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Abstract

For multi-way contingency tables with nominal categories, this paper proposes three kinds of proportional reduction in
error measures, which describe the relative decrease in the probability of making an error in predicting the value of one
variable when the values of the other variables are known, as opposed to when they are not known. The measures have
forms of arithmetic, geometric and harmonic means. An example is shown.
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1. Introduction

Consider an R×C contingency table with both nominal categories of the explanatory variable X and the response variable
Y . Let pi j denote the probability that an observation will fall in the ith category of X and in the jth category of Y
(i = 1, . . . ,R; j = 1, . . . ,C). Goodman and Kruskal (1954) proposed two kinds of measures, i.e., (1) the measure which
describes the proportional reduction in variation (PRV) in predicting the Y category obtained when the X category is
known, as opposed to when the X category is not known, and (2) the measure which describes the proportional reduction
in error (PRE) in predicting it. Although the details are omitted, some PRV measures are considered by, e.g., Theil (1970),
Tomizawa, Seo and Ebi (1997), Tomizawa and Ebi (1998), Tomizawa and Yukawa (2003), and Yamamoto, Miyamoto and
Tomizawa (2010).

The present paper considers the PRE measures. Goodman and Kruskal (1954) proposed the PRE measure as

λB =

(1 − p•m0 ) −
R∑

i=1

pi•

(
1 −

(
pimi

pi•

))
1 − p•m0

=

R∑
i=1

pimi − p•m0

1 − p•m0

,

where

pimi = max
j

(pi j), p•m0 = max
j

(p• j), pi• =
C∑

t=1

pit, p• j =

R∑
s=1

ps j;

also see Bishop, Fienberg and Holland (1975, p. 388), and Everitt (1992, p. 58). This measure describes the relative
decrease in the probability of making an error in predicting the value of Y when the value of X is known, as opposed to
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when it is not known. The measure λB has the properties that (i) 0 ≤ λB ≤ 1, (ii) λB = 0 if and only if the information
about the explanatory variable X does not reduce the probability of making an error in predicting the category of the
variable Y , and (iii) λB = 1 if and only if no error is made, given knowledge of the explanatory variable X; namely there
is complete predictive association.

Next, consider the reverse case which is the explanatory variable Y and the response variable X. The following measure
λA is suitable for predictions of X from Y , defined by

λA =

C∑
j=1

pM j j − pM0•

1 − pM0•
,

where
pM j j = max

i
(pi j), pM0• = max

i
(pi•);

see Goodman and Kruskal (1954).

The measures λB and λA are specifically designed for the situation in which the explanatory and response variables are
defined. Now consider the situation where the explanatory and response variables are not defined. In this case, the
following measure λ is given:

λ =

R∑
i=1

pimi +

C∑
j=1

pM j j − p•m0 − pM0•

2 − p•m0 − pM0•
;

see Goodman and Kruskal (1954). This indicates the PRE in predicting the category of either variable as between knowing
and not knowing the category of the other variable. Also, the measure λ is the weighted sum of the measures λB and λA.

For a two-way contingency table with both nominal categories, Yamamoto and Tomizawa (2010) proposed new PRE
measures, say Λ, expressed as the arithmetic, geometric and harmonic means of λB and λA. For a two-way contingency
table with nominal-ordinal categories, Yamamoto, Nozaki and Tomizawa (2011) proposed a PRE measure although the
detail is omitted.

The purpose of the present paper is to extend the Yamamoto and Tomizawa’s (2010) measures into T -way contingency
tables (T ≥ 3) with all nominal categories. Section 2 proposes measures for three-way tables (T = 3), and Section 3
extends them for multi-way (T ≥ 4) and expresses as more generalized form including such three kinds of means. Section
4 analyzes data as an example.

2. New PRE Measures for Three-way Contingency Tables

2.1 Measures

Consider an R×C × L contingency table with variables X, Y and Z which have all nominal categories. Let pi jk denote the
probability of that an observation will fall in the (i, j, k)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,C; k = 1, . . . , L). When
the explanatory and response variables are not defined, namely, we cannot specifically define which of the variables is a
response, we consider three kinds of prediction, predicting X, predicting Y and predicting Z.

