
International Journal of Economics and Finance February, 2009

183

Estimating Software Cost with Security Risk Potential

Nur Atiqah Sia Abdullah

Faculty of Information Technology and Quantitative Sciences

University of Technology MARA

40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Tel: 60-3-5521-1175 E-mail: szeyieng@yahoo.com; atiqah@tmsk.uitm.edu.my

Rusli Abdullah, Hasan Selamat, Azmi Jaafar

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

43300 Serdang, Selangor Darul Ehsan, Malaysia

Tel: 60-3-8946-6575 E-mail: {rusli, hasan, azmi}@fsktm.upm.edu.my

Kamaruzaman Jusoff (Corresponding author)

Yale University

Yale’s Centre for Earth Observation

21 Sachem St, New Haven, CT 06511, USA

Tel: 203-432-1384 E-mail: jusoff.kamaruzaman@yale.edu

Abstract

Software houses are now keen to provide secure software as requested by customers’ desire with respect to security and

quality of their products especially related to the software costing estimation in the software development and

implementation environment. Therefore, there is a need to identify the potential security risks while estimating the

application cost. In this paper, we provide a list of potential security risks throughout the system development life cycle

(SDLC). This list provides useful insights for software developers and practitioners in identifying security risks so that

it can be encountered as security cost in the application.

Keywords: Security factor, Software cost estimation, Software metrics

1. Introduction

Software cost estimation (SCE) is very important to estimate the cost that involved in developing software. SCE can

be vary depends on different models. But most of the cost estimation models do not consider the costs that invoke

security while developing software. It is because security is often an afterthought when developing software and is

often bolted on late in development or even during deployment or maintenance (Shanai et al, 2006). Currently, secure

software development has gained momentum during the past couple of years and improvements have been made.

Software houses are now keen to provide secure software as requested by customers’ desire with respect to security and

quality of their products (Jari, 2006).

Besides, a risk discovered late in the project lifecycle becomes a fire to fight. In examining some real-world experiences,

project managers faced project "fires" when risks were not identified during the planning phase. These fires often

resulted in added costs or negative consequences (Frederick, 2006). But, engineering security will substantially raise

software – project cost and there has been wide variation in the amount of added cost estimated by different models

(Colbert et. al., 2004). Therefore, there is a need to include secure software costing while estimating the application

cost. Extended the existing software cost estimation technique is essential in order to calculate the cost that includes

security in application.

2. Overview of Related Works

2.1. Parametric Software Cost Estimation Models

From two decades, many studies that comparing parametric models (Kemerer, 1987; Srinivasan et. al., 1995; Chulani et.

Vol. 1, No. 1 International Journal of Economics and Finance

184

al., 1998; Briand et. al., 1999) for software cost estimation have been published. There are numbers of widely used

parametric models (Symons, 1991; Albrecht, 1979; Boehm, 1981; COSMIC, 2007; Putnam, 1978) are reviewed,

compared and evaluated from many aspects or factors.

Kemerer (Kemerer, 1987) conducted a well-known study reporting on the relative accuracy of four software cost

estimation models includes Function Points (Albrecht, 1979), SLIM (Putnam, 1978), COCOMO (Boehm, 1981), and

ESTIMACS, in being able to predict the actual costs of 15 completed software development projects. The results

indicated that the models require significant calibration, and the study provided insight to the factors affecting modern

software development productivity. Briand et al. (1998) examined the accuracy of data-driven software cost modeling

based on certain criteria and compared organization-specific with multi-organization models. The study assessed and

compared the models based on criteria such as ordinary least square regression, stepwise ANOVA, Classification and

Regression Trees (CART) and analogy. This study urged the need for risk analysis to be an integrated part of software

cost estimation procedures (Briand et al., 1998).

Colbert et al (Colbert et. al., 2004; Colbert et. al., 2006) have developed a model for costing secure software-intensive

systems (COSECMO), which extended from COCOMO II. COSECMO is based on behavior-analysis activities, such

as analyzing industry practices with respect to security, 149 Security Targets that registered on the National Information

Assurance Partnership (NIAP) website and conducting preliminary surveys of experts in software development and in

security. COSECMO introduces a new cost driver (Wu et. al., 2006) and defines guides for setting other COCOMO

drivers when costing the development of a secure system. Our current study makes the contribution of evaluating the

common software cost estimations models like FPA, MkII, COCOMO II, SLIM and COSMIC-FFP from the security

aspects.

