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Abstract 

The aim of this article is to describe so-called “edge effects” in the context of wavelet analysis. The problem of 

“edge effects” is displayed in cases where the filter length is greater than 2. This is due to the fact that the 

calculation of the wavelet coefficients for the development of the last signal of finite elements, the filter - should 

theoretically move beyond the signal. The article describes different ways to solve this problem using an 

authored approach. One of the ways presented in the article is an innovative approach in terms of “edge effects”. 

The author’s proposal is based on the nonlinear function of the trend after the division of the series into smaller 

units. The results obtained show that in comparison with other methods, the author’s method reduces errors. In 

this article, the Daubechies wavelet was used for the study. The Daubechies wavelets are a family of orthogonal 

wavelets, characterized by a maximum number of vanishing moments for a given support. 
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1. Introduction  

Wavelet analysis is becoming more and more applicable every year. It is used, among others, to denoise, 

compress data, recognize features, detect system non-linearity and so on (Daubechies, 1992; Meyer, 1998; 

Mallat, 2008; Luisier, Blu, & Unser, 2007; Melgani & Bazi, 2008; Addison, 2017). Due to the growing 

application possibilities and the expanding base of the wavelet family, it is becoming an ever more important 

issue. 

Waves are functions that oscillate over time, in space, or both. Wavelets are small waves of energy concentrated 

in a relatively short period of time. Wavelet analysis consists of decomposing the signal using wavelets obtained 

through translation and dilation of the mother wavelet. The wavelets are particularly useful for time-frequency 

analyzes of non-stationary series. 

Wavelet transformation is a transformation similar to the Fourier transform. Both transformations are based on the 

use of the scalar product of the examined signals (t) and the remaining part, called the “nucleus of transformation.” 

The main difference between these transformations is the nucleus (Istas & Lang, 1997; Kahane & Lemarié, 1995). 

In the case of wavelet transformation, the kernel is a wavelet - a special function limited by certain requirements 

that must be met in order to be used for so-called multiresolution analysis (eg. it must have a scaling function). 

There are infinitely many such functions, so there are infinitely many wavelet transformations. 

Wavelet transformation is suitable for the analysis of non-stationary signals because it provides time-frequency 

information. Often, it is used interchangeably with the Fourier transformation. The reason for this is that as a 

result of the wavelet transformation, we obtain information about the frequencies of only the individual spectral 

components of the signal with finite precision. This is because the transformation kernel (or function) does not 

represent an infinitely narrow frequency range, but a frequency range that is inversely proportional to the 

duration of the wavelet. “The wavelet transform is calculated as shifting the wavelet function in time along the 

input signal and calculating the convolution of them. In most practical applications, the signals of interest have 

finite support. As the wavelet gets closer to the edge of the signal, computing the convolution requires 

non-existent values beyond the boundary. This creates boundary effects caused by incomplete information in the 
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boundary regions. Thus, the results of wavelet transform in these boundary effects regions have questionable 

accuracy.” (Su, Liu, & Li, 2012) See also (Queiroz, 1992; Cohen & Daubechies 1993).  

Of course we can ignore inaccurate results at the edges, thus accepting the loss of data by cutting them down. 

However, this is a risky approach, because the data around the edges may contain relevant information. 

Therefore, a more favorable solution to the situation is to extend a series of data before processing it (Mallat, 

2008; Strang & Nguyen, 1998; Jiménez & Prelcic, 2004).  

2. Border Effect   

The edge effect in spectral estimation is well known. It hampers interpretation of the spectral estimates, and 

poses problems for situations where, for example, low frequency signals are to be analyzed from relatively short 

time serie, or real-time applications where the parts of data that are close to the edges, in particular the newest 

observations, are critical. Classical numerical methods have been devised to detal with the edge effect, for 

example data windowing. While these methods are often effective, there are always trade-offs in the form of a 

certain loss of information. The way the edge effect appears in the time-frequency wavelet spectrum is as 

follows. If one plots the time-frequency wavelet spectrum with the horizontal axis indicating time and the 

vertical axis indicating frequency, then only the spectral values within a U-shaped domain are not affected by the 

edge effect (...)” (Zheng, Chao, Zhou, & Yu, 2000). For signal processing with wavelet transform, a pair of filters 

forming the so-called analysis filter bank is used. In the case of filters whose length is greater than two, there is 

the problem of edge effects. This problem results from the fact that for the calculation of the wavelet coefficients 

of the development wavelets for the latest elements of the finite signal, the filter should move beyond the signal. 

