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Abstract 
In this paper, we aim at comparing semi-parametric method, LSSVM (Least square support vector machine), with the 
classical GARCH(1,1), EGARCH(1,1) and GJR(1,1) models to forecast financial volatilities of three major ASEAN stock 
markets. More precisely, the experimental results suggest that using hybrid models, GARCH-LSSVM, 
EGARCH-LSSVM and GJR-LSSVM provides improved performances in forecasting the leverage effect volatilities, 
especially during the recently global financial market crashes in 2008. 
Keywords: Least squared support vector machine, Forecasting Volatility, GARCH, EGARCH, GJR. 
1. Introduction 
Time series method plays a vital role in financial areas, particularly volatility modeling and forecasting. Most of the 
financial researchers and practitioners are mainly concerned with modeling volatility in asset returns. In this context, 
volatility is the variability in the asset prices over a particular period of time. It refers to the standard deviation of the 
continuously compounded returns of a financial instrument with a specific time horizon. It is often used to quantify the 
risk of the instrument over that time period. Investors want a premium for investing in risky assets. A risk manager must 
know today the likelihood that his portfolio will decline in the future and he may want to sell it before it becomes too 
volatile. Therefore, the ability to forecast financial market volatility is important for portfolio selection and asset 
management as well as the pricing of primary and derivative assets. Researches on time varying volatility using the time 
series models have been active ever since Engle introduced the ARCH (autoregressive conditional heteroscedasticity) 
model in 1982. Since its introduction, the GARCH model generalized by Bollerslev (1986) has been extended in 
various directions. Several extensions of the GARCH model aimed at capturing the asymmetry in the response of the 
variance to a shock. These extensions recognize that there may be important nonlinearity, asymmetry, and long memory 
properties in the volatility process as suggested by various researchers based on empirical evidences. The popular 
approaches can be referred to Exponential GARCH model by Nelson (1991) as well as the GJR model by Glosten, 
Jaganathan, and Runkle (1993) which both account for the asymmetric relation between stock returns and changes in 
variance; see Black (1976) the beginning study of the asymmetric effect; Engle and Ng (1993) for further discussion. 
Other models such as APARCH, AGARCH, TGARCH and QGARCH models have also been developed (by Ding, 
Granger and Engle (1993); Engle (1990); Zakoian (1994) and Sentana (1995)) for the flexibility of the models. 
However, all of the models do require specified distribution of innovations in order to estimate the model specification 
and to appropriately forecast future values. One of the most classic one is Gaussian process and it is widely used in most 
of literature; but other distributions of innovations are also attracted after the empirical studies of modeling returns have 
shown the violation of normality conditions. For example, Student’s t distribution by Bollerslev (1987), GED in Nelson 
(1991), Granger and Ding (1995) for the Laplace distribution and Hsieh (1989) for both Student’s t and GED as 
distributional alternative models for innovations.  The researches have found that returns usually exhibit empirical 
regularities including thick tails, volatility clustering, leverage effects (Bollerslev et al,1994).  
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Semi-parametric approaches do not require any assumptions on data property (i.e. return distribution). These models 
have been successfully shown for modeling and forecasting time series, including volatility. One of them is NN (neural 
network) and it is a powerful tool for prediction problems due to their best ability to estimate any function arbitrary with 
no priori assumption on data property (Haykin, 1999). Donaldson and Kamstra (1997) proposed neural network to 
model volatility based GJR-GARCH; their hybrid approach captured asymmetric effects of new impact well like 
parametric model and also generated better forecasting accuracy. Bildirici & Ersin(2009) fitted neural network based on 
nine different models of GARCH family such as NN-GARCH, NN-EGARCH, NN-TGARCH, NN-GJR, 
NN-SAGARCH, NN-PGARCH, NN-NGARCH, NN-APGARCH, and NN-NPGARCH to forecast Istanbul stock 
volatility and most of the hybrid models improved forecasting performance. This indicates that the hybrid model is also 