2.2 IFPUG 4.1

In Albrecht Function Point Analysis (FPA) (Albrecht, 1979; Longstreet, 2008, Longstreet Consulting Inc, 2008), there

are two parts in the measurement, which are Unadjusted Function Point and Adjusted Function Point. First part

consists of five components, which are External Inputs (EI), External Outputs (EO), External Inquires (EQ), Internal

Logical Files (ILF) and External Interface Files (EIF), and these components are evaluated by complexity weights.

The second part is 14 General System Characteristics (GSCs) that measured on a six point scale. The GSCs are

presented in Table 1. Based on the manual (Longstreet, 2008), the security factors are not highlighted in FPA. Existing

FPA lacks in emphasizing on security costing in developing application. Besides, the issue of security is discussed by

the users. The discussions include the sample scenario, user request, technical design, scenario resolution, and general

discussion about user security file, access profile file, external inputs, external outputs, external enquiries and

contributions to measurement (Total Metrics, 2001).

From Table 1, there are no security factors or risk assessments listed in the first level of the GSCs. However, the

security factors are slackly considered in the second level of GSCs (as shown in Table 2). Therefore, any software that

contains security coding or schemes, the existing FPA will not be able to estimate the cost that invoked by the built-in

security coding in the software. This added cost is important because highly-secure software will increase costs based

on the different models.

2.3 Software Life Cycle Model (SLIM)

Software Life Cycle Model (SLIM) is developed by Putnam (Putnam, 1978). It used validated data from over 2600

projects from industry, which stratified into nine application categories raging from microcode to business systems from

IBM Canada Ltd. Laboratory. There are three inputs in SLIM, consists of software size, process productivity

parameters, and management constraints. Software size is calculated by using Source Line of Code (SLOC), Function

Points, Modules and Uncertainty. Process Productivity consists of methods, skills, complexity and tools.

Management Constraints are maximum people, budget, schedule and required reliability.

These three inputs go through three main processes to get the minimum possible schedule, evaluate practical

alternatives and optimum estimate to meet constraints. As the outputs for SLIM, there are four graphs namely Staff v.s

Time, Cumulative Cost vs. Time, Probability of Success vs Time and Reliability vs. Time. This concept supports the

SLIM tool for two important management indicators, which are Productivity Index and Manpower Buildup Index

(Panlilio, 1994). Therefore, in Putnam’s SLIM, there is no emphasis on the security aspects throughout the system

development.

2.4 COSMIC-FFP

The new release COSMIC-FPP (COSMIC, 2007) has changed this method’s name to COSMIC Method. COSMIC

provides a standardized method of measuring a functional size of software from the functional domains commonly

referred to as business application (or MIS) software and real-time software.

The COSMIC measurement method involves applying a set of models, principles, rules and processes to the Functional

International Journal of Economics and Finance February, 2009

185

User Requirements (or ‘FUR’) of a given piece of software. The general measurement process consists of three

phases, which are the Measurement Strategy Phase, the Mapping Phase, and the Measurement Phase. During the

Measurement Strategy Phase, four elements are identified, which are purpose, scope, functional users and level of

granularity of the software. The Mapping Phase identifies functional processes, data groups (Entry, Exit, Write and

Read data) and data attributes. The last phase is the Measurement Phase. The data movements of each functional

process are identified and measured by 1 Cosmic Function Point as the size of one data movement. Then, aggregate

the measurement results to get the size of the software. (COSMIC, 2007). Throughout the measurement, the security

aspect is slightly mentioned as one of the examples in the Environment Constraints in Functional User Requirements

(FUR). Therefore, if a software contains security coding or schemes, the existing COSMIC will not be able to

estimate the cost that invoked by the built-in security coding in the software.

2.5 COCOMO II

COCOMO (COnstructive COst MOdel) which created by Barry Boehm is currently established to COCOMO II.2000

(Boehm, 1981; Boehm et. al., 2000). The full COCOMO II model includes three stages. Stage 1 supports estimation

of prototyping or applications composition efforts. Stage 2 supports estimation in the Early Design stage of a project,

when less is known about the project’s cost drivers. Stage 3 supports estimation in the Post-Architecture stage of a

project.

