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Abstract

In this paper, I propose a model for predicting annual one-year high yield default risk. My work is based on the
earlier work of Hampden-Turner (2009). My model forecasts monthly default rates using four predictors, each
with various lags: Libor 3-month/10-year Slope, U.S. Lending Survey, U.S. Funding Gap, and Gross Domestic
Product Quarter-over-Quarter Growth. Forecasts of future corporate default rates are useful for evaluating the
attractiveness of credit market investments and for estimating value-at-risk on credit portfolios. I present results
of out-of-sample predictions of annual default rates. I also address some imperfections of the Hampden-Turner
formulation through utilization of more rigorous selection of variable lags and a logistic transformation of
predicted default rates. I demonstrate that estimates of future default probabilities are useful for predicting
changes in high yield credit spreads.
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1. Introduction

In this paper I present a model for generating twelve consecutive monthly predictions of high yield default rates
and compare out-of-sample model predictions with observed historical default rates. In addition, I demonstrate in
historical testing that predicted default rates, but not trailing default rates, can predict directional moves in high
yield credit spreads.

The paper begins by providing some perspective on historical default rates and presents a brief description of
previous attempts to predict corporate default rates. I next describe in detail the original Hampden-Turner (HT)
model. The HT model takes market prices and economic indicators as inputs and generates monthly default rate
predictions for the subsequent twelve months. However, the model, in its original form, has some limitations.
These include the possibility of generating negative default rates and relatively poor out-of-sample performance.
I address these and other shortcomings of the HT model by developing a new model, called HT-2.0. This
enhanced model includes a logistic transformation of predicted default rates to avoid negative values, imposes a
penalty for large regression coefficients, and uses "pre-whitening" to improve selection of lags for the input
variables. I then show the improvement in out-of-sample predictions of historical default rates using the HT-2.0
model.

To demonstrate the usefulness of models for estimating future default rates, I show how forecasts of default
probabilities, but not current default rates, are useful for predicting subsequent changes in high yield credit
spreads. I also use the model for my simulations of expected losses from default on credit portfolios.

Rating agencies typically calculate the current annual default rate as the percentage of high yield firms that have
defaulted over the past twelve months. For example, Moody’s Investors Service publishes monthly trailing high
yield default rates calculated as the ratio of the number of firms rated below Baa/BBB that have defaulted during
the trailing 12-month period to the total number of non-defaulted firms rated below Baa at the beginning of that
period (Note 1). Since the universe of rated firms differs among the various rating agencies, it is not surprising
that rating agencies typically report different trailing annual default rates. For example, Figure 2 displays annual
default rates from Standard & Poor’s (Vazza & Kraemer, 2013) and Moody’s (Ou, Chu, In, & Metz, 2013) for all
firms and for high yield firms only. Although default rates reported by Standard & Poor’s appear to be slightly
higher than those from Moody’s, they typically rise and fall in tandem. This is illustrated graphically in Figure 3,
which displays the speculative annual default rates reported by S&P and Moody’s.
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All Firms High Yield
Year S&P Moody's S&P Moody's
1981 0.1 0.2 0.6 0.7
1982 1.2 0.7 4.4 23
1983 0.8 0.5 29 18
1984 09 0.5 33 1.7
1985 1.1 0.4 4.3 1.4
1986 17 09 57 28
1987 1.0 0.6 238 186
1988 1.4 0.8 3.8 1.9
1989 1.7 1.4 4.7 33
1990 2.7 23 8.1 6.3
1981 3.3 2.0 1.1 6.0
1982 15 0.8 6.1 27
1983 0.6 0.6 25 20
1984 0.6 0.3 21 1.0
1985 1.0 0.5 35 186
1996 0.5 0.2 18 06
1997 0.6 0.3 20 039
1988 13 0.8 3.7 20
1989 21 15 56 35
2000 25 22 6.2 5.0
2001 3.8 3.4 9.8 54
2002 3.5 23 9.3 58
2003 19 12 5.0 32
2004 0.8 0.4 20 1.2
2005 0.6 0.3 15 08
2006 0.5 0.3 1.1 08
2007 0.4 0.2 0.9 05
2008 18 1.5 386 3.0
2009 4.1 3.7 9.6 8.3
2010 12 0.7 29 16
2011 0.8 0.5 1.7 1.2
2012 1.1 0.7 25 15
Average 15 1.0 4.2 2.7
Median 1.1 0.7 36 19
Max 4.1 3.7 11.1 8.4
Min 0.1 0.2 0.6 05

Figure 1. Annual default rates from standard & poor’s and moody’s

Source: Standard & Poor’s and Moody’s Investors Service.
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Figure 2. Annual trailing 12-month default rates from standard & poor’s and moody’s

Source: Standard & Poor’s and Moody’s Investor’s Service.