able to capture the stylized characteristics of return. Another efficient (semi-parametric) model is SVM (support vector 
machine) originally introduced by Vapnik (1995). The SVM, a novel neural network algorithm, guarantees to obtain 
globally optimal solution (Cristianini & Shawe-Taylor, 2000), and hence it solves the problems of multiple local optima 
in which the neural network usually get trapped into. Perez-Cruz et al (2003) predicted GARCH(1,1) based volatility by 
SVM and the proposed model yielded better predictive capability than the parametric GARCH(1,1) model for all 
situation. Chen et al (2008) developed recurrent SVM as a dynamic process to model GARCH(1,1) based volatility. The 
experimental results with simulated and real data also showed the model generated better performance than MLE 
(maximum likelihood estimation) based GARCH model. More applications of SVM in GARCH prediction based on 
different kernels, wavelet and spline wavelet can be referred to Tang et al (2008, 2009).  
Another version of SVM is LSSVM (Least squares support vector machine), modified by Suykens et al (1999). The 
SVM algorithm requires Epsilon insensitive loss function to obtain convex quadratic programming in feature space, 
while LSSVM just uses least square loss function to obtain a set of linear equations (Suykens, 2000) in dual space so that 
learning rate is faster and the complexity of calculation in convex programming in SVM is also relaxed. In addition, the 
LSSVM avoids the drawback faced by SVM such as trade-off parameters ( ,, 2C ) selection, instead it requires only 
two hyper-parameters ),( 2 while training the model. According to Suykens et al (2001), the equality constraints of 
LSSVM can act as recurrent neural network and nonlinear optimal control. Due to these nice properties, LSSVM has 
been successfully applied for classification and regression problems, including time series forecasting. See Van Gestel 
et al (2004) for detailed discussion on classification performance of LSSVM and Ye et al (2004) for predictive 
capability of LSSVM in chaotic time series prediction. Van Gestel et al (2001) proposed to predict time varying 
volatility of DAX 30 index by applying Bayesian evidence framework to LSSVM. The volatility model is constructed 
based on inferred hyperparameters of LSSVM formulation within the evidence framework. The proposed model provided 
a better predictive performance than GARCH(1,1) and other AR(10) models in term of MSE and MAE.  
In this paper, we aim at comparing the LSSVM method with the classical GARCH(1,1), EGARCH(1,1) and GJR(1,1) 
models to forecast financial volatilities of ASEAN stock markets as a new concept to be investigated. The hybrid models 
denoted as GARCH-LSSVM, EGARCH-LSSVM, and GJR-LSSVM are constructed by using lagged terms as input and 
present term as output which corresponds to the parametric models. The hybrid models are not the same as the volatility 
model proposed by Van Gestel et al (2001) but they are similarly built according with the results by Donaldson & 
Kamstra (1997) and Bildirici & Ersin(2009) with neural network approach, and Perez-Cruz et al (2003) with SVM 
method. In our experiment, we consider two stage forecasts for the whole year 2007 as first period and 2008 as the second 
stage which cover global financial crisis period. Several metrics MAD, NMSE, HR, and linear regression R squared are 
employed to measure the model performances. The paper is organized as follows. Next section briefly reviews LSSVM 
formulation. Section 3 discusses volatility modeling of hybrid models based on GARCH, EGARCH and GJR. Section 4 
illustrates the experimental results and the final section is about the conclusion.  
2. Least squared support vector machines 
In LSSVM formulation, the data are generated by nonlinear function iii exfy )(  for Ni ,,1  which may be 
approximated by another nonlinear function  
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subject to the constraints 
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Here the equality constraint is used in LSSVM instead of the inequality constraint in SVM. Lagrangian can be defined to 
solve the above minimization problem as 
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where i  denotes Lagrange multipliers (also called support values). From the Karush-Kuhn-Tucker (KKT) theory, a 
system of equations is obtained as the following 
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Note that sparseness is lost from the condition ii e . By eliminating w and ie , the following linear system is written 
as  follow 