From the Effort Estimation Equation, COCOMO II (Boehm, 2000) considers the Effort Multipliers, size by using

source line of code and adjusted function points, scale factors, and adaptation adjustment factors. Effort Multipliers

includes product attributes, platform attributes, personnel attributes, and project attributes. These attributes are as

follows:

Product Attributes

Required software reliability (RELY) Product complexity (CPLX)

Database size (DATA) Required Reusability (RUSE)

Documentation match to life-cycle needs

(DOCU)

Platform Attributes

Execution time constraint (TIME) Platform volatility (PVOL)

Main storage constraint (STOR)

Personnel Attributes

Analyst capabilities (ACAP) Platform experience (PLEX)

Applications experience (APEX) Programming language experience

(LTEX)

Programmer capabilities (PCAP) Personnel Continuity (PCON)

Project Attributes

Use of software tools (TOOL) Multisite Development (SITE)

In additional to the 16 adjustment factors, there are two user defined factors, which their initial values are set to 1. In

this version of COCOMO, the security aspects are not listed in the calculation. However, Expert COCOMO (Boehm et.

al., 2000) aids in project planning by identifying, categorizing, quantifying, and prioritizing project risks. It used an

automated heuristic method for conducting software project risk assessment.

2.6 Mk II FPA

Mk II Function Point Analysis (Mk II FPA) (Symons, 1991; UKSMA, 1998) is one of the most widely used SCE that

managed by United Kingdom Software Metrics Association (UKSMA). It is a method for the quantitative analysis

and measurement of information processing applications. It quantifies the information processing requirements

specified by the user to provide a figure that expresses a size of the resulting software product. This size is suitable for

the purposes of performance measurement and estimating in relation to the activity associated with the software product

(UKSMA, 1998). Mk II FPA measures the functional size based on logical transactions concept. Each logical

transaction consists of three components; input across an application boundary, processing involving stored data within

the boundary and output back across the boundary. Besides, MK II measures the influence on the size of the

application of each of 19 (or more user defined characteristics) technical characteristics on a scale of 0 to 5. Refer to

Table 3 for the characteristics (UKSMA, 1998). The sum for all characteristics or Total Degrees of Influence (TDI) is

used to compute Technical Complexity Adjustment (TCA). Function Point Index (FPI):

Vol. 1, No. 1 International Journal of Economics and Finance

186

FPI = Wi * Ni + We * Ne + Wo * No

where

 Wi = 0.58; We = 1.66; Wo = 0.26; Ni = Input Data element Types;

 Ne = Data Entity Types Referenced; No = Output Data Element Types;

Technical Complexity Adjustment (TCA):

TCA = (TDI * C) + 0.65

where

Current Industry Average Value of C = 0.005;

Adjusted Function Point Index (AFPI):

AFPI = FPI * TCA

From Table 3, there is a characteristic related to Security, Privacy, Auditability to measure the level of confidentiality or

security. But the related scores and descriptions are as in Table 4. From Table 4, the scores for security, privacy and

auditability are quite low. Besides, the details of risk assessment or security are not listed here. Therefore, when a

software is embedded with security coding, the existing Mk II might under estimate the cost that invoked by the built-in

security coding in the software.

3. Security standards

There are four security standards that are reviewed in this paper, which are commonly used as guidelines in considering

the security cost in system and web development.

3.1 IT Security Cost Estimation Guide

This Information Technology Security Cost Estimation Guide (Department of Education, 2002) provides the security

cost estimation based on Management Controls, Operational Controls and Technical Controls. For each control, there

are categories of potential security risks that a developer has to estimate while calculating for the security cost. To

effectively use this guidance, the user has to complete the National Institute of Standards and Technology (NIST) Self

Assessment Guide for Information Technology Systems. According to this guide, security must be considered in

integral part of the overall IT infrastructure in order to effectively manage risks. As risks vary by initiative and

fluctuate throughout the life cycle of each system, the necessary costs for security controls will vary as well.

Therefore, risks should be identified according to the life cycle phases during which they will pose the most imminent

threat, as this will largely determine which fiscal year to budget for controls (Department of Education, 2004).

This guide suggested an IT Security Costing Framework. This framework comply with mandated standards of

information system security, and each system, at a minimum, must meet requirements that fall within the following 17

management, operational and technical control categories. Refer to Table 5. These 17 categories align with the 17

elements of IT security identified in the NIST Self Assessment. This guide provides the calculation of costs based on

government employees or contractors rates.