First, consider the table with a response variable X and two explanatory variables Y and Z. In this case, a PRE measure,
which describes the relative decrease in the probability of making error in predicting the value of X when the values of
the other variables, Y and Z, are known, as opposed to when they are not known, is defined by

λ(3)
A =

C∑
j=1

L∑
k=1

pm jk jk − pm1••

1 − pm1••
,

where

pm jk jk = max
i

(pi jk), pm1•• = max
i

(pi••), pi•• =
C∑

t=1

L∑
u=1

pitu.

Similarly, each PRE measure for the table as having a response variable Y and two explanatory variables X and Z and as
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having a response variable Z and two explanatory variables X and Y is defined by

λ(3)
B =

R∑
i=1

L∑
k=1

pimikk − p•m2•

1 − p•m2•
,

and

λ(3)
C =

R∑
i=1

C∑
j=1

pi jmi j − p••m3

1 − p••m3

,

where

pimikk = max
j

(pi jk), p•m2• = max
j

(p• j•), p• j• =
R∑

s=1

L∑
u=1

ps ju,

pi jmi j = max
k

(pi jk), p••m3 = max
k

(p••k), p••k =
R∑

s=1

C∑
t=1

pstk.

Then, we shall propose three kinds of new PRE measures as follows:

λ(3)
a =

λ(3)
A + λ

(3)
B + λ

(3)
C

3
,

λ(3)
g =

3
√
λ(3)

A λ(3)
B λ(3)

C ,

and

λ(3)
h =

3
1

λ(3)
A

+
1

λ(3)
B

+
1

λ(3)
C

.

The measures λ(3)
a , λ(3)

g and λ(3)
h are the arithmetic mean, geometric mean and harmonic mean of the λ(3)

A , λ(3)
B and λ(3)

C ,
respectively.

Let λ∗ denote each of measures λ(3)
a , λ(3)

g and λ(3)
h . Each measure has the properties that (i) λ∗ must lie between 0 and 1, (ii)

λ∗ = 0 if and only if the information about two variables does not reduce the probability of making an error in predicting
the category of the other variable, and (iii) λ∗ = 1 if and only if no error is made, given knowledge of two variables;
namely there is complete predictive association. We point out that if the variables are independent, then the measure λ∗

takes 0, but the converse need not hold. Note that when the values of λ(3)
A , λ(3)

B and λ(3)
C are 0 such as the variables are

independent, the measure λ(3)
h cannot measure the PRE. So in such a case, the measures λ(3)

a and λ(3)
g should be used as a

PRE measure.

We see that
min

(
λ(3)

A , λ(3)
B , λ(3)

C

)
≤ λ(3)

h ≤ λ
(3)
g ≤ λ(3)

a ≤ max
(
λ(3)

A , λ(3)
B , λ(3)

C

)
,

where the equality holds if and only if λ(3)
A = λ

(3)
B = λ

(3)
C .

2.2 Approximate Confidence Interval for Measures

Let ni jk denote the observed frequency in the (i, j, k)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,C; k = 1, . . . , L). Assuming
that {ni jk} result from full multinomial sampling, we consider an approximate standard error and large-sample confidence
interval for λ∗, using the delta method, descriptions of which are given by Bishop et al. (1975, Sec. 14.6). The sample
version of λ∗, i.e., λ̂∗, is given by λ∗ with {pi jk} replaced by {p̂i jk}, where p̂i jk = ni jk/n and n =

∑∑
ni jk. Using the delta

method,
√

n(λ̂∗ − λ∗) has asymptotically (as n→ ∞) a normal distribution with mean 0 and variance σ2[λ∗], where

