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Abstract 
This study is motivated by the development of credit-related instruments and signals of stock price movements 
of large banks during the recent financial crisis. What is common to most of the empirical studies in this field is 
that they concentrate on modeling the conditional mean. Surprisingly, only very few studies dealing with credit 
default swaps account for the characteristics of the variances. Our aim is to address this issue and provide 
insights on the volatility patterns of CDS spreads, bond yield spreads and stock prices. A multivariate GARCH is 
applied to the data of four large US banks over the period ranging from January 01, 2006 to December 31, 2009. 
With the commonly known shortcomings of credit ratings, the demand for market-based indicators has risen as 
they can help to assess the creditworthiness of debtors more reliably. The obtained findings suggest that volatility 
takes a significant higher level in times of crisis. This is particularly evident with respect to the variances of 
stock returns and CDS spread changes. Furthermore, correlations and covariances are time-varying and also 
increased in absolute values after the outbreak of the crisis, indicating stronger dependency among the examined 
variables. Specific events which have a huge impact on the financial markets as a whole (e.g., the collapse of 
Lehman Brothers) are also visible in the (co)variances and correlations as strong movements in the respective 
series. 
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1. Introduction 
The financial crisis that unfolded in summer 2007 has had a huge impact on a number of financial institutions in 
the United States and Europe. All institutions had to deal with an uncertain and more volatile market 
environment resulting in severely impaired overall performances. Consequently, concerns about the solvency of 
some large US and European financial institutions arose. The financial crisis has highlighted the fact that the 
accurate and timely evaluation of credit risk in companies, especially in large banks, is of utmost importance to 
avoid severe disruptions in the affected sectors. In particular, the bankruptcy of Lehman Brothers in September 
2008 unfolded the consequences if the credit risk of large global financial players cannot be detected early 
enough. 

Over the course of the crisis, the questionable behavior of rating agencies became an issue of high importance in 
public discussions. The information provided by credit rating agencies could not be regarded as a well-suited 
indicator of the creditworthiness of banks or e.g., the risk inherent in mortgage-backed securities. The risk was 
often underestimated which even intensified the crisis (Parnes, 2012). Furthermore, rating agencies are often too 
slow to provide a proper risk assessment of companies. 

Investors as well as central banks and supervisory authorities are in need of market-based indicators to assess the 
soundness of the banking sector since bank failures can have devastating effects on the economy. When facing 
increased risk in financial institutions the question arises how the market can figure out changing risk profiles of 
these institutions. An interesting approach for identifying financial crises in general is provided by Parnes (2012). 
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The author analyzes structural breaks in various economic variables to get information on the development of the 
US banking industry after the outbreak of the financial crisis in 2007. The results of this study imply that 
numerous structural changes lead to a permanent and robust shift in the US banking sector (Parnes, 2012). 

However, a very straightforward approach is to gain important information by monitoring prices of bank 
securities. This price information provides a good yardstick for how market participants assess the risk of 
financial institutions (Persson & Blavarg, 2003). Accordingly, our paper is motivated by the development of 
credit-related instruments and signals of stock price movements of large banks during the financial crisis. 

The most prominent market indicators are probably the traditional instruments like stock prices and bond yield 
spreads. Over the recent years, the market for credit default swaps (CDS) has received special attention, as CDS 
should reflect pure credit risk of borrowers. The relationship between those variables has been subject to many 
empirical studies with the result that in particular the stock and the CDS market can quickly process 
credit-related information. For example Hull, Predescu and White (2004) show that CDS can even anticipate 
rating agency changes. 

What is common to most of these studies is that they focus on modeling the conditional mean. Generally, 
financial time series exhibit certain stylized features such as volatility clustering and high kurtosis. In this paper 
we address this issue empirically to gain deeper insights on the volatility patterns of CDS spreads, bond yield 
spreads and stock prices. For this purpose, we apply a multivariate generalized autoregressive conditional 
heteroscedasticity (MGARCH) model to the data of four large US banks over the period from January 1, 2006, 
to December 31, 2009 in order to account for the dependency structure of the variables under consideration. Our 
empirical analysis provides evidence of strongly time-varying conditional covariances and correlations between 
the market-implied risk indicators and suggests that the empirical realizations of these measures have been 
exhibiting a substantially higher level during the financial crisis. This is especially true for the variances of the 
examined variables. Overall, the latter increase synchronously around specific events with a huge impact on 
financial markets such as, for example, the collapse of Lehman Brothers. However, the bond yield spread 
variances exhibit a slightly different pattern. An increased correlation in the course of the crisis could also be 
observed among the CDS spreads of the different banks.  