Although trailing default rates are of some interest to investors, projections of future default rates are even more
relevant for performance of corporate markets, particularly those in high-yield. Moreover, expected default rates
are of interest to lenders, risk managers, and other counterparties to credit-based transactions. The goal is to
generate accurate forecasts of monthly default rates for the next twelve months and to demonstrate their

usefulness for making investment decisions.

There have been several approaches to modeling future default rates. Most begin with the observation of the
current 12-month trailing default rate. One approach to projecting the default rate for the next 12 months is to
generate stochastic future default rates using a model that relies on mean-reverting properties calibrated to the
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historical properties of historical default rates. The key assumption of this type of model is that default rates
follow certain stochastic process and therefore the time-series record of actual default rates is a sample path
generated by that process. Although this approach can be useful for simulation purposes, it constrains us to use
mean default rates as expected levels of future default rates. To derive a statistical model with predictive power,
others have adopted an alternative approach that incorporates econometric factors leading default. Examples
include linear models detailed in Fons (1991), Hellge and Kleiman (1996), Jonsson and Fridson (1996). These
authors have identified macroeconomic variables of explanatory power whose effectiveness is evaluated by
calculating root-mean-squared errors between predicted and obtained default rates. An alternative model
proposed by Keenan, Sobehart and Hamilton (1999) incorporates the effect on default rates of changes in the
universe of issuers, both in terms of their credit ratings and the time since they first came to market (the “aging
effect”). Their model also captures macroeconomic conditions as measured by the industrial production index
and interest rate variables. Finally, Hampden-Turner (2009) has developed statistical models to predict future
default rates from one to twelve months using least-squares regression and vector autoregressive models.

Unfortunately, most existing models that show good performance, including the Hampden-Turner (HT) model,
are validated in-sample. However, I find most studies do not evaluate out-of-sample forecasts over a suitably
long period (e.g., cover an entire credit cycle), and it remains unclear how well these models perform, especially
in periods of high default rates. In this paper, I first describe the Hampden-Turner model, pointing out its
advantages and limitations. Then, building upon the HT framework, I apply statistical approaches to address that
model’s limitations, while also explaining out-of-sample validation on the enhanced model. Finally, I show how
an accurate model of default prediction can provide useful information regarding the attractiveness of investment
in high yield corporate debt.

2. The Hampden-Turner Default Model

Since my model takes its starting point from the Hampden-Turner formulation, I present that model briefly in
this section. The HT default model fits and predicts monthly default rates using lagged versions of the following
four predictors:

e Libor Slope: designated as LIB, which is the yield spread between 10-year and 3-month LIBOR rates
divided by the term difference between 10 years and 3 months (i.e., 10.0-0.25) (Note 2).

e The U.S. Lending Survey: denoted LS. The U.S. Federal Reserve sends lending surveys quarterly to
gather opinions from banks’ senior loan officers on bank lending practices. The survey estimates the net
percentage of domestic banks tightening standards for commercial and industrial loans to large and
middle-market firms. Banks tighten loan standards when financial conditions are deteriorating or are
expected to worsen, thus leading to tougher environment for high yield credits and higher default rates.

e  The U.S. Funding Gap: denoted FG. FG is “the macroeconomic equivalent of final free cash flow. It is the
net cash flow a company receives (or requires) after capital expenditures, dividend payments, mergers and
acquisitions, and net equity issuance. FG is typically negative in a bull market, indicating that
corporations’ need to increase financing, and positive in a bear market, as consolidation occurs and
spending is reduced.

e GDP Quarter-over-Quarter Growth: designated as GDP. GDP is the market value of all officially
recognized final goods and services produced within a country in a year. GDP growth is indicative of
strong economic conditions, portending good corporate performance and vice versa.

