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Abstract 

In this paper, I propose a model for predicting annual one-year high yield default risk. My work is based on the 
earlier work of Hampden-Turner (2009). My model forecasts monthly default rates using four predictors, each 
with various lags: Libor 3-month/10-year Slope, U.S. Lending Survey, U.S. Funding Gap, and Gross Domestic 
Product Quarter-over-Quarter Growth. Forecasts of future corporate default rates are useful for evaluating the 
attractiveness of credit market investments and for estimating value-at-risk on credit portfolios. I present results 
of out-of-sample predictions of annual default rates. I also address some imperfections of the Hampden-Turner 
formulation through utilization of more rigorous selection of variable lags and a logistic transformation of 
predicted default rates. I demonstrate that estimates of future default probabilities are useful for predicting 
changes in high yield credit spreads.  

Keyword: default, financial crisis 

1. Introduction 

In this paper I present a model for generating twelve consecutive monthly predictions of high yield default rates 
and compare out-of-sample model predictions with observed historical default rates. In addition, I demonstrate in 
historical testing that predicted default rates, but not trailing default rates, can predict directional moves in high 
yield credit spreads. 

The paper begins by providing some perspective on historical default rates and presents a brief description of 
previous attempts to predict corporate default rates. I next describe in detail the original Hampden-Turner (HT) 
model. The HT model takes market prices and economic indicators as inputs and generates monthly default rate 
predictions for the subsequent twelve months. However, the model, in its original form, has some limitations. 
These include the possibility of generating negative default rates and relatively poor out-of-sample performance. 
I address these and other shortcomings of the HT model by developing a new model, called HT-2.0. This 
enhanced model includes a logistic transformation of predicted default rates to avoid negative values, imposes a 
penalty for large regression coefficients, and uses "pre-whitening" to improve selection of lags for the input 
variables. I then show the improvement in out-of-sample predictions of historical default rates using the HT-2.0 
model. 

To demonstrate the usefulness of models for estimating future default rates, I show how forecasts of default 
probabilities, but not current default rates, are useful for predicting subsequent changes in high yield credit 
spreads. I also use the model for my simulations of expected losses from default on credit portfolios. 

Rating agencies typically calculate the current annual default rate as the percentage of high yield firms that have 
defaulted over the past twelve months. For example, Moody’s Investors Service publishes monthly trailing high 
yield default rates calculated as the ratio of the number of firms rated below Baa/BBB that have defaulted during 
the trailing 12-month period to the total number of non-defaulted firms rated below Baa at the beginning of that 
period (Note 1). Since the universe of rated firms differs among the various rating agencies, it is not surprising 
that rating agencies typically report different trailing annual default rates. For example, Figure 2 displays annual 
default rates from Standard & Poor’s (Vazza & Kraemer, 2013) and Moody’s (Ou, Chu, In, & Metz, 2013) for all 
firms and for high yield firms only. Although default rates reported by Standard & Poor’s appear to be slightly 
higher than those from Moody’s, they typically rise and fall in tandem. This is illustrated graphically in Figure 3, 
which displays the speculative annual default rates reported by S&P and Moody’s. 
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Figure 1. Annual default rates from standard & poor’s and moody’s 

Source: Standard & Poor’s and Moody’s Investors Service. 

 

 
Figure 2. Annual trailing 12-month default rates from standard & poor’s and moody’s 

Source: Standard & Poor’s and Moody’s Investor’s Service. 

 

Although trailing default rates are of some interest to investors, projections of future default rates are even more 
relevant for performance of corporate markets, particularly those in high-yield. Moreover, expected default rates 
are of interest to lenders, risk managers, and other counterparties to credit-based transactions. The goal is to 
generate accurate forecasts of monthly default rates for the next twelve months and to demonstrate their 
usefulness for making investment decisions. 

There have been several approaches to modeling future default rates. Most begin with the observation of the 
current 12-month trailing default rate. One approach to projecting the default rate for the next 12 months is to 
generate stochastic future default rates using a model that relies on mean-reverting properties calibrated to the 
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historical properties of historical default rates. The key assumption of this type of model is that default rates 
follow certain stochastic process and therefore the time-series record of actual default rates is a sample path 
generated by that process. Although this approach can be useful for simulation purposes, it constrains us to use 
mean default rates as expected levels of future default rates. To derive a statistical model with predictive power, 
others have adopted an alternative approach that incorporates econometric factors leading default. Examples 
include linear models detailed in Fons (1991), HelIge and Kleiman (1996), Jonsson and Fridson (1996). These 
authors have identified macroeconomic variables of explanatory power whose effectiveness is evaluated by 
calculating root-mean-squared errors between predicted and obtained default rates. An alternative model 
proposed by Keenan, Sobehart and Hamilton (1999) incorporates the effect on default rates of changes in the 
universe of issuers, both in terms of their credit ratings and the time since they first came to market (the “aging 
effect”). Their model also captures macroeconomic conditions as measured by the industrial production index 
and interest rate variables. Finally, Hampden-Turner (2009) has developed statistical models to predict future 
default rates from one to twelve months using least-squares regression and vector autoregressive models.  

