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Abstract 

In this paper we analyze operational risk in case of zero-inflated frequency data. We show that standard Poisson 
distribution does not suit correctly excess zero counts data. Alternatively, Zero-inflated Poisson (ZIP) distribution 
fits better such data. To assess the benefits of the use of ZIP distribution on operational risk management, we 
develop two separate aggregate distributions. The first one is based on standard Poisson distribution and the second 
on ZIP distribution. Note that the severity model is the same for both aggregations. Results show that operational 
capital charge based on standard Poisson distribution is underestimated by 5% at a very high level of confidence 
(99.99%). 

Keywords: operational risk, lda, poisson distribution, excess zeros, over-dispersion, zero-inflated poisson 
distribution, capital charge, basel ii accord 

1. Introduction 

In 1995, Barings bank (233 years) collapsed because of unauthorized speculations led by the trader Nick Leeson 
(Fay, 1996). This event was a starting point for intensified works related to operational risk initiated by Basel 
committee on banking supervision (BCBS). As a result, several definitions of operational risk had emerged 
(Eladlouni, Ezzahid and Mouatassim, 2011). The British Bankers Association, for example, defines operational risk 
as the “risk associated with human error, inadequate procedures and control, fraudulent criminal activities; the risks 
caused by technological shortcomings, system breakdowns; all risks which are not “banking” and arise from 
business decisions as competitive actions, pricing, etc.; legal risk and risk to business relationships, failure to meet 
regulatory requirements or an adverse impact on the bank’s reputation; “external factors” including natural disasters, 
terrorist attacks and fraudulent activity, etc.” (Britich Bankers Association, 1997).  

The definition provided by BCBS (2001b) is the most popular. It defines operational risk as “the risk of loss result-
ing from inadequate or failed internal processes, people, systems, or from external events”. It includes legal risk but 
excludes strategic, reputational and systematic risks. These definitions reveal the complexity of operational risk 
because of its various types and causes. To face this heterogeneity, BCBS (in its document Basel II) identified seven 
types of operational risk: “i. Internal fraud: an act intended to defraud, misappropriate property or avoid regulations, 
law or company policy, excluding diversity/discrimination events, which involve at least one internal party, ii. 
External fraud: an act of a type intended to defraud, misappropriate property or circumvent the law, by an external 
party, iii. Employment practices and workplace safety: an act inconsistent with employment, health or safety laws or 
agreements, from payment of personal grievance claims, or from diversity/discrimination events, iv. Clients, 
products, and business practices: an unintentional or negligent breakdown to meet a professional obligation to 
specific clients (including fiduciary and suitability requirements), or from the nature or design of a product, v. 
Damage to physical assets: the loss or damage to physical assets from natural disaster or other events, vi. Business 
disruption and system failures: disruption of business or system failures, and vii. Execution, delivery, and process 
management: failed transaction processing or process management, from relations with trade counterparties and 
vendors…” (Eladlouni, Ezzahid and Mouatassim, 2011, p. 100). 

In Basel II framework, BCBS recommended to banks to develop more adequate techniques to identify, assess, 
control and mitigate the consequences of operational risk. In pillar I of Basel II, BCBS recommended to banks to 
determine the minimum capital requirements commensurate with their exposition to risks. For this reason, BCBS 
proposed three approaches: 1. The Basic Indicator Approach (BIA), 2. The Standardized Approach (SA), 3. The 
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Advanced Measurement Approach (AMA). The basic indicator approach is based on flat percentage (15%) of 
positive gross income over the past three years. Under the standardized approach, banks are required to hold capital 
charge for each business line. Banks’ activities are divided into eight business lines: i. Corporate finance, ii. Trading 
and sales, iii. Retail banking, iv. Commercial banking, v. Payment and settlements, vi. Agency services, vii. Assets’ 
management, viii. Retail brokerage. A flat percentage, ranging from 12% to 18%, is applied to the three-years 
average positive gross income for each business line (Panjer, 2006). The aggregate minimum capital is the sum over 
all business lines.  

The Advanced Measurement Approach (AMA) is based on the collected internal and external loss data. For a bank 
intending to use the AMA, it is required to prove, for each Basel II 56 risk cells (eight business lines × seven risk 
types), its ability to estimate unexpected losses based on the combined utilization of four sources of data: i. Internal 
loss data, ii. External data, iii. Scenario analysis, iv. Business environment and internal control factors (BEICFs). 
The AMA can be implemented via one of the four subsequent techniques: i. Scorecard Approach (SCA), ii. 
Scenario-Based AMA (sbAMA), iii. Internal Measurement Approach (IMA), iv. Loss Distribution Approach (LDA) 
(Karam and Planchet, 2011). Among these techniques, the LDA is the most used. It belongs to the family of 
probabilistic methods. 

In this paper, we will focus on the LDA. To simplify the notation, we shall present LDA for one class of risk which 
is determined by one Basel II risk cell. Mathematical formulation of LDA necessitates the definition of a random 
sum of individual losses: 
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Where S is the aggregate loss,  tN  the number of losses occurring during the period t , and iX  the severity of 

the ith individual loss. Note that  tN  and iX are assumed to be random. The formula (1) shows that the aggregate 

loss can be decomposed into two variables the frequency and the severity of a loss. 