y
b

D

T
v

v

01
1
0

1        (5) 

where ],,[ 1 Nyyy , ]1,,1[1v , ],,[ 1 Neee , ],,[ 1 N , ]),,([diag 1 ND .

Matrix ),()()( jij
T

iij xxKxx  for Nji ,,1, satisfies Mercer’s condition and the LS-SVM model for 
estimating function is obtained as  
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(.,.)K is the Mercer’s kernel function representing the high-dimensional feature space that nonlinearly mapped from the 
input space. In this work, Gaussian kernel or RBF(radial basis function) is used as it tends to give a good performance 
under general smoothing assumptions. The kernel is defined as )exp(),( 2

21
1
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regularized parameters ),( 2  are tuned by gridsearch technique to avoid overfiting problem. Matlab toolbox is used 
in the whole experiment.  
3. Predictive model of volatility 
3.1 Model building 
Let tP  be the stock price at time t . Then  

)/(log.100 1ttt PPy          (7) 

denotes the continuously compounded daily returns of the particular stock at time t .

Let 1tF be the past information set available up to time 1t ; this information set contains the realized values of all 
previous relevant variables. The expected return at time t  after observing the past information up to 1t  defined as  

)(]/[ 11 tttt FfFyE .        (8) 

The volatility to investors investing in the particular stock at time 1t  is denoted as follow 

)(]/[ 11
2
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where (.)f and (.)h are well defined functions with 0(.)h .

Then the return of stock ty  can be modelled  

ttty           (10) 
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and ttt z.  where tz is (iid) independent identically distributed random variables with mean 0 and variance 1. It is 
common to assume 0t  so that square return in (10) is obtained to be the shock squared, 

2222
tttt zy .          (11) 

Here, we aim at estimating volatility (or conditional variance of return) in (9) by kernel regression (called 
semi-parametric method) based on parametric models of GARCH, EGARCH and GJR. One particular approach of the 
kernel regression is LSSVM(least square support vector machine) presented in the previous section.  
LSSVM approximates GARCH(1,1)  
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by nonlinear function obtained from the LSSVM algorithm, 
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Similarly, the hybrid model estimates EGARCH(1,1)  
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expectation )/( 11 ttE  is estimated by its corresponding average (or mean) value so that specified distribution on 
innovation (or return in this case) is not required.  
Finally, the GJR-LSSVM obtains GJR(1,1)  
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where 11tS if 01t  and 0 otherwise. So 2
11 ttS is the squared value of negative shock at 1t .

Here 24
05

12ˆ ktkt y  suggested by Perez-Cruz (2003), and the function (.)h is obtained by LSSVM algorithm in 
(6).  
3.2 Forecasting 
Out of sample forecasts by the hybrid models are obtained as follow: 

),( 222
1 ttt h   for GARCH-LSSVM from (13),  

)/,])/(/[,(logexp 22
1 tttttttt Eh  for EGARCH-LSSVM from (15) and  
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4. Experimental Analysis  