Since volatility is often regarded as a measure of risk, the investigation of the second moments of the market 
implied risk indicators could provide additional information on the financial condition of the examined 
institutions as well as the financial system as a whole. 

We organize the remainder of our paper as follows. In section 2 we develop some arguments why rating agencies 
might not be preferred by market participants as an early indicator of risk. In section 3 we present the theoretical 
background and the characteristics of certain market prices which are important providers of information 
concerning a firm’s soundness according to the literature. Since the aim of our empirical analysis is to examine 
the volatility patterns of the identified variables, we present some literature on this issue in section 4 in 
conjunction with some hypotheses to be tested later on. Section 5 reports the results of a detailed empirical 
investigation of the volatility patterns of the risk indicators which also includes the dependency structure. 
Evidence is provided for specific commercial banks using a multivariate GARCH approach. Section 6 concludes 
and summarizes our main results. 

2. Rating Agencies and the Need for Market-Based Indicators 
In general, credit ratings provide information on the relative creditworthiness of issuers as well as their issued 
debt. Although default risk cannot be measured precisely, the standardized risk categories make it possible to 
compare issuers (Micu, Remolona, & Wooldridge, 2004). The information provided by credit rating agencies are 
considered as an important input for the decision-making of investors in credit markets and serve as a 
fundamental input to different kinds of credit risk models (for instance the pricing model of Jarrow, Lando and 
Turnbull (1997)). Pension funds and other institutional investors rely heavily on the assessment of credit risk, as 
they are legally bound to hold only investment grade bonds. Therefore, various market participants are 
concerned about changes in credit ratings, since they can raise the capital costs of issuers, influence credit 
spreads and bond returns as well as the prices of credit derivatives (Kou & Varotto, 2005). 

Although rating agencies play a very important role in the economy, they often reveal some shortcomings in the 
timely and accurate assessment of debtors’ credit risk. One problem is the weak performance of credit ratings as 
an early indicator of potential risk. Another critical issue is the potential conflict of interest which arises due to 
the fact that debtors pay the agencies to evaluate their debt. Especially during the subprime crisis starting in 
mid-2007 the validity of credit ratings were questioned by market participants (see for instance Brunnermeier, 
2009 or Calomiris, 2009). 
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Due to the above mentioned shortcomings of credit ratings, the demand for market-based indicators has risen, as 
they can help to assess the creditworthiness of debtors more reliable. Market-based indicators can potentially 
react immediately to macroeconomic or company related news, whereas rating agencies need some time to 
process new information (Di Cesare, 2006). The usefulness of market information for policy purposes has 
already been acknowledged. For instance, the term structure of interest rates or implied volatilities have been 
used in the decision-making process of monetary policy and supervisory authorities (Annaert, De Ceuster, Van 
Roy, & Vespro, 2013).  

Daniels and Jensen (2005) find that the bond and the CDS market can anticipate credit rating changes 
(downgrades better than upgrades). Furthermore, in this respect the CDS market reacts faster than the bond 
market. These results confirm the findings by Hull et al. (2004) who also underline the ability of CDS spreads to 
anticipate rating announcements. Analyzing the informational content of the stock and CDS market, Norden and 
Weber (2004) show that both markets anticipate rating changes. 

In principal, CDS spreads are perceived as a measure of pure credit risk which may serve as a benchmark for 
measuring and pricing credit risk and may suit the needs of a credit risk proxy better than corporate bonds (Abid 
& Naifar, 2006; Norden & Weber, 2009). Nevertheless, bond spreads and equity prices should not be neglected 
in the analysis of credit risk. Stocks, like bonds, are claims on a firm and therefore default risk should be 
reflected by market prices on these claims.  

3. Linking Bond Spreads to CDS Spreads and Stock Prices 
Movements in corporate bond spreads reflect market expectations of how the credit outlook of firms will be in 
the future. The spreads are usually calculated as the difference between the risky corporate bond yields and the 
yields on government bonds or swap yields which are proxies for the risk-free interest rate (Note 1). Thus, the 
spreads on corporate bonds are the risk premium corporations have to pay the investors as a compensation for 
several risks inherent in corporate debt, for instance, default risk, liquidity risk and prepayment risk 
(Alexopoulou, Andersson, & Georgescu, 2009). 