Of the four input variables, only LIB is collected monthly, while the other inputs are available quarterly. The HT
model uses a simple linear interpolation to generate monthly values for variables LS, FG, and GDP to be paired
with monthly values of LIB between their quarterly updates. For example, to interpolate the value of GDP for a
given prediction month ¢ one month after the last GDP update at ¢-1, I use GDP,.; and the corresponding value of
GDP,,, that will be reported next. That is,

GDP,, - GDP_,

GDP = % +GDP._, (M
Similarly,
DP_, — GDP.
GDP,, = GD,, ~ PPl @

Because of the linear interpolation, calculation of monthly data at time ¢ requires data ahead at time #+2. As a
result, the predictor values at time ¢ can only be used to predict default rates later than ¢ + 1 or ¢ + 2 unless it is a
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month of a GDP report (or other quarterly variables). In practice, this is not a problem as the model includes only
monthly predictors with lags longer than two months.

HT’s first default model fits a lagged regression using ordinary least-squares (OLS) to predict monthly default
rates, which for month ¢ I denoted as ry, so that:

rz = IBO + 151 -LIB,_,, + :62 'LSt—lz + /53 'FGz—lz + :64 'GDPz—lz 3)
Hampden-Turner reports that the U.S. Lending Survey is the most important predictor, leading the default rate
by about 10-12 months. For example, Figure 4 plots historical normalized (i.e., converted to z-scores) values of
the U.S. Lending Survey and monthly default rates from Moody's since late 1997. Clearly, the U.S. Lending
Survey data not only lead default rates, but also appear to predict their normalized magnitudes well.
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Figure 3. Time series comparison of normalized us lending survey and monthly default rates

Source: Moody's Investor's Service, the U.S. Federal Reserve.

In practice, each January the HT model generates twelve successive out-of-sample monthly default rates based

on available data through the previous December. Each default rate for months =1, __, 12 is calculated as:
U=0+B LB, +pB LS, ,+B FG.. ,+ b, GDP, “)

Figure 5 illustrates how the HT model is used in practice. That is, the figure shows that the model is trained on
data up to the end of 2011 and then generates monthly predictions of trailing 12-month default rates for 2012
(the red line in Figure 5).
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Figure 4. Actual default rates (dark blue) along with fitted and predicted monthly default rates via
Hampden-Turner's lagged OLS regression

Hampden-Turner proposed a second model to predict annual default rates where he uses vector autoregressive
(VAR) to derive coefficients on the four variables above as well as on the lagged default rate. That is, VAR is
used to derive the coefficients for each monthly prediction of r.
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I'=o0,T_+ta, T _,+to,- T _,,+a, T _,+
B,-LIB,_,+pB,-LIB, .+ p,-LIB,_,+f,-LIB,,, +
Vi LS,_,+y, LS, ¢ +y,-LS,_,+v,- LS, ,, + %)
0,-FG,_,+0,-FG,,+0,-FG,_,+9,-FG_,, +
9 'GDB—4 + ¢2 ’ GDE—& +¢;- GPDt—lZ + ¢4 'GDE—24 o

Since the longest lag is for default rates 49 months prior, the first month of prediction requires 49 months of
previous default rates (i.e., t > 49). Unlike the lagged linear regression, the minimum lag in the VAR formula is
four months. Therefore, in order to make 12 out-of-sample predictions of ry, I need predictions of LIB, LS, FG as
well as GDP at least for months five through twelve. HT proposes to fit a VAR model to each of these time series.

For example, L}Bm (1£1<4) can be predicted by fitting the following VAR up to time t:
LIB.=a,-DR _ +a,-DR_,+a,-DR,_,, +a, -DR,_,+
b -LIB,_,+b,-LIB, +b,-LIB,_,+b,-LIB,,, +
¢-LS,_,+c, LS ¢ +c, LS, |, +c, LS, _,, + (6)
d-FG_,+d, - FG _,+d,-FG_,,+d,-FG,_,, +
e,-GDP_, +e,-GDP ¢ +e,-GPD, |, +e,-GDP_,, + f