We examine three stock price indexes from three major ASEAN stock markets including Straits time index of 
Singapore stock market, PSEI of the Philippines and KLCI of Kula Lumpur stock market. Each stock index price is 
collected from Yahoo Finance website and is transformed into log return as in (7) before making analysis. Table 1 reports 
the in-sample and out-of-sample periods of each market for two stages, basic statistics of the data and diagnostics. From 
the Table 1, we see that mean of all returns is close to zero. Two indexes KLCI and PSEI have positive skewed returns 
while STI produce negative skewed coefficient. The excess kurtosis appears in all series and the largest is from KLCI 
(54.152). The Jarque Bera statistics strongly suggest that all returns are non normal. Ljung Box test for squared return at 
lag 20 and Engle LM test significantly indicate all return series exhibit ARCH effects; that means the homoscedasticity 
hypothesis is strongly rejected. This shows the presence of volatility clustering and the leverage effects that could be 
caused by the excess kurtosis. Figure 1 plots price and log return of each index series for the entire sample. Though 
movement of the index prices of the three markets is almost in similar direction, the returns behave differently. From 
the plots, we can see some high volatility on log return series after financial crisis in ASEAN in 1997 and during the 
recent crisis of global market crashes; this is obviously seen that the plots of each stock price fall down sharply during 
2008.  
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4.1 Estimation results  
Three parametric models GARCH, EGARCH and GJR are fitted to all return series by (12), (14) and (16) respectively. 
Each model is estimated twice for each market return as first stage and second stage estimations with updating 
in-sample.  
Table 2.A, 2.B, and 2.C present the model parameters and their corresponding standard errors in brackets. The 
stationary conditions of the models hold for all series. Furthermore, significance of negative leverage coefficients in 
EGARCH and positive leverage coefficients of the corresponding GJR indicate the presence of asymmetric effects to 
the returns for both stages which may be caused by global financial crisis. By log likelihood, AIC and BIC criteria in 
Table 2.A and 2.C, GJR model is more adequate to the both stage estimations of STI and PSEI returns. For the KLCI 
return in Table 2.B, the GJR model fits well to the in-sample data at the first stage but the second stage estimation data 
is favour to EGARCH model according to the log likelihood, AIC and BIC.  
Now we proceed to estimation results obtained from training the least square support vector machine. First, return series 
from all indexes are transformed into input and output format and then get them trained by LSSVM algorithm in (6) so 
as to get the estimated nonlinear function in (13) for GARCH hybrid, (15) for EGARCH case and (17) for GJR model. 
The training results are summarized in Table 3.A and 3.B for first and second stages respectively. Each second column 
of the table 3.A and 3.B shows the costs of training measured by the mean square errors. The third and fourth columns 
display the optimal regularized parameters and optimal kernel parameters obtained by gridsearch technique while 
training. The last column tells the bias term of resulted function obtained by the LSSVM.  
From the first stage of the cost column in STI index, smallest cost falls to GARCH-LSSVM and the largest value goes 
to EGARCH-LSSVM. For KLCI series, GJR-LSSVM generates the least cost and the largest cost is from 
GARCH-LSSVM, but these errors are not far from one another. Finally, PSEI series produces the smallest error to 
EGARCH-LSSVM and the error is a bit far from the errors driven by GARCH-LSSVM and GJR-LSSVM.  
In the second stage, training mean square error for STI and PSEI are analogue to the mean square errors for STI and 
PSEI in the first stage respectively; that is the STI is in favour with GARCH-LSSVM and PSEI produces the smallest 
cost while getting trained by EGARCH-LSSVM. For Kula Lumpur stock market, GARCH-LSSVM gives the smallest 
cost, but EGARCH-LSSVM still produces the highest value of cost like before. In the next section, these hybrid models 
will be performed to forecast volatility of the three markets and also be compared with the parametric approaches 
estimated in the previous section.  
4.2 Forecasting results 
The following Evaluation metrics are used to measure the performance of proposed models in forecasting of the three 
different stock markets volatilities. They are Mean Absolute Deviation (MAD), Normalized Mean Square Error(NMSE) 
and Hit Rate (HR) which defined as the following:  

MAD 
n

t
tt pa

n 1

1 ,    NMSE
n

t
tt pa

ns 1

2
2 )(1  where 

n

t
ttn aas

1

2
1

12 )( .     

HR
n

t
td

n 1

1  where 
otherwise0

0))((1 11 tttt
t

ppaa
d     

Here 2
tt ya actual values and 2ˆttp forecasted volatility. Here 1nn .