A theoretical relationship between CDS and bond spreads can be derived from reduced-form models (Note 2). 
The equality relationship between both spreads can easily be established by means of the risk neutral default 
probability as well as no-arbitrage conditions. The underlying reasoning has been proposed by Duffie (1999) and 
Hull and White (2000). In this case, the risk-free interest rate is constant over time. Buying a CDS for protection 
purposes requires a payment of a constant premium until a default occurs (or any other predefined credit event) 
or the contract matures. If the firm defaults, the protection seller has to pay the difference between the face value 
and the market value of the reference obligation. 

Considering the no-arbitrage conditions, it is possible to replicate the credit default swap synthetically by 
shorting a bond with fixed coupon at par on the same reference entity with the same maturity date. The returns 
should then be invested in a par risk-free note with fixed coupon. As a result, the CDS premium and the credit 
spread of the par bond with fixed coupon should be equal. Deviations from this parity enable to make arbitrage 
profits (Zhu, 2006).  

Nevertheless, various reasons may hinder the parity relationship to hold in practice. The deviation from the 
equivalence of CDS and bond spreads can be explained by the failure of some of the underlying assumptions in 
reality, e.g., non-constancy of the risk-free interest rate.  

The considerations above illustrate the close relationship between CDS and bond spreads if certain restrictive 
assumptions are satisfied. However, some advantages of CDS spreads in comparison to bond spreads can be 
identified (Annaert et al., 2013). Bond spreads are calculated as the difference between risky bonds and a 
risk-free interest rate, i.e. they have to be computed first and cannot be observed directly, in contrast to CDS 
spreads. Moreover, the identification of the credit premium in the spreads of risky bonds is probably 
contaminated by liquidity (Chen, Lesmond, & Wei, 2007), tax effects (Elton, Gruber, Agrawal, & Mann, 2001) 
and microstructure effects.  

The equity market is regarded as a very important provider of information for a firm’s soundness. To illustrate 
how bond and equity prices are related, Merton (1974) proposes a theoretical framework which makes use of the 
option-pricing theory. The model shows that equity prices and bond spreads are highly connected and should 
move in opposite directions. To draw a connection to the CDS market, the close relationship of bond and CDS 
spreads suggests that credit default swap spreads and equity prices should also disperse (Chan-Lau & Kim, 2004). 
Looking at two major banks such as Goldman Sachs and Citigroup, it becomes obvious from the data that the 
spreads and stock prices move in opposite directions (see Figure 1).  
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correlations are not overall constant over time and should become more pronounced during the period after the 
start of the subprime crisis. Accordingly, our first hypothesis runs as follows: 

H1: The conditional (co)variances vary over time with correlations taking higher levels during the crisis period. 

Furthermore, the obvious structural break in the original series (see Figure 1) should also be present in the 
conditional (co)variances. As stated by Coudert and Gex (2010), volatility will generally increase in times of 
crisis, a view which is supported by other studies (cf. Scheicher, 2009). Especially around the date of the 
collapse of Lehman Brothers, strong movements should be visible in the covariances and variances. Coudert and 
Gex (2010) even use volatility patterns in the CDS market to identify the start of a crisis period (in this case the 
GM and Ford crisis in 2005). Since CDS spreads, stock prices and bond yield spreads should fundamentally 
represent the financial condition of a company, events affecting the financial outlook of the firm should also be 
observed in the volatility of all three variables. 

H2: Variances and covariances of CDS spreads, bond yield spreads and stock prices move in a similar fashion 
due to credit-related events affecting a company. 

Actually, a co-movement of volatilities may hint at the fact that the different markets are affected by the same 
economic shock. 

In the recent past, the market for credit default swaps has received special attention in the analysis of credit risk. 
CDS spreads are widely regarded as an important indicator of potential default risk and, what is more, CDS 
spreads may be used as a complement to credit ratings. Credit default swap premia increased dramatically in the 
course of the financial crisis. As Rhaman (2009) and Coudert and Gex (2010) persuasively reassure, the 
correlations between CDS spreads of different institutions should also increase in turbulent times which may 
indicate contagion effects.  

