89 0.99 1.00
0.3 0.6 0.7 0.8 0.9 0.88 0.94 1.00 1.00
0.5 0.6 0.7 0.8 0.9 0.58 0.72 0.94 0.99
0.2 0.25 0.3 0.35 0.4 0.25 0.29 0.50 0.60
0.1 0.3 0.3 0.4 0.5 0.51 0.64 0.88 0.97
0.3 0.5 0.5 0.5 0.9 0.58 0.81 0.94 1.00
0.4 0.5 0.6 0.8 0.8 0.62 0.75 0.95 0.99
0.2 0.5 0.3 0.8 0.4 0.51 0.39 0.98 0.80
0.6 0.2 0.4 0.8 0.5 0.46 0.18 0.88 0.39

Table 6. Annual Geometric Mean E. Coli level (per 100ml) in the Sai Kung District. Beaches: Clear Water Bay First (1),
Clear Water Bay Second (2), Hap Mun Bay (3), Kiu Tsui (4), Silverstrand (5), Trio (6); number of good beaches (7)

(1) (2) (3) (4) (5) (6) (7)
1986 102 69 9 18 255 49 2
1987 133 52 6 9 62 32 2
1988 39 35 4 3 129 35 2
1989 80 38 3 5 192 23 3
1990 51 42 4 5 89 31 2
1991 30 14 2 4 106 14 4
1992 52 42 2 5 94 32 2
1993 31 16 3 4 56 20 4
1994 30 35 3 3 72 14 3
1995 55 39 6 3 226 16 3
1996 34 43 5 5 126 29 2
1997 62 66 3 5 148 30 2
1998 41 44 2 4 99 21 3
1999 11 12 2 4 32 17 5
2000 16 26 2 5 61 10 4
2001 28 22 1 5 100 12 4
2002 28 14 2 4 133 6 4
2003 17 21 4 5 97 10 5
2004 9 10 3 17 74 2 5
2005 16 19 4 14 67 6 5
2006 20 13 4 11 30 5 5
2007 14 9 3 6 33 2 5
2008 11 19 5 12 35 12 5
2009 15 27 3 19 31 5 4
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