We also use linear regression to evaluate the forecasting performance of the volatility model. We simply regress square 
returns on a constant and the forecasted volatility for out-of-sample time point, nt ,...,2,1 , ttt eccy 2
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t-statistic of the coefficients is a measure of the bias and the square correlation 2R is a measure of forecasting 
performance. In this regression, the constant term 0c should be close to zero and the slope 1c  should close to 1. Table 
4.A and 4.B illustrate forecasting performances by different models for each market. The MAD, NMSE, HR and R 
squared with c0 and c1 are shown in the second to seventh columns.  
First stage for 2007:  
Beginning with STI series, the hybrid approaches perform better than parametric models for almost all metrics: MAD, 
NMSE, HR, and R squared. Only R squared criterion is in favour to EGARCH model that generates the highest value. 
Among all the models, EGARCH-LSSVM is best at a predictive performance because it provides highest HR (0.8273), 
smallest values of MAD and NMSE and it also satisfies to (c0 and c1) values which are not far from (0 and 1) 
respectively. Now by considering Kula Lumpur market, based on MAD and NMSE, the hybrid models are much better 
but in term of HR and R squared some semi-parametric models especially EGARCH-LSSVM is unable to defeat its 
counterpart, EGARCH. The KLCI return is well modelled by EGARCH like STI case since it generates least NMSE, 
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highest R squared and HR among the others. Looking at c0 and c1 criteria, the hybrid models are more satisfied than the 
parametric approaches. For PSEI, the semi-parametric models are superior to the parametric models for all cases.  
Second stage for 2008:  
The STI return series is well forecasted by EGARCH model like its previous performance in the first stage forecast due 
to the highest values of HR and R squared, which can be seen from the Table 4.B. For the other formed GARCH and 
GJR, LSSVM is better than the parametric models. From the Table 4.B, the values of c0 and c1 of EGARCH model 
(with values -3.72, 2.25), though generated best performance, deviate far from the appropriate norm (0, 1) respectively 
due to the global financial market crashes. However, EGARCH-LSSVM and other LSSVMs are more resistant in 
forecasting performance to the crashes since their c0 and c1 are not much far from 0 and 1 respectively. For KLCI and 
PSEI, hybrid approaches beat all parametric models for all criteria and EGARCH-LSSVM is superior among the others. 
These evidences can argue that LSSVM is more robust than the parametric models in forecasting volatility in spite of 
the high volatile situation during the global financial market crashes. Figures 2, 3, & 4 plot the out of sample forecasts 
by parametric models of GARCH, EGARCH and GJR and the corresponding hybrid models for STI, KLCI and PSEI 
respectively. From the plots, the forecast lines by hybrid models capture more extreme points than the parametric 
models do and therefore they improve forecasting performance. Noticeably, the LSSVM algorithm here has not been 
imposed the sparsity and robustness conditions proposed by Suyken et al (2002).  
5. Conclusion 
In this paper, we combine Least square support vector machine (LSSVM) with GARCH(1,1), EGARCH(1,1) and 
GJR(1,1) models as a hybrid approach to forecast leverage effect volatility of ASEAN stock markets. To check the 
performance of the proposed models, we employ the corresponding parametric models to compare with the hybrid 
models. The forecasts are conducted twice in which the whole year 2007 is treated as the first stage and the second 
stage is for 2008 including the recent global financial crisis period. From the experimental results, it is found that the 
hybrid models are resistant and robust to the high volatile situation of the financial market crashes and hence they 
generate improved forecasting performance. This supports the general idea that LSSVM is the promising machine 
learning system which is good at estimating nonlinear function without assumptions on data property in time series 
applications.
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Table 1. Descriptive statistics of each return series 

 STI KLCI PSEI 
In-sample (1st stage) 1/2/1998 - 12/29/2006 1/2/1998 - 12/29/2006 1/2/1998 - 12/29/2006 
Out of sample(1st stage) 1/3/2007 - 12/31/2007 1/3/2007 - 12/31/2007 1/2/2007 - 12/28/2007 
In-sample (2nd stage) 1/4/1999 - 12/31/2007 1/4/1999 - 12/31/2007 1/4/1999 - 12/28/2007 
Out of sample(2nd stage) 1/2/2008 - 12/31/2008 1/2/2008 - 12/31/2008 1/2/2008 - 12/24/2008 
Total sample size 2756 2709 2715 
Minimum -9.215 -24.15 -13.08 
Maximum 12.87 20.81 16.177 
Mean 0.005 0.015 -0.0003 
Median 0.022 0.022 -0.013 
Variance 2.219 2.395 2.573 
Stdev 1.489 1.547 1.604 
Skewness -0.060 0.555 0.456 
Kurtosis 7.1018 54.152 11.503 
JBa 5805 331658 15091 
Q2(20)b 1443.1 1426.1 227 
ARCH-LMc 372.30 777.28 95.02 

Note:  
  aJB is the Jarque Bera test for normality 

   bQ2(20) is the Ljung-Box test for squared returns 
   cARCH-LM is the Engle’s Lagrange Multiplier test for conditional heteroskedasticity with 12 lags