This is not possible. Therefore various methods of signal extension are proposed (see chapter 3). The filtering 

part of the reconstruction process is also subject to some discussion as it is the choice of filters that is crucial in 

achieving perfect reconstruction of the original signal. The downsampling of the signal components performed 

during the decomposition phase introduces a distortion called aliasing. It turns out that by carefully choosing 

filters for the decomposition and reconstruction phases, which are closely related (but not identical), we can 

“cancel out” the effects of aliasing. The low- and high-pass decomposition filters (L and H), together with their 

associated reconstruction filters (L’ and H’), form a system of what is called quadrature mirror filters (see more 

in: Cohen, Daubechies, & Vial, 1993). 

3. Extending of the Time Series  

Various methods of extending the finite series are given in the literature (Hadaś-Dyduch, 2016b; Ferretti, Rizzo, 

2000; Cohen, Daubechies, & Jawerth, 1993; Strang & Nguyen, 1996). Each method has its advantages and 

disadvantages. The degree of emphasizing the advantages and disadvantages of the extension methods depends 

on many factors, one of them being the specificity of a research series. 

In the literature are suggests the following extension method the series (Hadaś-Dyduch, 2014b, 2017; Brislawn, 

1996; Cohen, Daubechies, & Jawerth, 1993; Strang & Nguyen, 1996; Nason & Silverman, 1995): 

 Zero-padding - this method is used in the version of the DWT given in the previous sections and assumes 

that the signal is zero outside the original support. The disadvantage of zero-padding is that discontinuities are 

artificially created at the border.  

 Symmetrization - this method assumes that signals or images can be recovered outside their original 

support by symmetric boundary value replication. Symmetrization has the disadvantage of artificially creating 

discontinuities of the first derivative at the border, but this method works well in general for images.  

 Smooth padding of order 1 - this method assumes that signals or images can be recovered outside their 

original support by a simple first-order derivative extrapolation: padding using a linear extension fit to the first 

two and last two values. Smooth padding works well in general for smooth signals.  

 Smooth padding of order 0 - this method assumes that signals or images can be recovered outside their 

original support by a simple constant extrapolation. For a signal extension this is the repetition of the first value 

on the left and last value on the right.  

 Periodic-padding (1) - this method assumes that signals or images can be recovered outside their original 

support by periodic extension.  

 Periodic-padding (2) - if the signal length is odd, the signal is first extended by adding an extra-sample 

equal to the last value on the right. Then a minimal periodic extension is performed on each side. The same kind 

of rule exists for images (Matlab; 

https://ch.mathworks.com/help/wavelet/ug/dealing-with-border-distortion.html?searchHighlight=extensions%20
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dwt&s_tid=doc_srchtitle).  

In this article, as a method to mitigate the edge effect, the following approach is suggested: 

1) Division of a series into sub-series. In the case of a series including seasonal variations, division of the main 

series according to seasonality is preferred. 

2) Estimating the non-linear trend function of each sub-series. Choose a line with the best fit from among the 

estimated trend lines . 

3) Selection of the dominant trend function among the estimated trend functions for the sub-series.  

4) The general form of the new series. 

5) Determination of the theoretical values based on the selected function.  

6) Save the new series: 

i. 



  





extensionseriesextension

ppppppppp nnnn 0121222210012
,,,,,,,,,,


 

7) Estimation of wavelet coefficients. 

8) Estimation of the approximating function. 

9) In the case of a small sample there is no need to divide the sample into smaller units. In this case, the next 

stage is the designation of the trend line. 

4. Empirical Research 

Details of the procedure for the proposed method for alleviating edge effects will be presented as applied to a 

randomly chosen series, shown in Figure 1. 

 

 
Figure 1. Data for analysis 

Source: Own elaboration. 

 

1) The series shown in Fig. 1 is not a very large sample. Thus, there is no need to divide the series into 

sub-series. 

2) The best approximating function for the series shown in Fig. 1 is a polynomial fourth degree function (Fig. 2). 

 

Figure 2. Time series and polynomial trend function 

Source: Own. 

y = -0.7877x4 + 20.854x3 - 134.1x2 - 63.252x + 54953 
R² = 0.7426 
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3) New series: 
  



  







seriesnew

extensionseriesprimaryextension

ffpppppff nnnn 0121222210012

ˆ,,ˆ,,,,,,,,ˆ


 

4) Determination of theoretical values based on the estimated trend function. The theoretical values are 

determined consecutively for t=0,1,2,3,4,…,N-1. We obtain:  

t 0 1 2 … N-1 

data 54774,6 54252,21 54300,47 … 53496,38 

theoretical values 54953 54775,71 54444,32 … 54336,66 

5) New series (pr) has the form:  

r -N -N-1 … -1 0 1 … N-1 N … 2N-1 

pr 54953 54775,71 … 54336,66 54774,6 54252,21 … 53496,38 54953 … 54336,66 

 

