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Abstract 

We apply the Monte Carlo simulation algorithm developed by Broadie and Glasserman (1997) and the control 

variate technique first introduced to asset pricing via simulation by Boyle (1977) to examine the efficiency of 

American put option pricing via this combined method. The importance and effectiveness of variance reduction 

is clearly demonstrated in our simulation results. We also found that the control variates technique does not work 

as well for deep-in-the-money American put options. This is because deep-in-the-money American options are 

more likely to be exercised early, thus the value of the American options are less in line (or less correlated) with 

those of their European counterparts.   
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1. Introduction 

It is well known that there is no closed-form solution for pricing an American option on a stock. However, 

numerical methods have been developed to calculate the value of the option and the optimal exercise boundary; 

for example, binomial methods by Cox, Ross, and Rubinstein (1979); the method of Richardson extrapolation by 

Geske and Johnson (1984); Quasi-analytical solutions by Barone-Adesi and Whaley (1987); the quadratic 

method of Barone-Adesi and Whaley (1987); the accelerated binomial method of Breen (1991); multinomial 

methods of Boyle (1988); lower and upper bounds methods by Johnson (1983) and Broadie and Detemple 

(1996); finite difference methods by Brennan and Schwartz (1997, 1998); randomization technique by Carr 

(1998); and the multipiece exponential function by Ju (1998).   

In practice, many security pricing models involve three or more state variables. For example, options on foreign 

currencies and differential swaps involve modeling the uncertainty of exchange rates and the term structures of 

both domestic and foreign interest rates. For models with multiple state variables there are few, if any, analytical 

solutions for pricing these securities. However, numerical methods, in particular, simulation methods, are very 

viable approaches to analyzing these models. This is because simulation methods not only allow greater 

flexibility in the modeling of the state variables but also easy tracking of the complex path dependencies for 

early exercise decision in American-style options. 

Broadie and Glasserman (1996) developed a simulation method for estimating the prices of American-style 

securities. Their proposed algorithm is especially attractive in cases where there are multiple state variables and 

opportunities for early exercise. Because their method uses random sampling, rather than the enumeration 

implicit in lattice and finite-difference methods, it can be easily applied to models with multiple state variables 

and possible path dependencies. 

Since Broadie and Glasserman (1996), there have been studies proposing various simulation methods for pricing 

American-style contingent claims. All these numerical methods have a dual objective of accuracy and speed of 

computation, the latter of which is becoming a lesser issue these days due to the technological advance in 

computing power. Readers interested in the related literature review can refer to the survey article by Musshoff 

and Hirschauer (2010). 

The rest of the paper is organized as follows. Section 1 provides brief introduction to the related literature. 

Section 2 describes the method developed by Broadie and Glasserman. Section 3 discusses our implementation 

of Broadie and Glasserman’s method in conjunction with the control variate technique. Section 4 presents the 
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numerical results and conclusion. 

2. Description of the Method 

For the pricing of a European call option, the typical approach is to simulate the following expectation: 

C = E[e
-rT

max(ST-K,0)] under the risk-neutral measure                        (1) 

While for pricing an American call option, we are to find 

C = Maxt E[e
-rt

max(St-K,0)] over all stopping times t <= T                      (2) 

The main question is how to calculate this American option value based on the path of the stock price. This 

problem would be trivial if the optimal stopping policy were known. In that case, the option value would simply 

be e
-rt

max(St-K,0). Unfortunately, the optimal stopping policy is not known, so it must also be determined along 

with the simulated paths. Therefore, the problem with the Monte Carlo estimate for American-style option is that 

the estimate is based on the “perfect hindsight” and is prone to overestimating the true value of the option.   

Broadie and Glasserman (1997) circumvent the aforementioned problem by generating two estimates of the 

option price based on simulations of future projections and increasingly fine-tuned approximations to the early 

exercise decisions. They create two estimates which are both asymptotically unbiased and converge to the true 

price. One estimate is biased high while the other is biased low. By combining these two estimates, they obtain a 

valid confidence interval for the true price of the option:   

Their high estimator  is defined recursively by 
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   for t = 0, … , T-1        (3) 

where i's denote different assets 

ht (s) is the payoff from exercise at time t in state s. 

b = the number of branches at each node. 