H3: Correlations between CDS spreads of different companies increase with the start of the financial crisis. 

5. Empirical Analysis 
5.1 Data 

The empirical analysis is based on data for CDS spreads, bond yields, and equity prices of four large US 
financial institutions: Bear Stearns, Citigroup, Goldman Sachs and Merrill Lynch. Hence, our sample contains 
banks which were under severe distress during the financial crisis. Especially Bear Stearns and Merrill Lynch 
had been hit very badly by the crisis and were then taken over by other large banks. These institutions have been 
chosen because of their importance in the financial markets due to their (former) large market power.  

The whole sample period covers the years from January 2006 to December 2009 and is characterized by a 
tranquil phase (pre-crisis period) at the beginning of the sample period (January 1, 2006, to mid–2007) in which 
the CDS and the bond spreads maintained a rather low level and stock prices were still on a high level. The 
second phase is characterized by high volatility and uncertainty after mid-2007 (crisis period). 

The data for credit default swaps consists of daily mid-CDS spreads for the reference entities expressed in basis 
points (bp). Senior debt CDS with a maturity of 5 years have been chosen, since they are the most liquid 
maturity segment. CMA (Credit Market Analysis) quotes were retrieved from Thomson Reuters Datastream 
(Note 3).  

One problem which arises when comparing 5-year CDS spreads and bond yield spreads is the fact that it is 
nearly impossible to find a corporate bond which matches the 5-year constant maturity of the CDS contracts. In 
order to solve this problem, a synthetic bond has to be constructed following the methodology of Blanco, 
Brennan and Marsh (2005) and Norden and Weber (2009) (Note 4). To build the 5-year risky corporate bond, the 
daily yields (redemption yields) of two bonds were linearly interpolated. For this purpose, one bond with 3 to 5 
years left to maturity at the beginning of the sample period and one bond with more than 5 years to maturity also 
at the start of the sample has been used. All bonds are straight bonds with fixed coupons, and only bonds in the 
currency of the CDS were considered. 

The bond yield spreads can be calculated by subtracting the risk-free interest rate from the synthetic 5-year 
constant bonds. As noted by Houveling and Vorst (2005), government bonds, which are usually used, may not be 
the appropriate benchmark rate. For example, investors in the derivative market generally rely on the swap curve 
in their decisions (Blanco et al., 2005) (Note 5). These data were then used to construct the generic spread to 
match the 5-year maturity. All series are denominated in US Dollars and applied in log-differences in order to 
obtain stationarity. Furthermore, preliminary tests suggest that a GARCH model which is described in the 
following section is appropriate (Note 6). 



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 6, No. 7; 2014 

58 

5.2 Econometric Methodology and Estimation Results 

In order to capture the simultaneous volatility clustering and to gain important insights into the co-movement of 
financial time series, univariate GARCH models have been extended to the multivariate case (for an extensive 
survey on multivariate GARCH models see Silvennoinen and Teräsvirta (2009) or Bauwens, Laurent and 
Rombouts (2006)). Modeling the conditional covariance structure is especially important in asset pricing, risk 
management and can also help to analyze volatility and correlation spillover and transmission effects 
(Silvennoinen & Teräsvirta, 2009). In addition, the strong linkage of the CDS, bond and equity market described 
above makes it reasonable to use a multivariate GARCH framework for the analysis of the volatility patterns. 

The model structure can be described as follows: 

tttr                                             (1) 

ttt vH 21 , ... diivt                                      (2) 

),0(~| 1 ttt HN                                      (3) 

where rt represents a vector of returns (in this case stock, CDS and bond returns), whereas μ is a N×1 vector and 
contains the parameters that estimate the mean of the return series. The vector t  equals the residuals with the 
corresponding conditional covariance matrix Ht, given the available information set 1 t . vt is a white noise 
error term. The multivariate form of the GARCH model requires the specification of the covariance matrix Ht. 

For this purpose, Engle and Kroner (1995) define the BEKK model. This model reduces the number of 
parameters to be estimated compared to other multivariate GARCH specifications and especially the positive 
definiteness of the conditional covariance matrix is guaranteed by construction (Baur, 2006; Silvennoinen & 
Teräsvirta, 2009). The unrestricted first order BEKK-GARCH(1,1) model may be written as follows: 

BHBAACCH tttt 111 ''''                                  (4) 

where C, A and B are N×N parameter matrices, and C is upper triangular (Tsay, 2006). One can easily see from 
equation (4) that Ht is positive definite as long as the diagonal elements of C are positive. This is due to the 
quadratic formulation of the conditional variance equation. A further simplification can be achieved by restricting 
the matrices A and B to be diagonal which will be used in the following.  