σ2 [
λ∗

]
=

R∑
i=1

C∑
j=1

L∑
k=1

(
∂λ∗

∂pi jk

)2

pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

(
∂λ∗

∂pstu

)
pstu

2

.
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For measures λ(3)
a , λ(3)

g and λ(3)
h , the variances are

(a) σ2
[
λ(3)

a

]
=

1
9

 R∑
i=1

C∑
j=1

L∑
k=1

(Ui jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Ustu pstu

2 ,
(b) σ2

[
λ(3)

g

]
=

1
9

(
λ(3)

g

)−4

 R∑
i=1

C∑
j=1

L∑
k=1

(Vi jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Vstu pstu

2 ,
(c) σ2

[
λ(3)

h

]
=

1
9

(
λ(3)

h

)4

 R∑
i=1

C∑
j=1

L∑
k=1

(Wi jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Wstu pstu

2 ,
where

Ui jk = ∆i jk(1) + ∆i jk(2) + ∆i jk(3),

Vi jk = ∆i jk(1)λ
(3)
B λ(3)

C + ∆i jk(2)λ
(3)
A λ(3)

C + ∆i jk(3)λ
(3)
A λ(3)

B ,

Wi jk =
∆i jk(1)(
λ(3)

A

)2 +
∆i jk(2)(
λ(3)

B

)2 +
∆i jk(3)(
λ(3)

C

)2 ,

with

∆i jk(1) =

I(i = m jk)(1 − pm1••) − I(i = m1)

1 − C∑
j=1

L∑
k=1

pm jk••


(1 − pm1••)2 ,

∆i jk(2) =

I( j = mik)(1 − p•m2•) − I( j = m2)

1 − R∑
i=1

L∑
k=1

p•mik•


(1 − p•m2•)2 ,

∆i jk(3) =

I(k = mi j)(1 − p••m3 ) − I(k = m3)

1 − R∑
i=1

C∑
j=1

p••mi j


(1 − p••m3 )2 ,

and I(·) is the indicator function.

Let σ̂2[λ∗] denote σ2[λ∗] with {pi jk} replaced by {p̂i jk}. Then, σ̂[λ∗]/
√

n is an estimated standard error for λ̂∗, and
λ̂∗ ± z1−α/2σ̂[λ∗]/

√
n is an approximate 100(1−α)% confidence interval for λ∗, where z1−α/2 is the (1−α/2)th quantile of

the standard normal distribution.

3. Extension to Multi-way Contingency Tables

3.1 Measures

Consider an R1 × R2 × · · · × RT contingency table with nominal categories in which the (T − 1) explanatory variables and
one response variable are not defined. Let pi1i2···iT denote the probability that an observation will fall in the (i1, i2, · · · , iT )th
cell of the table (ik = 1, . . . ,Rk; k = 1, . . . , T ) and Xk (k = 1, · · · ,T ) denote the kth variable. For k = 1, . . . , T , a PRE
measure in predicting the value of Xk is defined by

λ(T )
k =

R1∑
i1=1

· · ·
Rk−1∑

ik−1=1

Rk+1∑
ik+1=1

· · ·
RT∑

iT=1

p(k)
mi1 ···ik−1 ik+1 ···iT

− p(k)
mk

1 − p(k)
mk

,

where
p(k)

mi1 ···ik−1 ik+1 ···iT
= max

ik
(pi1···ik ···iT ), p(k)

mk
= max

ik

(
p(k)

ik

)
,

and p(k)
ik
= P(Xk = ik). Then, we shall extend the measures as follows:

λ(T )
a =

1
T

T∑
k=1

λ(T )
k ,
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λ(T )
g =

T

√√√ T∏
k=1

λ(T )
k ,

and

λ(T )
h =

T
T∑

k=1

1

λ(T )
k

.

The measures λ(T )
a , λ(T )

g and λ(T )
h are the arithmetic mean, geometric mean and harmonic mean of the λ(T )

1 through λ(T )
T ,

respectively.