Their low estimator  is defined recursively by 
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for j = 1, …, b 

Then let 
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   for t = 0, …, T-1                        (5) 

3. Implementation 

The implementation of our study is undertaken using Matlab program. Our Matlab codes are available upon 

request. Follow the depth-first procedure suggestion by Broadie and Glasserman (1997), the storage 

requirements for this algorithm are minimal, especially with the much increased computer capacity these days. 

3.1 Monte Carlo Simulation 

Assume the stock price follows a geometric Brownian motion process. Specifically, assume that the risk 

neutralized price of the stock, St, follows the stochastic differential equation 

dSt = St [(r-)dt + dZt]                                  (6) 

where Zt is a standard Brownian motion process. Under the risk neutral measure, and ln(Si/Si-1) is normally 

distributed with mean (r--
2
/2)*(ti-ti-1) and variance 

2
(ti-ti-1). 

Given Si-1, a discrete time approximation to Si can be simulated using 

  Si = Si-1 exp[ (r--2
/2)*(ti-ti-1) + 1-ii t-t  z]                           (7) 

where Z is a standard normal random variable. 

3.2 Variance Reduction Technique 

Any Monte Carlo simulation involves variation in the estimates due to sampling error. The goal of variance 
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reduction is to improve the computational efficiency of Monte Carlo simulations. There are a number of variance 

reduction techniques, such as antithetic variates, control variates, moment matching methods, stratified and Latin 

hypercube sampling, important sampling, conditional Monte Carlo, and low-discrepancy sequences 

(quasi-random sequences). In this paper, we apply the control variate technique to our Monte Carlo simulations. 

In general, the control variate technique can lead to very substantial error reductions, but its effectiveness hinges 

on finding a good control for each problem. More specifically, a good control variate is the one that is highly 

correlated with the original estimator. In our case of pricing an American put option, a naturally good candidate 

for the control variate is the European put option under the same terms. Note that the higher the correlation 

between the control variate and the original estimator, the more effective is this technique. In fact, the correlation 

must be high enough to offset the variance of the additional estimator introduced by the control variate technique. 

This theoretical prediction can be seen in the numerical results shown in Table 1 shown in the next section.    

4. Results and Conclusion 

Table 1 shows the numerical results from our analysis. The benchmark "true" value for comparison is the 

estimate from binomial model with large time steps (N), as it is known that the binomial estimate converges to 

true value in the limit. The relative errors are used to measure the overall accuracy of the across time steps and/or 

options. The importance and effectiveness of variance reduction is clearly demonstrated in our results. Moreover, 

alternative variance reduction techniques, besides the control variates method examined in this paper, could be 

incorporated to the Monte Carlo method to further improve the efficiency of the pricing method. Notice that the 

control variates technique does not work as well for deep-in-the-money options. This is because 

deep-in-the-money American options are more likely to be exercised early, thus the value of the American 

options are less in line (or less correlated) with those of their European counterparts.   

 

Table 1. Relative pricing error with and without control variate 

Model Specification and Parameters 

American Put Option on a Single Asset 

K=100      r=0.08      q=0.12       sigma=0.2        T=3 

Without Control Variate 

 

With Control Variate 

 

 

 

Figure 1. Confidence bands for the option value from Table 1 with control variate 

Stock Price low p sd high p sd lower CB upper CB point P TRUE Relative Error

80 24.5941 1.4272 25.1106 1.4518 24.1985 25.5130 24.8524 25.6577 3.1%

90 18.6027 1.2826 19.0078 1.3382 18.2472 19.3787 18.8053 20.0832 6.4%

100 13.2266 1.2992 13.7632 1.3792 12.8665 14.1455 13.4949 15.4981 12.9%

110 9.6895 1.0119 9.8983 1.0814 9.4090 10.1980 9.7939 11.8032 17.0%

120 6.8045 1.0044 6.9433 0.8524 6.5261 7.1796 6.8739 8.8856 22.6%

Stock Price low p sd high p sd lower CB upper CB point P TRUE Relative Error

80 24.5941 1.4272 26.9087 0.1714 24.1985 26.9562 25.7514 25.6577 0.4%

90 18.6027 1.2826 21.0846 0.1311 18.2472 21.1209 19.8437 20.0832 1.2%

100 13.2266 1.2992 16.238 0.1175 12.8665 16.2706 14.7323 15.4981 4.9%

110 9.6895 1.0119 12.3508 0.0877 9.4090 12.3751 11.0202 11.8032 6.6%

120 6.8045 1.0044 9.2695 0.0629 6.5261 9.2869 8.0370 8.8856 9.6%
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