3.2 Common Criteria for Information Technology Security Evaluation

Common Criteria for Information Technology Security Evaluation (CC v 3.1) (CC, 2008) consists of three main parts:

Part 1 – Introduction and general model; Part 2 – Security functional requirements; Part 3 – Security assurance

requirements. This guide is used by COCOMO II to extend its model to COSECMO (Colbert et. al., 2006; Wu et. al.,

2006). This CC philosophy is to provide assurance based upon an evaluation of the IT product or system that is to be

trusted. The assurance classes include configuration management, delivery and operation, development, guidance

documents, life cycle support, tests, vulnerability assessment, protection profile and security target evaluation.

Assurance family from CC v 3.1 lists the following assurance classes to be considered during the security evaluation:

Configuration Management (ACM) Tests (ATE)

Delivery and Operation (ADO) Vulnerability Assessment (AVA)

Development (ADV) Protection Profile Evaluation (APE)

Guidance documents (AGD) Security Target Evaluation (AST)

Life Cycle Support (ALC)

For each assurance family, brief description is provided to help the evaluators to assess the product or system. The

evaluation assurance level is from scale EAL1 to EAL7. For each scale, there are some assurance components to be

evaluated (CC, 2008).

3.3 The Open Web Application Security Project (OWASP)

The Open Web Application Security Project (OWASP) (OWASP, 2008) is a worldwide free and open community

International Journal of Economics and Finance February, 2009

187

focused on improving the security of application software. It is an open community dedicated to find and fight the

causes of insecure software. It is a guide for building secure web applications and web services. OWASP has chosen

Microsoft’s threat risk modeling process as it works well for the unique challenges facing application security.

OWASP guidelines list the following aspects to be considered:

Threat Risk Modeling Canoncalization, Locale and Unicode

Handling e-Commerce Payments Error Handling, Auditing and Logging

Phishing File System Protection

Secure Web Services Buffer Overflows

Authentication Administrative Interfaces

Authorization Cryptography

Session Management Configuration

Data Validation Maintenance

Interpreter Injection Denial of Service Attacks

OWASP guidelines help to encounter the causes of the insecure software. It lists the risk factors that potentially attack

an application. This security factors should be considered during the application development. Furthermore, these

factors should evolve some costs in developing secure software (OWASP, 2008).

3.4 Control objectives for information and related technology (COBIT)

Control Objectives for Information and related Technology (COBIT) (ISACA, 2008) provides good practices across a

domain and process framework and presents activities in a manageable and logical structure. COBIT’s good practices

represent the consensus of experts. These practices will help optimize IT-enabled investments. One of the objectives

of COBIT is to ensure IT risks are managed appropriately. Therefore, the focus area includes risk management, which

requires risk awareness. COBIT is a process-oriented and controls-based framework. There are five IT Governance

focus areas, which are namely strategic alignment, value delivery, risk management, resource management and

performance management. It is organized according to IT process like plan and organizes, acquire and implement,

deliver and support, monitor and evaluate. During plan and organize, the user of this guide has to assess and manage IT

Risks (P09). In the process of Acquire and Implement, the user has to Acquire and Maintain Technology Infrastructure

(AI3). The most important process that related to security is Deliver and Support, which includes Ensure Continuous

Service (DS4) and Ensure Systems Security (DS5). The aspects and considerations of COBIT are as follows:

PO2 Define the Information Architecture DS5 Ensure Systems Security

PO3 Determine Technological Direction DS11 Manage Data

PO9 Assess and Manage IT Risks DS12 Manage the Physical Environment

AI2 Acquire and Maintain Application

Software

ME2 Monitor and Evaluate Internal

Control

AI3 Acquire and Maintain Technology

Infrastructure

DS13 Manage Operations

DS4 Ensure Continuous Service

4. Methodology

This methodology produces the proposed potential security factors. It consists of:

a. Review on the existing software cost estimation models such as Mk II, COSMIC-FFP, COCOMO II, SLIM and FPA,

concentrating on the security aspect.

b. Review four security standards that related to IT and development like IT Security Guidelines, CC v 3.1, COBIT 4.1

and OWASP, for identifying the potential security factors that can be included in software cost estimation.

c. Integrate the lists from four security standards and categories the items into lists according to a proposed potential

security factors.