6) Determine the coefficients of wavelet, Daubechies wavelets (see more about Daubechies wavelet and 

Daubechies wavelet coefficients in (Cohen, Daubechies, & Vial, 1993; Daubechies, 1992; Hadaś-Dyduch 

2014a, 2015a, 2015b, 2015c, 2016a; Hadaś-Dyduch & Hadaś, 2017)) from:  
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Daubechies is a wavelet with a compact carrier. Changing the row of wavelets affects the change in coefficients 

describing it. From a practical point of view, it is not always the best solution to use higher order wavelets as the 

increase in the order implies that the system needs more calculations. Their most important feature is that the 

lower- and upper-pass filters have a finite length. Daubechies are available for every even filter length. The Haar 

wavelet is the simplest element of this family, it has the shortest filters, but it is discontinuous. As the length of 

the filters increases, the smoothness of the wavelets increases. 

7) Save the wavelet function - approximates, according to the formula: 

      12...12)(
~

1212 


nrarararf n   

Therefore, we have: 

      124293,54520...1808,5496523594,54176)(
~

 nrrrrf   
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Figure 3. Time series and wavelet function approximating 

Source: Own. 

 

5. Result of Empirical Research 

Expired error forecasts based on the author’s methods are as follows: ME: -31.8337; MAE: 397.2213; MAPE: 

0.7359%; RMSPE: 0.8988%. The coefficient of determination is 78.1053%.  

For comparison, using the Method 1 extension, the coefficient of determination is 2%, and the extinct forecast 

errors are the following: ME: 3383,4681; MAE: 3674,5250; MAPE: 6,8072%; RMSPE: 17,7102%.  

Using the authored algorithm for other time series as shown in Fig. 5, 6, 7, we obtain results which confirm that 

the author’s proposed method is correct (see Tab. 1, 2). 

 

Figure 4. Series 2 and trend function 

Source: Own. 

 

 

Figure 5. Series 3 and trend function 

Source: Own. 

wart. rzeczywiste f ( r )

y = 0.478x4 - 16.358x3 + 175.71x2 - 533.28x + 53358 
R² = 0.6681 

y = -1.0013x4 + 35.994x3 - 401.17x2 + 1244.6x + 52821 
R² = 0.7671 
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Figure 6. Series 4 and trend function 

Source: Own. 

 

Figure 7. Series 5 and trend function 

Source: Own. 

 

Table 1. Results approximation for the series 2, 3, 4, 5 with copyright extension.  

Error Series  2 Series  3 Series  4 Series 5 

MAPE 0,7365% 0,7197% 0,3952% 0,6258% 

RMSPE 0,8256% 0,9164% 0,5126% 0,9554% 

Source: Elaboration based on my own calculations. 

 

Table 2. Results approximation for the series 2, 3, 4, 5 with the extension of Method 1 

Error Series  2 Series  3 Series  4 Series 5 

MAPE 6.8464% 6.9015% 6.3955% 6.4798% 

RMSPE 17.717% 18.0174% 17.147% 17.417% 

Source: Elaboration based on my own calculations. 

 

In the research article, only the Daubechies wavelet was used. However, there are many families of orthogonal 

wavelet functions with different properties. The first is the family of Haar wavelets, historically the oldest since 

it was proposed as long ago as 1910 by the Hungarian mathematician Alfred Haar. An important advantage of 

this simplest wavelet system is the ease of demonstrating the idea of a discrete wavelet transform using it. The 

second of the selected wavelet families are the Daubechies wavelets (Daubechies, 1992; Hadaś-Dyduch, 2017; 

2017b). The further two families - also constructed by Daubechies – are modifications of the basic family of 

Daubechies wavelets: the Coiflet family and the Symlet family. Other wavelets known in the literature are: 

y = -1.1323x3 + 3.8294x2 + 165.34x + 51770 
R² = 0.9231 

y = 938.26ln(x) + 50101 
R² = 0.866 
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Battle-Lamair, Meyer, Morlet and Shannon. In practical applications, biorthogonal wavelets are also very 

popular. 

6. Conclusion  

The article presents an innovative approach in terms of “edge effects”. The author’s proposal is based on the 

nonlinear function of the trend after the division of series into smaller units. The results obtained show that in 

comparison with other methods the author’s method reduces errors. 

Further studies, may apply the proposed method for removing edge effects in wavelet analysis, for the analysis 

of the relationship between the different regions in the context of a multi-dimensional series, taking into account 

macroeconomic indicators and determining the best extension for related series. The study will use results from 

earlier studies, as well as some interesting methods used so far in other tests, for example (Akbalik & Tunay, 

2016; Hadaś-Dyduch, 2014a, 2015b).  
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