Although the excess kurtosis inherent in the returns series would suggest a Student’s t-distribution for the 
estimation to account for the fat tails, financial time series are often skewed and therefore the application of a 
Student’s t distribution may be questioned (Schreiber et al., 2012).  

The subsequent empirical analysis makes use of an AR(1) model plus constant for the conditional mean. It appears 
to be an adequate representation of the mean in order to account for the autocorrelation which is partly existent in 
the time series and should guarantee appropriate estimates for the conditional (co)variances. 

The Akaike (AIC) and Schwarz (SIC) information criteria as well as the value of the maximized likelihood 
function were used to test for the appropriate model order. Table 1 contains the results of different specifications 
for the diagonal BEKK model. 

 

Table 1. Model order selection for AR(1)-BEKK(p,q) for p,q = 1, 2, whole sample period 

 Criterion BEKK(1,1) BEKK(1,2) BEKK(2,1) BEKK(2,2) 

Bear 

Stearns 

AIC -8.752 -8.922 -8.401 -8.451 

SIC -8.624 -8.773 -8.252 -8.281 

ML 2770.391 2826.927 2663.044 2681.817 

Citigroup 

AIC -9.135 -9.144 -9.141 -9.047 

SIC -9.050 -9.044 -9.041 -8.933 

ML 4781.962 4789.646 4787.893 4741.782 

Goldman 

Sachs 

AIC -8.873 -8.920 -8.894 -8.744 

SIC -8.788 -8.820 -8.794 -8.631 

ML 4645.488 4672.771 4659.136 4584.209 

Merrill 

Lynch 

AIC -9.375 -9.447 -9.431 -9.308 

SIC -9.268 -9.322 -9.306 -9.165 

ML 3683.788 3714.795 3708.645 3663.409 

Note. AIC = Akaike information criterion, SIC = Schwarz information criterion, ML = value of the maximized likelihood function; Data 

source: Thomson Reuters Datastream. 
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The results indicate that a BEKK(1,2) or a BEKK(2,1) specification would be appropriate to model the volatility 
patterns of the return series. However, adding additional ARCH or GARCH terms to the specification improves 
the model only slightly, especially when comparing AIC and SIC of the different models. Furthermore, many 
researchers dealing with financial time series have shown that GARCH(1,1) specifications often proved to be 
sufficient to yield efficient and significant results (see for instance Bollerslev, Chou and Kroner, 1992). 
Therefore, the model order was deliberately held simple and the following estimation results were obtained from 
the estimation of a diagonal BEKK(1,1) specification. 

The estimation output for the whole sample period is presented in Table 2. The upper panel of the table presents 
the coefficient estimates of the mean equations, whereas the second panel shows the variance equation estimates 
for the different entities. The corresponding ML, AIC and SIC values can be found in Table 1. The   values in 
the mean equations are all nearly zero and for the most part insignificant. However, the main focus of the 
analysis is on the variance estimations which overall show highly significant estimates for the variance and 
covariance coefficients.  

 

Table 2. Estimation results of the diagonal BEKK(1,1) model 

 Bear Stearns Citigroup 
Goldman 

Sachs 
Merrill 
Lynch 

st  0.001* 0.000 0.002*** 0.001 
(1.631) (0.640) (2.787) (1.594) 

st  0.006 -0.024 -0.102*** -0.068** 
(0.138) (-0.889) (-3.850) (-2.117) 

cds  0.001 -0.001 -0.001 0.000 
(0.305) (-0.656) (-0.809) (-0.146) 

cds  -0.004 0.003 0.036 0.031 
(-0.115) (0.130) (1.327) (1.003) 

bo  0.003 0.004* -0.001 0.006* 
(0.503) (1.644) (-0.546) (1.865) 

bo  -0.260*** -0.291*** -0.257*** -0.233*** 
(-5.814) (-9.049) (-7.349) (-7.497) 

c11 0.000*** 0.000*** 0.000*** 0.000*** 
(6.501) (3.618) (5.396) (2.781) 