Matching the proposed potential security factors in System Development Life Cycle (SDLC), which include Plan,

Design, Code, Test and Deploy.

5. Results and discussions

The integrated list of proposed potential security factors is combined from four security standards and organized

according to the software development life cycle as shown in Table 6. All these lists are integrated according to the

steps and proposed potential security factors in Table 6. This integrated list forms a framework that helps the practitioners and developers

Vol. 1, No. 1 International Journal of Economics and Finance

188

to consider the potential security risks while planning for an application (Refer to Figure 1).

List for Security Requirements (SR)

Specification of Management Risk Analysis PHP Guidelines

Abuse Cases Management of IT

Security

Functions

Threat Risk Modeling Security Rules IT Security Plan

List for Security Features (SF)

User Identify Authentication

Management Session Management

Interpreter Injection Cryptography

Authorization Exchange of Sensitive Data

User Attribute Definition Verification of Secrets

Protection of Security Data Integrity

Data Validation

List for Functional Features (FF)

Management Security Handling E-Commerce Payments

Production and Input/Output Controls Configuration

File System Functions Behavior

Web Services Personnel Security

Incident Response Capability

List for Attack Planning (AP)

Phishing

Denial of Service Attacks

Non-bypass Ability of TSP

Malicious Software Prevention,

Detection and Correction

List for Formal Review & Sign Off (FR)

Review of Security Controls

Logical Access Controls

Audit Data Generation

Security Attribute based Access Control

List for Software Security Assurance (SSA)

Security Testing Security Surveillance Security Monitoring

List for Final Security Review & Sign Off (FSR)

Final Review of Security Controls

Final Security Attribute based Access Control

Final Logical Access Controls

Final Audit Data Generation

List for Infrastructure Application Security Measures (ASM)

Security Awareness Security Training Security Education

List for Software Hardening & Application Security Monitoring (SHA)

Hardware Maintenance System Software Maintenance

These potential security factors are able to help the practitioners and developers to estimate the software security costs.

The proposed potential security factors are the factors that might influence the software cost estimation. As mentioned

before, security is often an afterthought when developing software and is often bolted on late in development or even

during deployment or maintenance. Any occurrences that caused by the security aspects will add to the existing

software cost when the developers fix the problems. It is better to discover and estimates the security cost before or

during the development of application. Therefore, this proposed potential security factors is a big help to the

practitioners or developers while designing or developing any application.

6. Conclusions

Software houses are now keen to provide secure software as requested by customers’ desire with respect to security and

quality of their products (Jari, 2006). In examining some real-world experiences, project managers faced project

"fires" when risks were not identified during the planning phase. These fires often resulted in added costs or negative

International Journal of Economics and Finance February, 2009

189

consequences (Frederick, 2006). Engineering security will substantially raise software – project cost and there has

been wide variation in the amount of added cost estimated by different models (Colbert et. al., 2006). Therefore, there

is a need to include secure software costing while estimating the application cost. Based on the review of current

software cost estimation models and security standards, a proposed potential security factors is suggested. This

integrated list can help the software developers to encounter the built-in security factors in the application by estimating

the application cost more precisely.

In the future, extending the existing software cost estimation technique is essential in order to calculate the cost that

includes security in application. We also decide to visualize the integrated list by developing a prototype of software

cost estimation tool and validate it through case studies in the system development companies.

References

Albrecht, A.J. (1979). Measuring application development productivity. In: SHARE/GUIDE: Proceedings of the

IBM Applications Development Symposium, 79:(83-92), 1979.

Boehm, B. (1981). Software Engineering Economics. Englewood CI@, NJ Prentice-Hall, 1981.

Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Modachy, R., Reifer, D., Steece, B. (2000).

Software Cost Estimation with COCOMO II. Prentice Hall, Inc., New Jersey. ISBN 0-13-026692-2, 2000.

Briand, L.C. El Emam K., Maxwell, K., Surmann, D., Wieczorek, I. (1998). An Assessment and Comparison of

Common Software Cost Estimation Models. Technical Report, ISERN TR-98-27, International Software Engineering

Research Network.