In LDA, it is assumed that: i.  tN  and  ,...., 21 XX  are independent random variables, ii.  ,...., 21 XX is a set of 

independent and identically distributed random variables. Under these assumptions, the cumulative distribution’ 
function of S  is given by: 
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The mean and variance of S  are defined as follows: 

 SE =     XEtNE *  

 SVar =           2** XEtNVarXVartNE   

Four methods can be used to obtain the convolution SF  : i. the Fast Fourier Transforms (Rioux and Klugman, 2004), 

ii. the Recursive algorithm of Panjer (Panjer, 1981), iii. the Monte Carlo Simulation Approach (Rioux and Klugman, 
2004), and iv. the Single-loss Approximation (Böcker and Klüppelberg, 2005). In practice, the required capital 
charge is measured as   100*1  quantile of the convolution SF  over one year period. This quantile is also called 

value-at-risk (VaR) defined as follows: 

 1
/1


  Stt FVaR                                     (2) 

The total capital charge is obtained by aggregating the one year Value-at-Risk measures across all combinations, 
based on the compounded losses. To avoid the over estimation of the total capital charge, the correlations between 
Basel II cells defined within (8 business line × 7 type of risk) should be taken into account (Frachot and al., 2004).  

The remaining of this paper is organized as following. The theoretical framework of Zero-inflated Poisson 
distribution is reviewed in section 2. In section 3, we model operational risk using LDA technique. The type of risk 
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concerned is Damage to Physical Assets (DPA). The frequency is modeled by Poisson and Zero-inflated Poisson 
distributions. The severity is modeled by Weibull distribution. Aggregate distributions and capital charge are 
developed in section 4. 

2. Zero-inflated Poisson Distribution Framework 

Poisson distribution is usually used to model operational risk events. However, the equality of mean and variance, 
assumed by Poisson distribution, is rarely confirmed in practice. Over-dispersion, which is an excess of variance 
from the mean, is due to two causes: heterogeneity of population and excess of zeros. The heterogeneity can be 
detected when population can be divided into sub-populations which are equi-dispersed. The excess of zeros 
phenomenon is shown when observed zeros exceed largely what is expected by a statistical distribution. In 
operational risk, the excess of zeros can be due to two main factors: scarcity of operational losses or the existence of 
a threshold above from which institutions start to collect losses (Chernobai and al., 2010).  

Alternatively, Negative binomial distribution is usually used when over-dispersion is due to heterogeneity of data. 
However, this distribution remains unable to reproduce the number of observed zeros when data are zero inflated. 
An alternative way for modeling count events when zeros are preponderant is zero-inflated Poisson distribution 
(Johnson and Kotz, 1968). This distribution assumes that outcomes are generated by two processes. The first process 
attempts to model zero inflation outcomes by introducing a proportion of 1  for extra zeros and a proportion 

 e  for zeros from Poisson distribution. The second process models the nonzero outcomes by zero-truncated 
Poisson distribution. 

Let  tN  be the number of operational losses occurred during the period t. Johnson and Kotz (1968) defined 

Zero-inflated Poisson distribution for the sequence    TttN 0  as follows: 
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The mean and the variance of the Zero-inflated poisson (ZIP) distribution are given by:      1tNE and

     21tNVar   . Johnson and Kotz (1968) have proposed different approaches using the method of 

moments for estimating the parameter . Martin and Katti (1965) have used the maximum likelihood method to 

estimate the parameters of ZIP distribution. In this paper, maximum likelihood method is used for obataining the 
estimated values of  and  . The likelihood function is: 
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Suppose that N  is the number of outcomes and 0N  is the number of zeros in the data. The likelihood becomes:  
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The log likelihood is: 
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The equilibrium conditions are: 
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Dividing the equation (7) by (8): 
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It is clear that equation  9  is only function of . Hence, numerical algorithms can be used to find the estimated 

value of , denoted by
^
 . The estimated value of , denoted by

^
 , is then determined easily by replacing , in (7) 

or (8), by its estimated value
^
 . 

Singh (1963) found the following formulas: 
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Yoneda (1962) and Johnson and Kotz (1968) have extended the zero-inflated Poisson distribution. They developed a 
general modified Poisson distribution. Under this distribution, any kind of excess in frequency data is allowed, that 
is the values Kn ,...,2,1,0  are inflated counts while the remaining values NKKn ,...,2,1   follow a 
Poisson process (Johnson and al., 1992).  

Lambert (1992) has introduced covariates into Zero-inflated Poisson distribution and has fitted it to defects in 
manufacturing data. Recently, Lambert’s model, called also Zero-inflated Poisson regression, becomes largely used 
in many fields such as public health, epidemiology, psychology and others. 