c12 0.000*** 0.000 0.000*** 0.000** 
(-2.633) (-0.167) (-3.326) (-1.992) 

c13 0.000 0.000 0.000 0.000*** 
(1.136) (0.539) (0.256) (2.587) 

c22 0.000*** 0.000*** 0.000*** 0.000*** 
(4.868) (10.493) (9.112) (7.619) 

c23 0.000 0.000 0.000*** 0.000 
(0.021) (-0.488) (0.618) (-0.536) 

c33 0.002*** 0.002*** 0.001*** 0.000*** 
(3.465) (5.623) (11.304) (5.663) 

a11 0.940*** 0.317*** 0.223*** 0.277*** 
(49.275) (22.208) (19.434) (13.830) 

a22 0.358*** 0.298*** 0.300*** 0.344*** 
(23.105) (25.784) (26.987) (19.918) 

a33 0.162*** 0.295*** 0.632*** 0.297*** 
(6.106) (8.128) (41.706) (21.284) 

b11 0.640*** 0.953*** 0.972*** 0.964*** 
(32.584) (266.620) (389.427) (170.947) 

b22 0.935*** 0.944*** 0.942*** 0.928*** 
(158.126) (326.331) (279.098) (141.833) 

b33 0.938*** 0.805*** 0.846*** 0.957*** 
(51.591) (21.579) (162.082) (243.447) 

Nobs 629 1043 1043 782 

Note: ***, **, * indicate significance at the 1%, 5% and 10% level. Z-statistics are in parenthesis. Nobs are number of observations. 1 = st, 2 

= cds, 3 = bo. 
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The estimated parameters of the means in the variance and covariance equations (c) do not differ substantially 
from zero. The coefficients bii capture the influence of lagged values of the conditional variances hii on the 
conditional variance today. Accordingly, the larger the coefficient bii, the longer is the effect of the shocks. 
Moreover, high values of bii capture the volatility clustering. In other words, high values of ht-1 will be followed 
by high values of ht.  

The estimated coefficients for bii are all higher than 0.90 for all three variables across the examined institutions. 
Exceptions are the bond market coefficients for Goldman Sachs and Citigroup where b33 only exceeds 0.80 
which nevertheless is a high value. Moreover, the conditional variances of the three variables for all institutions 
are significantly affected by the ARCH parameters aii which range from 0.162 to 0.940 but the value is mostly in 
a range of approximately 0.22–0.36. The results indicate that news/shocks (εt-1) in the previous period play a 
minor role in determining the conditional variances and covariances compared to past own values which describe 
the influence of older information (εt-2, εt-3, etc.). 

Only the stock returns of Bear Stearns ( a  value of 0.94) and the bond spread changes of Goldman Sachs (a 
value of 0.623) have higher values, indicating that the respective variances are driven to a larger extent by the 
lagged error term. This means that, for instance, stock returns of Bear Stearns are more prone to news from 
yesterday. Furthermore, information shocks from two or more periods ago are less relevant. This persistence can 
also be observed in the conditional covariances. If this is not the case, the volatility or covariance processes 
would probably be misspecified (Baur, 2006). The overall significant results for the covariance equations 
indicate covariation in shocks. 

Considering the magnitude of the coefficient estimates of the matrices A and B and keeping the condition for 
covariance stationarity in mind which states in the case of the diagonal BEKK model that 1)( 2

,1
2
,   kii

n
k kii ba  

Ni ,...,1 , the covariance stationarity condition is often rejected (Note 7). Similar results are obtained by 
Schreiber et al. (2012) who also observe an integrated covariance tH  for a period including the financial crisis 
for the variables Euro Stoxx 50, iTraxx Europe and the VStoxx. A (nearly) integrated behavior of volatilities 
could be the result of structural changes and therefore may reflect other dynamics for volatility. It has been 
suggested by, for instance, Hamilton and Susmel (1994) that an almost integrated volatility process may indicate 
that the true model for volatility is a regime-switching model.  

Figure 2 displays the estimated conditional correlations between the stock returns and CDS spread changes, 
stock returns and bond spread changes as well as CDS and bond spread changes. The first obvious aspect is the 
strong time variation of all correlations. The apparent structural break in Figure 1 due to the outbreak of the 
subprime crisis in mid-2007 is also visible in the conditional correlations (cf. dotted vertical line at 6/30/2007). A 
second strong movement in the conditional correlations can be observed around 9/15/2008 (Lehman Brothers, 
second dotted vertical line). 