A
Then, to predict LIB, 4; (55j<12), HT treats LIB;+i (1£i<4) as already observed data and applies the VAR

formula in Equation 6 iteratively to generate estimates of L/B for months five through twelve. Otherwise, the
general training procedure for the VAR model is similar to that for the OLS predictions in Figure 4 for which the
model is trained up to the end of each year and used to predict trailing 12-month default rates for each month in
the following year. The resulting estimated trailing 12-month default rates from the VAR model and actual
default rates appear in Figure 6.
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Figure 5. Actual default rates (dark blue) along with fitted and predicted monthly default rates via
Hampden-Turner's vector autoregressive model

3. Issues with the Hampden-Turner OLS and VAR Models

There are two statistical issues related with the linear and VAR regression models as implemented in the
Hampden-Turner model. First, I find that both models may give rise to negative default rate predictions. In
addition, I observed that although the VAR model performs well fitting default data in sample, it exhibited poor
out-of-sample prediction performance. For example, Figure 7 shows actual default rates from 1996 to 2013 and
out-of-sample predictions from the VAR model (left panel) and the OLS regression (right panel). Neither the
VAR or the OLS model capture the actual annual rates well and both models predict negative annual default
rates in year 2006. Also, comparison of out-of-sample performance in Figure 7 shows that the simple lagged
regression performs better than the VAR model at predicting annual default rates.
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Figure 6. Predicted (red) and Actual (blue) default rates: left: predictions from the VAR model; Right:
predictions form OLS regression

Another issue with the HT models involves lag selection. As discussed before, if the minimum lag is less than
twelve months, one cannot make twelve monthly out-of- sample default rate predictions from the available data.
This motivated HT to build the VAR model for each predictor so that smaller lags can be used in the formula.
For the simple lagged linear regression, small lags become a limitation of the model. For example,
Hampden-Turner used the cross-correlation function (CCF) to determine the lag for the OLS model. As shown in
the left panel of Figure 8, the estimated cross-correlation between LS and DR peaks around a lag of 10 tol2
months. Hence choosing a lag of twelve months for LS is convenient and reasonable—I can produce a total of 12
predictions, and I do not lose much predictive power (with respect to, say, a lag of 10 or 11).
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Figure 7. Left: sample cross-correlation function (CCF)-US lending survey versus monthly default rates; sample
CCF for GDP QoQ growth versus monthly default rates up to 2008 (middle) and 2012 (right)

Although picking the lag for the Lending Survey when predicting default was straightforward, Hampden-Turner
claims that, for the other predictors, picking the lag is “not always this easy.” For example, the middle and right
panels of Figure 8 show CCFs for GDP quarter-over-quarter growth versus the monthly default rates using data
up to 2008 and 2012, respectively. The CCFs in those panels peak at very different lags, (i.e., four months and
ten months), suggesting that using a fixed lag for all the periods may not be appropriate. In addition, both panels
show that a lag of twelve months for the GDP is not the optimal choice, apart from its ability to make twelve
monthly predictions. Thus for the lagged linear regression, I must chose between the optimal lag and one that
can make a sufficient number of predictions. On the other hand, the VAR model does not fully address the
problem of lag selection. The VAR model involves considerably more lags that are arbitrarily selected, and how
to carry out the selection procedure for the main model as well as for all the predictors is clearly not obvious. In
the following sections, I propose a quick fix to the lag selection dilemma along with a discussion of more
advanced methods.

4. Lagged Regression Model, HT-2.0

I propose alternative methods to address the issues raised in the previous section for the HT models. First, I opt
not to use the VAR model due to (1) its propensity to overfit the data and (2) the fact that it uses predicted results
as model inputs that may degrade accuracy of predictions. (I need to check that all the predictor time series are
stationary, see Appendix I for a discussion.) Also, to ensure that that predicted default rates are not less than zero,
I adopt a simple logistic transformation on the default rates. That is, instead of regressing default rates on the
other four predictors, I transform them first via the logit function:
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— DR%
DR = logit(DR%) = log ———— 7
git(DRY6) = log T—H 00 ™
Thus, the simple lagged regression is converted to:

DRt = ﬁo + ﬁl 'LIBt—24 + ﬁz 'LSt—lz + ﬁ3 'FGz—lz + ﬁ4 'GDPz—lz ®)

To get predictions for the original default rate, I can use the inverse logit transformation