Briand, L.C., El Emam, K., Surmann, D., Wieczorek, I., Maxwell, K.D. (1999). An Assessment and Comparison of

Common Software Cost Estimation Modeling Techniques. ICSE ’99:(313-322), Los Angeles CA, ACM 1999.

CC. (2008). Common Criteria for Information Technology Security Evaluation, version 3.1. [Online] Available:

http://www.commoncriteriaportal.org.

Chulani, S., Boehm, B., Abts, C. (1998). Software Development Cost Estimation Approaches – A Survey. University

of Southern California – Computer Science Engineering, 1998.

Colbert E., Wu D., Chen Y., and Boehm B. (2004). Cost Estimation for Secure Software and Systems. University of

Southern California, United States of America.

Colbert E., Wu D., Chen Y., and Boehm B. (2006). Cost Estimation for Secure Software and Systems. University of

Southern California, USA.

Common Software Measurement International Consortium (COSMIC) (2007). The COSMIC Functional Size

Measurement Method Version 3.0 – Measurement Manual. September 2007

Department of Education, USA. (2002). Information Technology Security Cost Estimation Guide. November 2002.

Frederick, L. (2006). The Importance of Identifying Risk during Project Planning. In Ackermann, D., Project

Management In Practice, Boston University, Metropolitan College, The 2006 Project Risk and Cost Management

Conference, Commonwealth Avenue.

ISACA. (2008). Control Objectives for Information and related Technology (COBIT) – Framework, Control

Objectives, Management Guidelines, and Maturity Models. IT Governance Institute, USA.

Jari, R, (2006). Contracting over the Quality Aspect of Security in Software Product Markets, University of Lapland,

Rovaniemi, Finland. ACM Press, Oct 2006.

Kemerer, C.F. (1987). An empirical validation of software cost estimation models. Communications of the ACM vol.

30, no. 5, 416-429, May 1987.

Longstreet Consulting Inc. (2008). [Online} Available: http://www.SoftwareMetrics.com

Longstreet, D. (2008). Function Points Training and Analysis Manual. ISBN: 0-9702439-3-6, Jan 2008.

OWASP. (2008). The Open Web Application Security Project – A Guide to Building Secure Web and Web Services.

Black Hat 2nd Ed.

Panlilio N.Y. (1994). Software Estimation Using the SLIM Tool. IBM Canada Ltd Laboratory Technical Report TR

74.102.

Putnam, L.H. (1978). A general empirical solution to the macro software sizing and estimation problem. IEEE

Transactions on Sofiware Engineering, ~01.4, no. 4, 345-381, July 1978.

Shanai Ardi, David Byers, Nahid Shahmehri (2006). Towards a Structured Unified Process for Software Security,

ACM Press, May 2006.

Vol. 1, No. 1 International Journal of Economics and Finance

190

Srinivasan, K., Fisher, D. (1995). Machine learning approaches to estimating software development effort. IEEE

Transactions on Software Engineering, Vol. 21, no. 2, 126-137, February 1995.

Symons, C. (1991). Software Sizing and Estimating – Mark II FPA. Wiley Series in Software Engineering. John

Wiley and Sons, U.K., ISBN 0-471-92985-9, 1991.

Total Metrics. (2001). [Online] Available: http://www.totalmetrics.com

United Kingdom Software Metrics Association (UKSMA). (1998). Mk II Function Point Analysis – Counting

Practices Manual Version 1.3.1. September 1998.

Wu, D., and Yang, Y. (2006). Towards An Approach for Security Risk Analysis in COTS Based Development. Center

for Software Engineering, University of Southern California, Los Angeles, CA. Proceeding of Software Process

Workshop on Software Process Simulation.

Table 1. List of General System Characteristics (GSCs)

Characteristics Brief Descriptions

Data communications How many communication facilities are there to aid in the transfer or

exchange of information with the application or system?

Distributed data processing How are distributed data and processing functions handled?

Performance Did the user require response time or throughput?

Heavily used configuration How heavily used is the current hardware platform where the application will

be executed?

Transaction rate How frequently are transactions executed daily, weekly, monthly, etc.?

On-Line data entry What percentage of the information is entered On-Line?

End-user efficiency Was the application designed for end-user efficiency?

On-Line update How many ILF’s are updated by On-Line transaction?

Complex processing Does the application have extensive logical or mathematical processing?

Reusability Was the application developed to meet one or many user’s needs?