Let Λ(T ) denote each of measures λ(T )
a , λ(T )

g and λ(T )
h . Each measure has the properties that (i) Λ(T ) must lie between 0 and

1, (ii) Λ(T ) = 0 if and only if the information about (T − 1) variables does not reduce the probability of making an error
in predicting the category of the other variable, and (iii) Λ(T ) = 1 if and only if no error is made, given knowledge of
(T − 1) variables; namely there is complete predictive association. We point out that if all variables are independent, then
the measure Λ(T ) takes 0, but the converse need not hold. Note that when λ(T )

k = 0 (k = 1, · · · T ) such as all variables are
independent, the measure λ(T )

h cannot measure the PRE. So in such a case, the measures λ(T )
a and λ(T )

g should be used as a
PRE measure.

We see that
min

(
λ(T )

1 , · · · , λ(T )
T

)
≤ λ(T )

h ≤ λ
(T )
g ≤ λ(T )

a ≤ max
(
λ(T )

1 , · · · , λ(T )
T

)
,

where the equality holds if and only if λ(T )
1 through λ(T )

T are all equal.

We note that Λ(T ) when T = 2 is equivalent to the measure Λ proposed in Yamamoto et al. (2010).

3.2 Generalization of the Measures

Considering the monotonic function g, we shall propose a generalized measure, which includes the measures λ(T )
a , λ(T )

g

and λ(T )
h , as follows:

Λ(T ) = g−1


∑T

k=1 g
(
λ(T )

k

)
T

 .
The functions g and g−1 are differentiable functions. Especially, (i) when g(x) = x, the measure Λ(T ) is identical to λ(T )

a ,
(ii) when g(x) = log x, the measure Λ(T ) is identical to λ(T )

g , and (iii) when g(x) = 1/x, the measure Λ(T ) is identical to
λ(T )

h .

Λ(T ) has the same properties as λ(T )
a , λ(T )

g and λ(T )
h (see Section 3.1).

3.3 Approximate Confidence Interval for Measures

Let ni1i2···iT denote the observed frequency in the (i1, i2, . . . , iT )th cell of the table (ik = 1, . . . ,Rk; k = 1, . . . ,T ). Assume
that a multinomial distribution applies to the R1×R2×· · ·×RT table. In a similar way to the case of T = 3,

√
n(Λ̂(T )−Λ(T ))

(n is sample size and Λ̂(T ) is the estimated measure) has asymptotically a normal distribution with mean 0 and variance

σ2
[
Λ(T )

]
=

R1∑
j1=1

· · ·
RT∑

jT=1

(
∂Λ(T )

∂p j1··· jT

)2

p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

(
∂Λ(T )

∂ps1···sT

)
ps1···sT


2

.

For measures λ(T )
a , λ(T )

g and λ(T )
h , the variances are

(a) σ2
[
λ(T )

a

]
=

1
T 2

 R1∑
j1=1

· · ·
RT∑

jT=1

(U j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Us1···sT ps1···sT


2 ,

(b) σ2
[
λ(T )

g

]
=

1
T 2

(
λ(T )

g

)2(1−T )

 R1∑
j1=1

· · ·
RT∑

jT=1

(V j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Vs1···sT ps1···sT


2 ,

(c) σ2
[
λ(T )

h

]
=

1
T 2

(
λ(T )

h

)4

 R1∑
j1=1

· · ·
RT∑

jT=1

(W j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Ws1···sT ps1···sT


2 ,
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where

U j1··· jT =
T∑

k=1

∆ j1··· jT (k),

V j1··· jT =
T∑

k=1

∆ j1··· jT (k)λ
(T )
1 · · · λ

(T )
k−1λ

(T )
k+1 · · · λ

(T )
T ,

W j1··· jT =
T∑

k=1

∆ j1··· jT (k)(
λ(T )

k

)2 ,

with

∆ j1··· jT (k) =
1(

1 − p(k)
mk

)2

I( jk = m j1··· jk−1 jk+1··· jT )
(
1 − p(k)

mk

)
− I( jk = mk)

1 − R1∑
i1=1

· · ·
Rk−1∑

ik−1=1

Rk+1∑
ik+1=1

· · ·
RT∑

iT=1

p(k)
mi1 ···ik−1 ik+1 ···iT


 ,

and I(·) is the indicator function.