Table 2.A. MLE estimation of the Parametric models for Straits times index

STI First stage Second stage 
Statistics GARCH EGARCH GJR GARCH EGARCH GJR 

 0.066[0.01]* 0.079[0.02]* 0.044[0.02]** 0.071[0.01]* 0.105[0.02]** 0.052[0.02]* 
 0.016[0.00]* 0.064[0.00]* 0.016[0.00]* 0.016[0.00]* 0.048[0.00]* 0.017[0.00]* 
 0.123[0.00]* 0.416[0.02]** 0.076[0.01]* 0.109[0.00]* 0.349[0.03]* 0.073[0.01]* 
 0.876[0.00]* 0.915[0.00]* 0.880[0.00]* 0.886[0.00]* 0.918[0.01]* 0.886[0.00]* 
  -0.067[0.01]* 0.082[0.01]*  -0.051[0.01]* 0.070[0.01]* 

LL -3550 -3589 -3.538 -3406 -3427 -3397 
AIC 7109 7189 7.087 6820 6864 6805 
BIC 7132 7218 7.116 6843 6893 6833 

Note:    Values in bracket [  ] indicates standard error of estimates;     LL denotes Log likelihood values. 
         *  significant at the 1% level , ** significant at 5% level. 

Table 2.B. MLE estimation of the Parametric models 
KLCI First stage Second stage 
Statistics GARCH EGARCH GJR GARCH EGARCH GJR 

 0.043[0.01]* 0.011[0.02] 0.032[0.01] 0.052[0.01]* 0.041[0.01]* 0.041[0.01]* 
 0.010[0.00]* 0.074[0.00]* 0.010[0.00]* 0.008[0.00]* 0.006[0.00]* 0.009[0.00]* 
 0.124[0.00]* 0.535[0.00]** 0.090[0.00]* 0.105[0.00]* 0.249[0.01]* 0.080[0.00]* 
 0.875[0.00]* 0.921[0.00]* 0.876[0.00]* 0.893[0.00]* 0.977[0.00]* 0.888[0.00]* 
  -0.013[0.01]* 0.065[0.01]*  -0.045[0.00]* 0.059[0.01]* 

LL -3148 -3191 -3140 -2862 -2842 -2855 
AIC 6305 6392 6291 5733 5694 5720 
BIC 6327 6421 6319 5756 5722 5749 

Note:    Values in bracket [  ] indicates standard error of estimates;     LL denotes  Log likelihood values. 
             *  significant at the 1% level , ** significant at 5% level. 
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Table 2.C. MLE estimation of the Parametric models 

PSEI First stage Second stage 
Statistics GARCH EGARCH GJR GARCH EGARCH GJR 

 0.017[0.02] 0.018[0.02] 0.003[0.02] 0.030[0.02] 0.029[0.02] 0.018[0.02] 
 0.125[0.01]* 0.038[0.00]* 0.094[0.01]* 0.214[0.03]* 0.050[0.00]* 0.212[0.03]* 
 0.130[0.00]* 0.217[0.00]* 0.074[0.00]* 0.125[0.02]* 0.204[0.00]** 0.067[0.00]* 
 0.821[0.01]* 0.964[0.00]* 0.853[0.00]* 0.769[0.01]* 0.936[0.01]* 0.782[0.02]* 
  -0.036[0.00]* 0.073[0.01]*  -0.040[0.00]* 0.086[0.01]* 

LLe -3873 -3870 -3866 -3764 -3760 -3757 
AIC 7755 7751 7743 7537 7530 7525 
BIC 7778 7780 7771 7560 7559 7.553 

Q2(20)f       
Note:    Values in bracket [  ] indicates standard error of estimates;     LL denotes  Log likelihood values. 
          *  significant at the 1% level , ** significant at 5% level. 

Table 3.A. Training results by LSSVM for 1st stage 

STI Cost (MSE)* Optimal Gamma** Optimal Sigma2** b*** 
GARCH-LSSVM 0.2744 1089.0387 4.7055891 7.1706 
EGARCH-LSSVM 0.5879 82.465645 1302.1078 4.8840 
GJR-LSSVM 0.2904 4515.4671 79.336258 23.9096 
KLCI     
GARCH-LSSVM 0.7295 2220.5867 40.007163 7.0168 
EGARCH-LSSVM 0.7528 164.14558 1671.9517 4.0787 
GJR-LSSVM 0.7002 3735.476 556.81488 12.7939 
PSEI     
GARCH-LSSVM 0.5201 199.5209 599.4858 6.6127 
EGARCH-LSSVM 0.2476 39.5453 11.5295 -0.0515 
GJR-LSSVM 0.5571 170.6817 513.466 6.4879 
    *Cost of estimation by MSE measure. 
    ** Optimal parameters (Gamma and Sigma2) selected by gridsearch technique.  
*** b is the intercept value of the function estimated by LSSVM. 