Unfortunately, most existing models that show good performance, including the Hampden-Turner (HT) model, 
are validated in-sample. However, I find most studies do not evaluate out-of-sample forecasts over a suitably 
long period (e.g., cover an entire credit cycle), and it remains unclear how well these models perform, especially 
in periods of high default rates. In this paper, I first describe the Hampden-Turner model, pointing out its 
advantages and limitations. Then, building upon the HT framework, I apply statistical approaches to address that 
model’s limitations, while also explaining out-of-sample validation on the enhanced model. Finally, I show how 
an accurate model of default prediction can provide useful information regarding the attractiveness of investment 
in high yield corporate debt. 

2. The Hampden-Turner Default Model 

Since my model takes its starting point from the Hampden-Turner formulation, I present that model briefly in 
this section. The HT default model fits and predicts monthly default rates using lagged versions of the following 
four predictors: 

 Libor Slope: designated as LIB, which is the yield spread between 10-year and 3-month LIBOR rates 
divided by the term difference between 10 years and 3 months (i.e., 10.0-0.25) (Note 2). 

 The U.S. Lending Survey: denoted LS. The U.S. Federal Reserve sends lending surveys quarterly to 
gather opinions from banks’ senior loan officers on bank lending practices. The survey estimates the net 
percentage of domestic banks tightening standards for commercial and industrial loans to large and 
middle-market firms. Banks tighten loan standards when financial conditions are deteriorating or are 
expected to worsen, thus leading to tougher environment for high yield credits and higher default rates. 

 The U.S. Funding Gap: denoted FG. FG is “the macroeconomic equivalent of final free cash flow. It is the 
net cash flow a company receives (or requires) after capital expenditures, dividend payments, mergers and 
acquisitions, and net equity issuance. FG is typically negative in a bull market, indicating that 
corporations’ need to increase financing, and positive in a bear market, as consolidation occurs and 
spending is reduced.   

 GDP Quarter-over-Quarter Growth: designated as GDP. GDP is the market value of all officially 
recognized final goods and services produced within a country in a year. GDP growth is indicative of 
strong economic conditions, portending good corporate performance and vice versa. 

Of the four input variables, only LIB is collected monthly, while the other inputs are available quarterly. The HT 
model uses a simple linear interpolation to generate monthly values for variables LS, FG, and GDP to be paired 
with monthly values of LIB between their quarterly updates. For example, to interpolate the value of GDP for a 
given prediction month t one month after the last GDP update at t-1, I use GDPt-1 and the corresponding value of 
GDPt+2 that will be reported next. That is,  

                             (1) 

Similarly, 

                        (2) 

Because of the linear interpolation, calculation of monthly data at time t requires data ahead at time t+2. As a 
result, the predictor values at time t can only be used to predict default rates later than t + 1 or t + 2 unless it is a 

GDPt 
GDPt2 GDPt1

3
GDPt1

GDPt1  GDPt2 
GDPt2 GDPt1

3
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 t 1  t8  2  t12  3  t24  4  t48 
1 LIBt4  2 LIBt8  3 LIBt12  4 LIBt24 
 1 LSt4  2 LSt8  3 LSt12  4 LSt24 
1 FGt4  2 FGt8  3 FGt12  4 FGt24 
1 GDPt4 2 GDPt8 3 GPDt12 4 GDPt24 

              (5) 

Since the longest lag is for default rates 49 months prior, the first month of prediction requires 49 months of 
previous default rates (i.e., t ≥ 49). Unlike the lagged linear regression, the minimum lag in the VAR formula is 
four months. Therefore, in order to make 12 out-of-sample predictions of гt, I need predictions of LIB, LS, FG as 
well as GDP at least for months five through twelve. HT proposes to fit a VAR model to each of these time series. 