Then, we can construct an asymptotic confidence interval using estimated variance although the detail is omitted.

4. An Example

Consider the data in Table 1, taken from Goodman (1975), which shows the McHugh test data on creative ability in
machine design. This table cross-classifies 137 engineers with respect to their dichotomized scores (above the subtest
mean (1) or below the subtest mean (2)) obtained on each of four different subtests that were supposed to measure creative
ability in machine design. There are sixteen response patterns because the table has four variables (items A, B, C and D)
and each has two categories.

Now, we are interested in what degree the relative decrease in the probability of making an error in predicting the value of
one variable when we know the values of the other three variables as opposed to when we do not know them is. We shall
analyze these data by using the proposed measure because the explanatory and response variables are not defined. When
we use the measure λ(4)

a , for example, the estimated value of λ(4)
a is 0.470 (Table 2). We see that in prediction of one of the

variables from the others, the information reduces the probability of making an error by 47.0%. Similarly, the estimated
values of λ(4)

g and λ(4)
h are 0.469 and 0.467, respectively. So we can also obtain a similar interpretation for the data.

We are also interested in the values of test statistic for the hypotheses of independence of (1) item A and items (B, C, D),
(2) B and (A, C, D), (3) C and (A, B, D), and (4) D and (A, B, C). The values of Pearson’s chi-squared statistic are 35.93
for (1), 37.67 for (2), 48.17 for (3), and 42.06 for (4) with seven degrees of freedom. Therefore, we can see the strong
association between one of the variables and the other three variables. So, it would be meaningful to see the values of
proposed measures.

5. Concluding Remarks

For analyzing multi-way (T -way) contingency tables with nominal categories, we have proposed three kinds of PRE
measures which describes the relative decrease in the probability of making error in predicting value of one variable when
the values of the other variables are known, as opposed to when they are not known. The proposed measures include
arithmetic mean (λ(T )

a ), geometric mean (λ(T )
g ) and harmonic mean (λ(T )

h ). These measures are useful for analyzing the
table which explanatory and response variables are not defined. A point to notice is that the measure λ(T )

h cannot measure
the PRE when the variables are independent and/or any λ(T )

k (k = 1, . . . ,T ) is 0. In such a case, the measures λ(T )
a and

λ(T )
g should be used. It is difficult to discuss how to choose between three propositions: arithmetic, geometric or harmonic

mean. We recommend the use of λ(T )
a for the simple interpretation.

In addition, the measure Λ(T ), including λ(T )
a , λ(T )

g and λ(T )
h , is invariant under arbitrary permutations of the categories.

Therefore the measure is suitable for analyzing the data on a nominal scale, but it is possible for analyzing the data on an
ordinal scale because it only requires a categorical scale.
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Table 1. Frequency of occurrence of response patterns for the four machine design subtests (Goodman, 1975)

Response pattern
item Observed

A B C D frequencies
1 1 1 1 23
1 1 1 2 5
1 1 2 1 5
1 1 2 2 14
1 2 1 1 8
1 2 1 2 2
1 2 2 1 3
1 2 2 2 8
2 1 1 1 6
2 1 1 2 3
2 1 2 1 2
2 1 2 2 4
2 2 1 1 9
2 2 1 2 3
2 2 2 1 8
2 2 2 2 34

Total 137

Table 2. Estimates of the measures, approximate standard errors for them and approximate 95% confidence intervals for
the measures, applied to Table 1

Measures Estimated Standard Confidence
measure error interval

λ(4)
a 0.470 0.065 (0.343, 0.597)
λ(4)

g 0.469 0.066 (0.340, 0.597)
λ(4)

h 0.467 0.066 (0.337, 0.598)

42 ISSN 1927-7032 E-ISSN 1927-7040