3. Operational Risk Modeling 

In this section, we develop LDA model for Damage to Physical Assets (DPA). The data set contains daily internal 
events from March 21, 2007 through February 01, 2009. We ignore the notion of business line because of scarcity of 
data. Table 1 shows some descriptive statistics of our data. 

 

Table 1. Descriptive statistics 

Statistics Freq. Severity 

Minimum 0.00 1.22 E+003 

Maximum 5.00 3.32 E+005 

Mean 0.65 4.80 E+004 

Standard deviation 1.09 4.06 E+004 

Median 0.00 4.41 E+004 

Coefficient of variation 1.68 0.84 

Skewness coefficient (Cs) 2.02 2.56 

Kurtosis coefficient (Ck) 4.04 12.19 

 

To compute capital charge using LDA technique, we have to model separately frequency and severity of operational 
losses. For frequency modeling, we fit Poisson distribution and Zero-inflated Poisson distribution. The severity, in 
its turn, is modeled using Weibull distribution. The convolution is determined using the Monte Carlo Simulation 
Approach.  

3.1 Modeling Operational Risk Frequency 

The mean of DPA frequency is 0.654 and the variance is 1.20. We note that the variance is greater than the mean. 
This fact is called over-dispersion in counts data modeling. Since the histogram (see figure1) is highly picked at zero 
values, we conclude that our DPA frequency is zero inflated. The histogram shows, also, that the ZIP distribution 
expects the number of zeros value better than the standard Poisson distribution. To determine an appropriate 
distribution for data, we use two Goodness-of-Fit Tests: QQ plot test and Kolmogorov-Smirnov (KS) test. The first 
one is graphical and the second is analytical. These tests allow testing the equality of the distributions of two 
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to reproduce the observed number of zeros in the sample. It underestimates the observed dispersion. In contrary, the 
number of expected zeros generated by Zero-inflated Poisson distribution is close to the number of observed zeros. 
This power of ZIP distribution emanates from the fact that it assumes a model for zero outcomes and another model 
for nonzero outcomes.  

3.2 Modeling Operational Severity 

Lognormal, Gamma, Weibull, Pareto and other continuous parametric distributions can be candidates for fitting the 
severity of operational risk losses (Frachot, 2001 and Nigel, 2004). If losses are extremes, picks-over-thresholds are 
used (Gourier and al., 2009). For our data, the QQ plot test (See Figure 3) and KS test (D = 0.0734, P-value = 
0.5999) prove that the Weibull distribution is an appropriate distribution for operational risk losses subject of our 
analysis.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. QQ plot test for severity 

 

4. Determination of Capital Charge and Discussion 

In this section, we estimate the capital charge a bank needs for facing the expected losses due to Damage to Capital 
Assets (DPA). The Monte Carlo Simulation Approach is used to calculate the aggregate distribution which combined 
frequency and severity. The steps of the utilized algorithm are: 

Step 1. Generate n  number of losses per day using ZIP distribution or Poisson distribution fitted to internal data. 

Step 2. Generate n  losses severity  nX i ,...,2,1  per day using Weibull distribution fitted to internal data. 

Step 3. Repeat Step 1 and Step 2 - 365 times and do the sum of all generated iX , noted S . 

Step 4. The total annual loss based on internal data is S. 

Step 5. Repeat Step1 through Step 4 a large number of times (1.000.000) for obtaining the aggregate distribution of 
total loss. 

Step 6. The VaR is then calculated as   100*1   quantile of the empirical distribution of total losses. 

To assess the impact of ZIP distribution on the operational capital charge, we constitute two aggregate distributions. 
The difference between them relies in the distribution of frequency data. The first aggregate distribution is 
determined by standard Poisson and Weibull distributions whereas the second is a combinaison of ZIP and Weibull 
distributions. 
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Table 3. VaR for different significance levels 

 

 

 

                  

 

 
Table 3 presents the capital charge for DPA risk for a given significance level (Column 1) estimated by aggregate 
distribution based on standard Poisson distribution (Column 2) and aggregate distribution based on ZIP distribution 
(Column 3). The fourth column gives the ratio (VaR1/VaR2) in order to show the difference between the two models. 
The results in table 3 shows that the capital charge issued from aggregate distribution based on standard Poisson 
distribution is lower than that emanated from model based on ZIP distribution. In addition, the differences increase 
with tolerance level. At 99.99%, the capital charge based on standard Poisson distribution is 5%-lower than that 
based on ZIP distribution. Since both aggregate distributions are based on the same model of severity, these 
differences are due to the distribution used for modeling frequency. As shown above, Standard Poisson distribution 
underestimates the observed dispersion when data are zero-inflated. Thus, the capital charge calculated using 
aggregate model based on it is underestimated and cannot reflect the reality of bank’s losses. 

Other zero-inflated discrete distributions can be utilized for modeling operational risk frequency in the case of the 
preponderance of observed zeros. We cite for example zero-inflated binomial, zero-inflated negative binomial etc…. 
Zero-inflated negative binomial distribution, for example, is preferred when data are over-dispersed due to 
heterogeneity and excess zeros simultaneously.  
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