For example, LIB


ti  (1 i  4) can be predicted by fitting the following VAR up to time t: 

LIBt 1 DRt8  2 DRt12  3 DRt24  4 DRt48 
b1 LIBt4  b2 LIBt8  b3 LIBt12  b4 LIBt24 
c1 LSt4  c2 LSt8  c3 LSt12  c4 LSt24 
d1 FGt4  d2 FGt8  d3 FGt12  d4 FGt24 
e1 GDPt4  e2 GDPt8  e3 GPDt12  e4 GDPt24  f

              (6) 

Then, to predict LIBt j  (5 j  12), HT treats LIB


ti  (1 i  4) as already observed data and applies the VAR 

formula in Equation 6 iteratively to generate estimates of LIB for months five through twelve. Otherwise, the 
general training procedure for the VAR model is similar to that for the OLS predictions in Figure 4 for which the 
model is trained up to the end of each year and used to predict trailing 12-month default rates for each month in 
the following year. The resulting estimated trailing 12-month default rates from the VAR model and actual 
default rates appear in Figure 6.  

 

 
Figure 5. Actual default rates (dark blue) along with fitted and predicted monthly default rates via 

Hampden-Turner's vector autoregressive model 

 

3. Issues with the Hampden-Turner OLS and VAR Models 

There are two statistical issues related with the linear and VAR regression models as implemented in the 
Hampden-Turner model. First, I find that both models may give rise to negative default rate predictions. In 
addition, I observed that although the VAR model performs well fitting default data in sample, it exhibited poor 
out-of-sample prediction performance. For example, Figure 7 shows actual default rates from 1996 to 2013 and 
out-of-sample predictions from the VAR model (left panel) and the OLS regression (right panel). Neither the 
VAR or the OLS model capture the actual annual rates well and both models predict negative annual default 
rates in year 2006. Also, comparison of out-of-sample performance in Figure 7 shows that the simple lagged 
regression performs better than the VAR model at predicting annual default rates. 
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Despite the advantage of predicted default rates over trailing default rates for estimating changes in high yield 
spreads over the next year, neither predictor is satisfactory. A more relevant question for potential investors in 
high yield bonds is, “How much yield will I receive for taking on a given level of default risk?” For example, 
even if default rates are relatively high, an investor may be well compensated by outsized yield spreads to 
Treasuries (e.g., think 2009). Conversely, if spreads are tight, defaults may be low and investors may still earn 
attractive returns owing to few defaults. Consider the historical series of average high yield corporate bond 
spreads in the top panel of Figure 13. Clearly, spread levels vary widely over the cycle. However, the absolute 
level of spreads does not indicate whether investment in high yield is attractive nor provides reliable signals 
regarding the future direction of spread moves. A large determinant of those returns depends on the expected 
default rate over the investment horizon. 

To determine if the ratio of high yield spreads to default provides useful information to investors, I first plotted 
ratios of average high yield spreads to predicted default rates from the HT-2.0 model since 1995. These appear in 
the lower panel of Figure 13 (Note 6). The assumption is that the ratio of the current high yield spread to 
predicted default rate is indicative of the attractiveness of high yield returns. Consider first the left-hand panels 
of Figure 14. The upper panel shows one-year changes in high yield spreads as a function of ratios of the current 
high yield average spreads to trailing 12-month default rates. In that plot, the green circles represent changes in 
spreads when the spread-to-default ratios are below average, with the orange squares plotting changes when the 
ratios are above average. Points are determined monthly, with the vertical blue line showing the average 
spread-to-default ratio over the period from 1995 to 2013. The scatterplot reveals that ratios using the current 
trailing 12-month default rate have little ability to forecast high yield spreads one year later. This is confirmed in 
the bar chart in the lower left-hand panel that presents probabilities of spreads widening or tightening if the ratio 
of high yield spreads to trailing default rates are above average or below average, respectively. That is, 
probabilities of spreads widening or tightening are independent of the ratio of high yield spread to current default 
rate (i.e., probabilities are roughly 50% for all ratios), falling at or near the dashed chance performance line. 