Table 3.B. Training results by LSSVM for 2st stage

STI Cost (MSE)* Optimal Gamma** Optimal Sigma2** b*** 
GARCH-LSSVM 0.3687 913.3114 1129.7975 -5.9924 
EGARCH-LSSVM 0.4471 67.14207 1595.4792 4.6035 
GJR-LSSVM 0.4119 1058.6892 1505.9648 -8.9199 
KLCI     
GARCH-LSSVM 0.1524 884.44825 1783.175 -4.9433 
EGARCH-LSSVM 0.5327 81.229819 1362.0289 3.8441 
GJR-LSSVM 0.1898 1097.5405 1726.0707 1.1409 
PSEI     
GARCH-LSSVM 1.6928 53.014923 1372.0333 3.6325 
EGARCH-LSSVM 0.2825 7966.3458 203.42274 -16.0069 
GJR-LSSVM 1.8074 57.086861 1591.2148 3.0683 
    *Cost of estimation by MSE measure. 
    ** Optimal parameters (Gamma and Sigma2) selected by gridsearch technique.  
*** b is the intercept value of the function estimated by LSSVM. 
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Table 4.A. Forecast performances of ASEAN stock volatilities by different models for 2007 
STI MAD NMSE 0c 1c 2R HR
GARCH 1.78136 0.74299 -0.81[-2.41] 1.35[09.60] 0.2710 0.76305 
GARCH-LSSVM 1.66240 0.72658 -0.04[-0.15] 1.01[09.51] 0.2676 0.79919 
EGARCH 1.61913 0.59971 -1.85[-6.52] 1.80[15.66] 0.4970 0.78714 
EGARCH-LSSVM 1.51584 0.60361 -0.56[-2.32] 1.44[13.80] 0.4347 0.82730 
GJR 1.77206 0.73001 -0.82[-2.50] 1.35[09.94] 0.2850 0.73493 
GJR-LSSVM 1.63353 0.62262 -0.42[-1.66] 1.21[12.44] 0.3843 0.78714 

KLCI MAD NMSE 0c 1c 2R HR
GARCH 1.05754 0.69884 -0.39[-2.03] 1.26[10.54] 0.3100 0.70161 
GARCH-LSSVM 0.91449 0.50993 -0.15[-1.11] 1.06[15.36] 0.4887 0.79435 
EGARCH 1.00633 0.46063 -0.91[-6.34] 1.36[19.31] 0.6020 0.83467 
EGARCH-LSSVM 0.83636 0.49243 -0.27[-2.03] 1.34[17.05] 0.5407 0.81451 
GJR 1.06043 0.66277 -0.33[-1.87] 1.19[11.34] 0.3430 0.73387 
GJR-LSSVM 0.96051 0.56356 -0.05[-0.37] 1.00[13.71] 0.4323 0.68548 

PSEI MAD NMSE 0c 1c 2R HR
GARCH 2.67548 1.01961 -2.61[-4.16] 1.97[11.42] 0.3490 0.74590 
GARCH-LSSVM 2.47743 0.58031 -0.74[-1.61] 1.27[13.69] 0.4355 0.79508 
EGARCH 2.63377 1.03119 -3.38[-4.39] 2.33[09.70] 0.2790 0.74590 
EGARCH-LSSVM 2.36726 0.60253 -0.70[-1.52] 1.40[13.54] 0.4303 0.77868 
GJR 2.63297 1.03151 -2.47[-3.82] 1.90[10.73] 0.3220 0.71721 
GJR-LSSVM 2.49653 0.60887 -0.58[-1.22] 1.22[12.72] 0.3999 0.78688 
Note: higher R squared and HR is preferred, while smaller values of MAD and NMSE indicate the forecasted volatility is closer to the actual 
values. The coefficients of c0 and c1 should be close to (0, 1) respectively showing small forecasting errors.  