The correlations between CDS spread changes and stock returns became more negative after the first break. This 
can also be observed after the date of the Lehman Brothers failure. These results are quite intuitive, as they imply 
that falling stock returns tend to be followed by increasing CDS spread changes (CDS spreads widen) and vice 
versa. This pattern is also reported by Scheicher (2009) and Schreiber et al. (2012). 

The conditional correlations between bond yield spread changes and stock returns show that a former more or 
less positive conditional correlation turned negative with the outbreak of the crisis and after a reversion again 
around the Lehman collapse in September 2008. At least during the crisis the negative relation between bond 
spread changes and stock returns holds. The conditional correlations for Bear Stearns and Merrill Lynch are 
overall positive for stock returns and bond yield spreads. The positive correlations might be explained by 
firm-specific factors. More volatile firm profits affect bond and equity holders differently due to its impact on the 
likelihood of default. A higher volatility of profits would drive down bond prices (spreads increase) and 
potentially increase stock prices at the expense of bond holders. Takeover risk is another factor which potentially 
influences the relation between stock returns and bond yield spreads (Bhanot, Mansi, & Wald, 2010). 
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particularly evident in the variances of stock returns and CDS spread changes. Furthermore, correlations and 
covariances are time-varying and have also increased in absolute values after the outbreak of the crisis, 
indicating stronger dependency of the examined variables. Specific events which have a huge impact on the 
financial markets as a whole (e.g., the collapse of Lehman Brothers) are also visible in the (co)variances and 
correlations by means of strong movements in the respective series. This pattern suggests that common factors 
drive the volatilities of the market-implied indicators. Certain events can also be observed in the (co)variances of 
bond spread changes. But the latter time series seem to be influenced by other factors as well. Moreover, our 
investigation of the CDS spread changes of the different banks delivers evidence of increased correlations during 
the crisis period which is indicative of contagion effects. 

Overall, it appears thus that the multivariate GARCH framework fits the data reasonably well. Nevertheless, in 
order to capture the dynamics during the very turbulent crisis period and the obvious structural breaks in the 
(co)variance series, there is some scope to adopt, for instance, a (multivariate) Markov-switching GARCH 
model. 

The soundness of banks is a crucial factor for financial stability as a prerequisite for economic growth. Our 
volatility analysis sheds light on the development of the (co)variances of prominent market-implied risk 
indicators, particularly during the financial crisis. The latter appear to be predominantly driven by common 
market shocks. Although accurately predicting a bank’s failure remains a challenging task, we have shown that 
analyzing the volatility patterns of CDS spreads, bond spreads and stock prices gives valuable insights for 
supervising authorities and central banks when evaluating possible financial risks.  
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Notes 
Note 1. The swap zero curve is usually used by derivative traders considering Libor/swap rates as the 
opportunity cost of capital. 

Note 2. Two major groups of credit risk models are mostly used in the analysis of credit risk pricing. In structural 
models, default risk is handled as an endogenous process, partially accounted for by the structural factors, in 
contrast to reduced-form models where a firm’s default cannot be anticipated and is determined by an exogenous 
default intensity process (Alexopoulou et al., 2009). 

Note 3. CMA provides independent and accurate OTC market data (see http://www.cmavision.com). 

Note 4. Similar procedures are conducted by, for instance, Longstaff et al. (2005) and Zhu (2006). 

Note 5. The appropriate data for the bond yield spreads as well as the equity prices were retrieved via Thomson 
Reuters Datastream for all entities. 

Note 6. The GARCH model was introduced by Bollerslev (1986). Due to space limitations, results of stationarity 
tests as well as a preliminary data analysis are not reported and are available on request. 

Note 7. Results are available on request. 

Note 8. Estimation results for the pre-crisis and crisis period are available on request. 

Note 9. The detailed estimation results are available on request. 

Note 10. Applying the Jarque-Bera test for normality to the standardized residuals, the null hypothesis of 
normality must be rejected for all standardized residuals due to the still remaining high kurtosis, which can often 
be observed in similar studies. All tests conducted for the whole sample period have also been applied to the 
bivariate GARCH in section 5.3. These results show the adequacy of the bivariate diagonal BEKK and are 
available on request. 
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