Installation ease How difficult is conversion and installation?

Operational ease How effective and/or automated are start-up, back up, and recovery

procedures?

Multiple sites Was the application specifically designed, developed, and supported to be

installed at multiple sites for multiple organizations?

Facilitate change Was the application specifically designed, developed, and supported to

facilitate change?

This list of 14 General System Characteristics (GSCs) is being measured as part of the Adjusted Function Point

Analysis. The characteristics are measured on a six point scale, which is from 0 to 5.

Table 2. Security features and descriptions in the second level of GSCs

Feature Characteristic Descriptions / Second Level

Security Heavily Used Configuration Some security or timing considerations are included.

Complex Processing Sensitive control (for example, special audit processing) and /

or application specific security processing

This table shows the characteristics and descriptions that related to security factors. There are only two GSCs that

have concerned in security factors in their second level. Heavily Used Configuration has a score of 2 for its second

level while Complex Processing has a score of 3.

International Journal of Economics and Finance February, 2009

191

Table 3. Technical Characteristics

Characteristics Brief Descriptions

Data communication Data and control information use communication facilities

Distributed Function Application spread over two or more processors

Performance Application response/throughout influence the application

Heavily used configuration The equipment that will run the application is already heavily used

Transaction rates The high rate of arrival of transactions causes problems beyond those of

Performance

On-Line data entry Terminal used for input

Design for End-user

efficiency

Human factors considered in design

On-Line update Data updated in real time

Complexity of processing Internal complexity beyond that dealt with by entity counting conventions

Usable in Other

Applications

The code is designed to be shared with or used by other applications

Installation ease Data conversion and ease of installation were considered in design

Operations ease Ease of operation was considered in design

Multiple sites The application is to be used in many sites and/or many organizations

Facilitate change Future changes to the application a consideration on design

Requirements of Other

Applications

Interfaces

Security, Privacy, Audit

ability

Special features of confidentiality / security

User Training Needs Specific requirements

Direct Use by Third Parties Degree of use/connection to the application

Documentation -

From Table 3, there are 19 technical characteristics on a scale of 0 to 5. These characteristics measure the influence on

the size of the application.

Table 4. Second level of Technical Characteristics

Score Brief Descriptions

1 If the application has to meet personal, possibly legal, privacy requirements

1 If the application has to meet special auditability requirements

2 If the application has to meet exceptional security requirements

1 If encryption of data communications is required

Table 4 shows the second level of Technical Characteristics for Mk II. As noticed, the scores for security, privacy and

auditability are ranged from 1 to 2. There are no details of risk assessment or security listed here.

Vol. 1, No. 1 International Journal of Economics and Finance

192

Table 5. IT Security Costing Framework

Type of Control Categories

Management Risk Management

 Review of Security Controls

 Life Cycle

 Authorize Processing (Certification & Accreditation)

 System Security Plan

Operational Personnel Security

 Physical and Environment Protection

 Production and Input/Output Controls

 Contingency Planning

 Hardware and System Software Maintenance

 Data Integrity

 Documentation

 Security Awareness, Training, and Education

 Incident Response Capability

Technical Identification and Authentication

 Logical Access Controls

 Audit Trails

Table 5 shows the requirements that fall within the 17 management, operational and technical control categories, which

align with the 17 elements of IT security identified in the NIST Self Assessment.

Table 6. Proposed Potential Security Factors in System Development Life Cycle

Step Proposed Potential Security Factors

Plan (P) Security Requirements (SR)

Design (D) Security Features (SF)

Functional Features (FF)

Code (C) Attack Planning (AP)

Formal Review & Sign Off (FR)

Security Coding, Review & Audit (SCR)

Test (T) Software Security Assurance (SSA)

Final Security Review & Sign Off (FSR)

Infrastructure Application Security Measures (ASM)

Deploy (E) Software Hardening & Application Security Monitoring (SHA)

Table 6. shows an integrated list of proposed potential security factors, which is extracted from four security standards.

These potential security factors are organized according to the software development life cycle, which consists of a

cycle of Plan, Design, Code, Test and Deploy.

Figure 1. Proposed Potential Security Factors Framework

This framework is based on phases of SDLC and an integrated list that extracted from four security standards.

SDLC

P

D

CT

E

SR

SF

FF

FR

AP

SCR
FSR

SSA

SM

SHA