Table 4.B. Forecast performances of ASEAN stock volatilities by different models for 2008
STI MAD NMSE 0c 1c 2R HR
GARCH 4.40025 0.69094 -1.08[-1.34] 1.22[10.51] 0.3142 0.73140 
GARCH-LSSVM 3.63287 0.51329 -1.42[-2.34] 1.45[16.72] 0.5371 0.76446 
EGARCH 3.72500 0.60189 -3.72[-5.72] 2.25[18.38] 0.5839 0.78099 
EGARCH-LSSVM 3.63715 0.58018 -1.32[-2.08] 1.62[15.47] 0.4985 0.77685 
GJR 4.46939 0.66002 -1.05[-1.35] 1.14[11.16] 0.3407 0.72727 
GJR-LSSVM 3.65591 0.52521 -1.37[-2.21] 1.43[16.20] 0.5213 0.77272 

KLCI MAD NMSE 0c 1c 2R HR
GARCH 2.05590 0.81824 -1.38[-2.45] 1.65[8.01] 0.2079 0.71951 
GARCH-LSSVM 1.72023 0.77390 -0.35[-0.77] 1.28[8.59] 0.2316 0.78861 
EGARCH 1.90105 0.78319 2.05[9.89] -1.98[-3.69] 0.2857 0.78455 
EGARCH-LSSVM 1.62305 0.66531 -0.75[-1.89] 1.64[12.56] 0.3918 0.80081 
GJR 2.14153 0.78378 1.42[8.60] -1.21[-2.30] 0.2323 0.73170 
GJR-LSSVM 1.69754 0.74259 -0.57[-1.27] 1.39[9.60] 0.2735 0.78455 

PSEI MAD NMSE 0c 1c 2R HR
GARCH 3.89602 0.72265 -4.17[-4.66] 2.55[13.90] 0.4421 0.72244 
GARCH-LSSVM 3.79703 0.58720 -1.26[-1.66] 1.37[13.89] 0.4417 0.78775 
EGARCH 4.07293 0.79128 -6.55[-6.10] 3.31[13.04] 0.4107 0.76326 
EGARCH-LSSVM 3.43509 0.53528 -2.32[-3.51] 1.84[18.64] 0.5875 0.75102 
GJR 3.89767 0.68178 -3.95[-4.69] 2.35[14.84] 0.4744 0.72653 
GJR-LSSVM 3.86604 0.73799 -0.19[-0.21] 1.14[9.29] 0.2613 0.78775 
Note: higher R squared and HR is preferred, while smaller values of MAD and NMSE indicate the forecasted volatility is closer to the actual 
values. The coefficients of c0 and c1 should be close to (0, 1) respectively showing small forecasting errors. 
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Figure 1. Plots of Prices and log returns of each market index 
Plots of each index price (left) and log return (right) for the whole sample. From the left sides, we can see that all index 
prices movement are almost similar direction but the returns behave differently. The price series of each market falls 
down sharply at the last period due to global financial crisis.  The log return plots exhibit high breaks at 1998 (after 
ASEAN financial crisis 1997) and in 2008 (the recent financial market crashes).  
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Figure 2. Volatility Forecasts of Singapore Stock Market (STI). 
Note: Plots in left part are referred to the First stage forecast in 2007 (before crisis) and plots in the right side are 
referred to the second stage forecast for whole 2008 (during financial crisis). Small dot line is forecasted by parametric 
models (GARCH, EGARCH and GJR) while dash line is obtained by hybrid approaches. 
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Figure 3. Volatility Forecasts of Kula Lumpur Stock Market (KLCI).
Note: Plots in left part are referred to the First stage forecast in 2007 (before crisis) and plots in the right side are 
referred to the second stage forecast for whole 2008 (during financial crisis). Small dot line is forecasted by parametric 
models (GARCH, EGARCH and GJR) while dash line is obtained by hybrid approaches. 
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Figure 4. Volatility Forecasts of the Philippines stock market (PSEI).
Note: Plots in left part are referred to the First stage forecast in 2007 (before crisis) and plots in the right side are 
referred to the second stage forecast for whole 2008 (during financial crisis). Small dot line is forecasted by parametric 
models (GARCH, EGARCH and GJR) while dash line is obtained by hybrid approaches. 