 

 
Figure 13. Comparison of predicted changes in high yield spreads based on current default rates (left panels) or 

predicted default rates (right panel). percentages of falling in each cell and average spread changes are also 
shown 
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In contrast to the results using ratios of spreads to trailing default rates, the panels on the right in Figure 14 
demonstrate that ratios of spreads-to-default using predicted 12-month default rates are highly related to 
one-year changes in high yield spreads. That is, when ratios of high yield spreads to predicted default rates are 
above average, high yield spreads one year later are tighter 85% of the time. When ratios are below average, 
spreads are wider 65% of the time. The histogram of percentages of spreads widening or tightening as a function 
of the spread-to-default ratio in the lower right panel of Figure 14 confirms the above-chance performance over 
the entire range of ratios. The figure also reveals that the size of the ratio has little effect on directional accuracy, 
except if the ratio is above or below zero. In particular, notice how the directional changes in spreads reverse 
from widening to tightening on either side of the average spread-to-predicted default ratio. Finally, note that 
when there are "errors" in the signal from the spread-default ratio (i.e., spreads tightening when ratios are below 
average and vice versa), average "losses" are smaller than average gains when "correct." For example, when the 
spread-to-default ratio is above average, the average spread tightening is 203bp, whereas when spreads rise, they 
rise only 114bp on average. In fact, given the spread-to-predicted default ratio in December 2013 indicated by 
the circle in upper right panel of Figure 14, the expected spread tightening by December 2014 is: 

84% (203bp)   [16% (114bps)] 152bps  

Similarly, if the ratio of high yield spreads to predicted default is less than average, then historical analysis 
suggests that the average high yield spread will widen by: 

65% (247bp)  [15% (162bps)]  121bps  
The results presented in Figure 13 and Figure 14 are intended to demonstrate the usefulness of modeling 
predicted default rates. I will continue to update my twelve-month default predictions on a monthly basis and use 
the model for my simulations of expected losses from default on credit portfolios. 

7. Summary 

I described a model for predicting 12-month default rates and examined its performance in out-of-sample testing 
since 1994. The default forecasting model is called HT-2.0 as it is an extension of the model first described by 
Hampden-Turner (2009). HT-2.0 takes market prices and economic indicators as inputs and generates monthly 
default rate predictions for the next twelve months. The paper begins by providing some perspective on historical 
default rates and includes a brief discussion of previous attempts to forecast corporate default rates. I next 
described in detail the original Hampden-Turner model and addressed some limitations of that model. These 
include the possibility of the original model to generate negative default rates and that, when I use the model to 
generate out-of- sample predictions, I observe relatively poor performance. I overcame the shortcomings of the 
original HT model in HT-2.0 by adopting a logistic transformation on predicted default rates to avoid negative 
values, by imposing a penalty for large regression coefficients, and by using statistical "pre-whitening" to 
improve estimates of optimal lags for the input variables. I then show the improvement in out-of-sample 
predictions of historical default rates using the HT-2.0 model. 

To demonstrate the usefulness of estimating future default rates, I show how forecasts of future default 
probabilities, but not current default rates, are useful for predicting subsequent changes in high yield credit 
spreads.  
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Notes 

Note 1. High yield firms are those rated below Baa by Moody’s and BBB-by Standard & Poor’s with investment 
grade firms having higher ratings by each agency. 

Note 2. Note that the Hampden-Turner (2009) documentation claims to use the number of high-yield issuers to 
the total number of issuers, but the actual implementation used the LIBOR slope instead. 

Note 3. The Lasso method is one example of regularization methods designed to prevent overfitting by 
penalizing extreme parameter values. Regularization introduces a second factor, in Equation 10, which shrinks 
regression coefficients. For a technical discussion of the Lasso method, see Tibshirani (1996) and Appendix II. 

Note 4. The term “pre-whitening” is used in construction of lagged regressions to minimize the effects of 
co-movements in the x- and y-variables in the lag analysis on the cross-correlation function. 

Note 5. The Bayesian Information Criterion (BIC), developed by Schwartz (1978), measures the variance 
reduction provided by the addition of each variable to the model. In addition, it imposes a penalty for having too 
many variables, thereby guarding against overfitting the data. 

Note 6. The units for default in the numerator of the ratio in Figure 13 are in percent. For the high yield spread in 
the denominator, we use the spread in basis points. For example, for a predicted default rate of 2.3% and a 
current high yield spread of 230bp, we calculate the ratio as  

Note 7. For example, the most salient condition for stationary is that the mean of the series does not change over 
time. For example, an upward or downward drift in the series would imply non-stationary. There are other 
considerations as well. 

Note 8. The Dickey–Fuller test (Dickey and Fuller, 1979) is used to determine whether a unit root is present in 
an autoregressive model. 

 

Appendix A 

Time Series Regression 

To perform time series regressions, it is crucial to determine whether or not the series under consideration are 
stationary over time (Note 7). That is, regressing non-stationary series on non-stationary series may lead to 
spuriously significant regressions. To test if a time series is stationary, I use the Augmented Dickey- Fuller (ADF) 
test (Note 8). 