DR:lOO-eDR/(eDNR+l), which is confined to the range between (0,100). However, because of the

exponential term in Equation 8, the predictions from the model are not satisfactory when the underlying
regression becomes unstable. For example, the left panel of Figure 9 shows out-of-sample annual default rate
predictions from 1996 to 2013 for the lagged regression with logistic transformation of default rates. Although
all predictions are now greater than zero, the model has large errors in estimating default rates, particularly from
2001-2002.
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Figure 8. Predicted and Observed Default Rates from Lagged Regression with Logistic Transformation of
Default Rates (Left Panel) and Lagged Lasso Regression (Right Panel)Source: Moody’s Investor’s Service

To improve model performance, I impose a Lasso £ penalty on the lagged logit-transformed regression so that
the regression coefficients 5, fB,, B, and B, in Equation 8 do not become overly large (Note 3). (Details for
the Lasso L, penalty appear in Appendix II.) Note that the coefficients in Equation 8 are determined by finding:

T
. e R R R 2
B =argmin Y (DR, - B,— B, LIB,_,,— -~ B, -GDP_,) ©)
=25
The Lasso finds the fitted coefficients by

A

l}LASSO —

I T . st tal 1an] (10)
argming {52 (DR =B, =B, LIB, ,, - =B, 'GDPz—lz)z + l(‘ﬁl‘ +‘ﬁ2‘ +‘ﬂ3’ +‘ﬁ4‘)}
t=25

To address the issue of instability in lagged variable relationships, I first obtain the best lag from the data set and
run the transformed regression with Lasso penalty as in Equation 10 until I cannot make further out-of-sample
predictions. Then I rerun Equation 8 with minimum lag at twelve months to get the rest of the monthly default
predictions. For example, say the lag selected for GDP is seven months. I use the seven-month lag to make the
first seven predictions. Then I switch to a twelve-month lag to make the next five predictions. The improvement
in out-of-sample results is evident in the right panel of Figure 9 which shows the predicted default rates using the
lagged Lasso regression. I call my lagged Lasso regression model HT-2.0, as an extension of the original
Hampden-Turner model.

5. Selecting Lags

In the previous sections I have used the absolute peak in CCF to choose the lags for the input variables in the
regressions. One striking feature of these CCF plots in Figure 8 is that the estimated CCFs seem to be highly
persistent. That is, there are numerous lags that cluster around the peak value, making it difficult, and perhaps
even misleading, to choose the best lag relationship on that basis. The cause of this clustering is typically
attributed to the autocorrelation structure in individual series. Here I used the pre-whitening technique introduced
by Jenkins and Watts (1968) to clarify the lagged relationships (Note 4). See Appendix III for the systems
approach (Chatfield, 2004) I use that is based on pre-whitening.
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For example, to study the lagged relationship between monthly default rates and U.S. Lending Survey data up to
the end of 2012, I first plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the US Lending Survey time series as shown in Figure 10. The ACF plot in the left panel displays a
damped sine-cosine pattern and PACF cutoff before lag 10, indicative of an autoregressive process, AR(p), with
complex roots. By using the Bayesian Information Criterion (BIC) (Note 5) as the model selection criterion, I
choose the maximum lag p = 8 and arrive at an AR(8) model that only includes lags at 1 and 8 months. If 1
denote B as the backshift operator (i.e., BX; = X;.,), the estimated model can be written as:

(1-1.055B+0.0914 B¥)(LS, — 1) = w, (11)

Pre-whitened LS is just the residual w; from the 4R(8) model. The left and middle panels of Figure 11 confirm
that the residual time series w, does not show large deviations from the standard normal distribution.
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Figure 9. Sample autocorrelation function and partial autocorrelation function of US lending survey with future
default rates

Next, I filter the monthly default rate DR, using the same AR(8) model for LS, and obtain

(1-1.055B+0.0914B*)DR =d, (12)

Finally, in the right panel of Figure 11 I plot the sample CCF of d; versus w;, which differs dramatically from the
CCF shown in Figure 8. I conclude that lags of LS, at lags of 9, 11, 12, and 13 should be tried as predictors of
DR, and selected via BIC. Interestingly, lag 10 does not appear to be significant anymore in the new CCF plot.
Figure 11 also shows why the VAR model for LS may be overfitting by including previous lags of DR; after all,
LS is leading DR.
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Figure 10. U.S. whitened lending survey: quantile-quantile plot (left); density plot (middle); and CCF Function
(right)