If I have identified a time series input to be non-stationary, I need to be careful including such series as a 
predictor. Some type of transformation should be applied to make the series more stationary. For example, the 
raw GDP time series may have an upward trend over the long run, so it is better to use, say, the quarterly GDP 
growth instead. This is the approach that I took in the model. I can also apply transformations such as first-order 
difference (for example, the monthly change in a predictor variable), or de-trending a series to avoid predictions 
that appear to fit well in-sample but will have low predictive power in practice. 

 

Appendix B 

Lasso L
1
 Penalty. Linear Regression with L

1
 Penalty—An Introduction to the Lasso 

For a linear regression model with dependent variable yi (i = 1, ... , N), input variables xij (j = 1, ... , p), and 
coefficients 0, 1, ... , p , the ordinary least squares (OLS) estimate of 0, 1, ... , p is given by: 
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̂OLS  argmin (yi0
xij j )

2

j1

p


i1

N

                               (13) 

Although the fitted coefficients of the OLS regression are unbiased, they may suffer from ill-posed conditions 
and complicated correlation structure among variables. In addition, if my focus is on time-series regression, the 
fitted coefficients may be unstable over time, leading to unintuitive changes in the fitted values over different 
training periods. Modern regularization techniques such as the lasso (L

1
) attempt to overcome these problems by 

seeking a sparse solution by inclusion of a L
1
 penalty for the coefficients: 

̂ lasso  argmin (yi  0  xij j )
2

j1

p


i1

N

                          (14) 

subject to  j
j1

p

  t   

Rewriting Equation AII-2 in an equivalent Lagrangian form, we have 

̂ lasso  argmin
1

2
(yi  0  xij j )

2

j1

p

    j
j1

p


i1

N










                 (15) 

Since the L
1
 constraint makes the solution to the optimization problem nonlinear in yi , no closed-form solution 

exists. However, one can use quadratic programming to compute the lasso solution, and efficient algorithms are 
developed to generate the entire path of solutions with varying λ (Hastie, Tibshirani and Friedman, 2008). 

Note that t or λ, the so called the shrinkage parameter, plays an important role in controlling the size of the fitted 
coefficients. For example, if t is sufficiently large, the penalty almost has no effect and the lasso estimate is 
essentially the OLS estimate. On the other hand, if t is relatively small, then some of the coefficients would be 
shrunk towards 0. In the extreme case when t=0, all the coefficients will be shrunk to 0 in the optimization 
routine. 

Because lasso tends to shrink many coefficients to 0, it automatically performs variable selection. 

 

Appendix C 

Pre-Whitening. Spurious Correlation and Pre-Whitening for Lagged Regression  

To identify the lags in a lagged time-series regression, a common approach is to examine the plot of the 
Cross-Correlation Function (CCF) between the response time series Yt and input series Xt. Unfortunately, the 
CCF between Yt and Xt may be influenced by the autocorrelation structure of these two series. That is, significant 
cross-correlation between two unrelated time series may be observed as an artifact of strong autocorrelation in 
both series. To avoid reading a spurious relationship between the two time-series, I adopt the “pre-whitening” 
strategy as outlined in the following steps: 

1. Determine a time series model for the X variable. For example, for stationary Xt with mean 0, fit an (ARMA(p, 
q) model to Xt. 

Xt  i Xti 
i1

p

 wt   jwt j
j1

q

                             (16) 

where wt is a white noise series (i.e., independent and identically distributed random series with mean 0 and 
finite variance). Alternatively, one can simplify the above formulation by the backshift operator B as: 

 B Xt  B wt                                 (17) 

where φ(B) and θ(B) are polynomials in B In other words, one can “whiten” the original series Xt by applying the 
filter φ(B)/θ(B): 

 B 
 B  Xt  wt                                     (18) 

The fitted AMRA parameters then lead to the residual : 
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                                    (19) 

One can check the normality assumption by a Quantile-Quantile plot on the residuals. It is not crucial, and often 
not practical to find the exact time series model for X, but filtering X to an approximate white noise series is 
necessary. 

2. Since Y and X are assumed to have a lagged linear relationship, I filter the Y variable similarly by the 
estimated whitening filter from the first step. That is 

                                    (20) 

Note that, in practice, it is easier to filter by AR coefficients only (i.e.,  B   1), so for convenience we may 
want to check if fitting X with an AR process suffices during the first step. 

3. Examine the CCF plot and and identify possible lags for the lagged relationship between Y and X. 
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