6. Why Predict the Default Rate?

One may question the utility of developing a model to predict the overall corporate default rate. After all, the
rating agencies publish forecasts of default rates at least on an annual basis. The main reason for building my
own model to predict default is that I wish to test the ability of monthly out-of-sample forecasts of annual default
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rates to signal price moves in the corporate credit markets. I present results of my initial tests of that ability in
this section. In addition, I need monthly estimates of default rates as inputs to my stochastic model of
credit-cycle-dependent rating transitions (see Benzschall, Lee, & Li, 2012). Finally, I wish to gain insight into
the factors that underlie overall default rates and developing models to forecast default rates is one way to
improve that understanding.
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Figure 11. Relationship between annual changes in high yield spreads versus 12-month trailing default rates (left)
and predicted default rates (right), Jan-95 to Jun-13

To illustrate the use of the HT-2.0 model to predict high yield credit spreads, consider Figure 12. The figure
displays annual changes in average high yield corporate bond spreads versus either the trailing 12-month default
rate (left panel), called the current default rate, or the predicted default rate (right panel). To construct those plots,
each month I determine either the trailing or predicted 12-month default rates and their associated changes in
average high yield corporate bond spreads over the subsequent 12 months. These are the points on the graphs in
the left and right panels of Figure 12, respectively. The predicted default rate has an R*=0.64 over the period
from January 1995 to June 2013, whereas the current default rate has an R*=0.13.
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Figure 12. Top: average high yield corporate bond spreads; bottom: ratios of high yield spreads to predicted
default rates, 1995-2013
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Despite the advantage of predicted default rates over trailing default rates for estimating changes in high yield
spreads over the next year, neither predictor is satisfactory. A more relevant question for potential investors in
high yield bonds is, “How much yield will I receive for taking on a given level of default risk?”” For example,
even if default rates are relatively high, an investor may be well compensated by outsized yield spreads to
Treasuries (e.g., think 2009). Conversely, if spreads are tight, defaults may be low and investors may still earn
attractive returns owing to few defaults. Consider the historical series of average high yield corporate bond
spreads in the top panel of Figure 13. Clearly, spread levels vary widely over the cycle. However, the absolute
level of spreads does not indicate whether investment in high yield is attractive nor provides reliable signals
regarding the future direction of spread moves. A large determinant of those returns depends on the expected
default rate over the investment horizon.

To determine if the ratio of high yield spreads to default provides useful information to investors, I first plotted
ratios of average high yield spreads to predicted default rates from the HT-2.0 model since 1995. These appear in
the lower panel of Figure 13 (Note 6). The assumption is that the ratio of the current high yield spread to
predicted default rate is indicative of the attractiveness of high yield returns. Consider first the left-hand panels
of Figure 14. The upper panel shows one-year changes in high yield spreads as a function of ratios of the current
high yield average spreads to trailing 12-month default rates. In that plot, the green circles represent changes in
spreads when the spread-to-default ratios are below average, with the orange squares plotting changes when the
ratios are above average. Points are determined monthly, with the vertical blue line showing the average
spread-to-default ratio over the period from 1995 to 2013. The scatterplot reveals that ratios using the current
trailing 12-month default rate have little ability to forecast high yield spreads one year later. This is confirmed in
the bar chart in the lower left-hand panel that presents probabilities of spreads widening or tightening if the ratio
of high yield spreads to trailing default rates are above average or below average, respectively. That is,
probabilities of spreads widening or tightening are independent of the ratio of high yield spread to current default
rate (i.c., probabilities are roughly 50% for all ratios), falling at or near the dashed chance performance line.
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Figure 13. Comparison of predicted changes in high yield spreads based on current default rates (left panels) or
predicted default rates (right panel). percentages of falling in each cell and average spread changes are also
shown
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In contrast to the results using ratios of spreads to trailing default rates, the panels on the right in Figure 14
demonstrate that ratios of spreads-to-default using predicted 12-month default rates are highly related to
one-year changes in high yield spreads. That is, when ratios of high yield spreads to predicted default rates are
above average, high yield spreads one year later are tighter 85% of the time. When ratios are below average,
spreads are wider 65% of the time. The histogram of percentages of spreads widening or tightening as a function
of the spread-to-default ratio in the lower right panel of Figure 14 confirms the above-chance performance over
the entire range of ratios. The figure also reveals that the size of the ratio has little effect on directional accuracy,
except if the ratio is above or below zero. In particular, notice how the directional changes in spreads reverse
from widening to tightening on either side of the average spread-to-predicted default ratio. Finally, note that
when there are "errors" in the signal from the spread-default ratio (i.e., spreads tightening when ratios are below
average and vice versa), average "losses" are smaller than average gains when "correct." For example, when the
spread-to-default ratio is above average, the average spread tightening is 203bp, whereas when spreads rise, they
rise only 114bp on average. In fact, given the spread-to-predicted default ratio in December 2013 indicated by
the circle in upper right panel of Figure 14, the expected spread tightening by December 2014 is:

[84% x (—203bp)] +[16% x (+114bps)] = —152bps
Similarly, if the ratio of high yield spreads to predicted default is less than average, then historical analysis
suggests that the average high yield spread will widen by:

[65% x (+247bp) | +[15% x (—162bps)] = +121bps
The results presented in Figure 13 and Figure 14 are intended to demonstrate the usefulness of modeling

predicted default rates. I will continue to update my twelve-month default predictions on a monthly basis and use
the model for my simulations of expected losses from default on credit portfolios.

7. Summary

I described a model for predicting 12-month default rates and examined its performance in out-of-sample testing
since 1994. The default forecasting model is called HT-2.0 as it is an extension of the model first described by
Hampden-Turner (2009). HT-2.0 takes market prices and economic indicators as inputs and generates monthly
default rate predictions for the next twelve months. The paper begins by providing some perspective on historical
default rates and includes a brief discussion of previous attempts to forecast corporate default rates. I next
described in detail the original Hampden-Turner model and addressed some limitations of that model. These
include the possibility of the original model to generate negative default rates and that, when I use the model to
generate out-of- sample predictions, I observe relatively poor performance. I overcame the shortcomings of the
original HT model in HT-2.0 by adopting a logistic transformation on predicted default rates to avoid negative
values, by imposing a penalty for large regression coefficients, and by using statistical "pre-whitening" to
improve estimates of optimal lags for the input variables. I then show the improvement in out-of-sample
predictions of historical default rates using the HT-2.0 model.

To demonstrate the usefulness of estimating future default rates, I show how forecasts of future default
probabilities, but not current default rates, are useful for predicting subsequent changes in high yield credit
spreads.
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Notes

Note 1. High yield firms are those rated below Baa by Moody’s and BBB-by Standard & Poor’s with investment
grade firms having higher ratings by each agency.

Note 2. Note that the Hampden-Turner (2009) documentation claims to use the number of high-yield issuers to
the total number of issuers, but the actual implementation used the LIBOR slope instead.

Note 3. The Lasso method is one example of regularization methods designed to prevent overfitting by
penalizing extreme parameter values. Regularization introduces a second factor, in Equation 10, which shrinks
regression coefficients. For a technical discussion of the Lasso method, see Tibshirani (1996) and Appendix II.

Note 4. The term “pre-whitening” is used in construction of lagged regressions to minimize the effects of
co-movements in the x- and y-variables in the lag analysis on the cross-correlation function.

Note 5. The Bayesian Information Criterion (BIC), developed by Schwartz (1978), measures the variance
reduction provided by the addition of each variable to the model. In addition, it imposes a penalty for having too
many variables, thereby guarding against overfitting the data.

Note 6. The units for default in the numerator of the ratio in Figure 13 are in percent. For the high yield spread in
the denominator, we use the spread in basis points. For example, for a predicted default rate of 2.3% and a
current high yield spread of 230bp, we calculate the ratio as

Note 7. For example, the most salient condition for stationary is that the mean of the series does not change over
time. For example, an upward or downward drift in the series would imply non-stationary. There are other
considerations as well.

Note 8. The Dickey—Fuller test (Dickey and Fuller, 1979) is used to determine whether a unit root is present in
an autoregressive model.

Appendix A
Time Series Regression

To perform time series regressions, it is crucial to determine whether or not the series under consideration are
stationary over time (Note 7). That is, regressing non-stationary series on non-stationary series may lead to
spuriously significant regressions. To test if a time series is stationary, I use the Augmented Dickey- Fuller (ADF)
test (Note 8).

If T have identified a time series input to be non-stationary, I need to be careful including such series as a
predictor. Some type of transformation should be applied to make the series more stationary. For example, the
raw GDP time series may have an upward trend over the long run, so it is better to use, say, the quarterly GDP
growth instead. This is the approach that I took in the model. I can also apply transformations such as first-order
difference (for example, the monthly change in a predictor variable), or de-trending a series to avoid predictions
that appear to fit well in-sample but will have low predictive power in practice.

Appendix B
Lasso Ll Penalty. Linear Regression with £1 Penalty—An Introduction to the Lasso

For a linear regression model with dependent variable y; (i = 1, ... , N), input variables x.(j = 1, ..., p), and
coefficients £, B, ... , B, , the ordinary least squares (OLS) estimate of £, B, ..., £, 1s given éy:
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. N p
il :argmin,,),Z:(y,._,,jo_Z:xij,é’j)2 (13)
i=1 =1

Although the fitted coefficients of the OLS regression are unbiased, they may suffer from ill-posed conditions
and complicated correlation structure among variables. In addition, if my focus is on time-series regression, the
fitted coefficients may be unstable over time, leading to unintuitive changes in the fitted values over different
training periods. Modern regularization techniques such as the lasso (£, ) attempt to overcome these problems by
seeking a sparse solution by inclusion of a ‘£1 penalty for the coefficients:

. N »
B =argming Y (v, — B, - D x,B) (14)
i=1 =1

P
subject to Z|ﬂj‘ <t
J=1

Rewriting Equation AII-2 in an equivalent Lagrangian form, we have

A

- [1 . >
ﬂlasso — argmlnﬂ EZ()}[ —ﬁo - ZxH’BJ)Z +AZ"BJ| (15)
i=1 J=l A

Since the L constraint makes the solution to the optimization problem nonlinear in y,, no closed-form solution
exists. However, one can use quadratic programming to compute the lasso solution, and efficient algorithms are
developed to generate the entire path of solutions with varying A (Hastie, Tibshirani and Friedman, 2008).

Note that 7 or 4, the so called the shrinkage parameter, plays an important role in controlling the size of the fitted
coefficients. For example, if ¢ is sufficiently large, the penalty almost has no effect and the lasso estimate is
essentially the OLS estimate. On the other hand, if ¢ is relatively small, then some of the coefficients would be
shrunk towards 0. In the extreme case when =0, all the coefficients will be shrunk to 0 in the optimization
routine.

Because lasso tends to shrink many coefficients to 0, it automatically performs variable selection.

Appendix C
Pre-Whitening. Spurious Correlation and Pre-Whitening for Lagged Regression

To identify the lags in a lagged time-series regression, a common approach is to examine the plot of the
Cross-Correlation Function (CCF) between the response time series Y, and input series X,. Unfortunately, the
CCF between Y, and X, may be influenced by the autocorrelation structure of these two series. That is, significant
cross-correlation between two unrelated time series may be observed as an artifact of strong autocorrelation in
both series. To avoid reading a spurious relationship between the two time-series, I adopt the “pre-whitening”
strategy as outlined in the following steps:

1. Determine a time series model for the X variable. For example, for stationary X; with mean 0, fit an (ARMA(p,
q) model to X.

P q
X = ZQXH +w, + Z ﬁjw,_j (16)
i=1 j=1
where w; is a white noise series (i.e., independent and identically distributed random series with mean 0 and
finite variance). Alternatively, one can simplify the above formulation by the backshift operator B as:

¢(B)X,=06(B)w, (17)
where ¢(B) and 6(B) are polynomials in B In other words, one can “whiten” the original series X, by applying the
filter p(B)/0(B):

9(B)
Ay =

The fitted AMRA parameters then lead to the residual W,:
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¢(B) _ =

X, =W, 19
One can check the normality assumption by a Quantile-Quantile plot on the residuals. It is not crucial, and often
not practical to find the exact time series model for X, but filtering X to an approximate white noise series is

necessary.

2. Since Y and X are assumed to have a lagged linear relationship, I filter the Y variable similarly by the
estimated whitening filter from the first step. That is

(20)
Note that, in practice, it is easier to filter by AR coefficients only (i.e., H(B ) =1), so for convenience we may
want to check if fitting X with an AR process suffices during the first step.

3. Examine the CCF plot W, and dtand identify possible lags for the lagged relationship between Y and X.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

14



