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Abstract 

In this study we theoretically simulate default risk scenarios under various economic noises. We find that firms 
default more quickly with stronger economic shocks but simultaneously expose higher default probabilities during 
their deterioration, offering traders better visibility. When the macroeconomic environment exhibits positive 
autocorrelation, the volatility of assets’ value increases with corporate creditworthiness, and vice versa. While 
positive autocorrelation forces liquidation more swiftly even for firms with higher risk tolerance, counter-cyclical 
economic movements reduce default risk for firms with greater sustainability. When a series of economic noises 
exhibits higher autocorrelation, although average default probabilities decline, firms tend to default more rapidly, 
making it tougher for traders to predict corporate failure.  

Keywords: Colours of noise, Autocorrelation, Time series, Default risk, Merton Model 

1. Introduction 

It is debated by researchers whether a positively autocorrelated time-series of macroeconomic shocks damages 
corporate default risk more or less than a random sequence of economic noises. On the one hand, positive 
autocorrelation increases the probability of a series of contracting market conditions, implying increasing default 
risk. On the other hand, for any limited time period, the likelihood of at least one extreme harmful event is reduced 
compared with a chain of completely random noises, suggesting decreasing default risk. One should expect that 
positive autocorrelation increases default risk, since a firm may survive a single bad economic event but not a series 
of subsequent downturn conditions. However, positive time-series autocorrelation prevents a single major economic 
catastrophe and therefore decreases default odds. Furthermore, it is not entirely obvious how a negatively 
autocorrelated string of macroeconomic noises affects the creditworthiness of a firm, whether it contributes to or 
rather injures corporate survivability. A negative autocorrelation tends to compensate a destructive economic shock 
with a later constructive noise, thus reducing default risk. In contrast, it also minimizes the chances for successive 
favorable conditions and thus enhances default likelihoods. Moreover, it is still ambiguous whether a short memory 
autocorrelated time-series of economic noises hurts default likelihoods more or less than a longer memory process. 
These are the underlying riddles guiding our current study.  

The financial literature has devoted considerable effort to exploring various issues concerning noise trading. Black 
(1986) describes noise as a phenomenon contrasted with information, but further explains that investors sometimes 
trade on noise, rather than fundamentals, as if it were information. Trueman (1988) provides a theory explaining 
why investors would rationally choose to engage in noise trading. De Long, Shleifer, Summers, and Waldman (1989, 
1990, and 1991) investigate how stock prices respond to irrational noise trading, what the risks, expected gains and 
losses are from noise trading, and how noise traders can optimize their portfolio allocation and thus dominate the 
market. Palomino (1996) demonstrates how in imperfectly competitive markets with risk-averse investors, noise 
traders can expect higher incomes than rational investors. Bhushan, Brown, and Mello (1997) examine different 
noise-trading models and their consequential assets’ prices. Dow and Gorton (1997) present a model for noise 
trading with delegated portfolio management, where managers cannot always identify profitable trading 
opportunities. Kelly (1997) discusses whether noise traders influence stock prices. Brown (1999) shows that unusual 
levels of sentiment among noise traders are correlated with excessive volatility of closed-end investment funds. 
Greene and Smart (1999) investigate whether noise traders provide further liquidity to the capital markets. Gemmill 
and Thomas (2002) show that noise-trader sentiment often leads to fluctuations in the discounted prices of 
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closed-end funds, and Hughen and McDonald (2005) examine who the noise traders are and find no evidence for a 
systematic mispricing by these investors.  

However, prior studies have given secondary attention to the types of noise affecting traders and in particular the 
colours of noise that could impact not only fixed-income investors but also shareholders. In this article we examine 
various colours of time-series economic noise and their long-lasting influence on default risk through theoretical 
computer simulations. Identifying the long-term implications of different colours of noise on corporate default risk 
can assist noise traders, momentum traders, and contrarians to achieve better performance in debt and equity related 
investments. These traders must assess and act upon the unique circumstances underlying the volatility of the market. 
Arnott (2005) quotes Benjamin Graham as saying that “in the short run the market is a voting machine, but in the 
long run it is a weighing machine.”(Note 1) A single economic noise often has a negligible effect on the long-term 
default risk of a firm, yet a time-series of autocorrelated noises could substantially affect this matter.  

We examine five different colours of noise: (1) a white noise, which represents a random macroeconomic shock, (2) 
a red noise, which denotes a positive autocorrelation in a sequence of shocks, (3) a pink noise, which depicts a 
combination of whitened and reddened noises, (4) a blue noise, which illustrates a negative autocorrelation in a 
string of economic shocks, and (5) a black noise, which classifies a longer term dependency and thus an extended 
but reduced shock over a wider time frame than the red noise, for instance. Noise traders often follow white noises, 
different levels of momentum traders are associated with the pink noise, the red noise, and the black noise spectra, 
and contrarians believe in the blue noise type of investment strategy.  

We are motivated to investigate this topic to assist noise traders, momentum players, and contrarians to recognize 
the long-term impact of various macroeconomic shocks on default likelihoods. This link conveys further 
implications on yield spreads of outstanding debt issuances, as well as on expected equity returns. In essence, we 
explore how corporate creditworthiness fluctuates over time through different types of simulated macroeconomic 
shocks and whether a single random shock damages a firm’s survivability more or less than a series of reduced 
noises. Furthermore, the Monte Carlo simulations hereafter allow us to conduct different intra-colour as well as 
cross-colour comparisons.  

Our main findings confirm that in the presence of strong macroeconomic shocks, as opposed to a more stable 
economy, firms tend to default more quickly, but at the same time these firms also reveal higher default probabilities 
on the way to liquidation. Paradoxically, traders enjoy better predictive capabilities under these extreme conditions. 
In addition, we find that when a macroeconomic environment exhibits positive (negative) time-series autocorrelation, 
the expected variance of assets’ value increases (decreases) with corporate creditworthiness. We further realize that 
while positive autocorrelation intensifies already existing trends and therefore forces liquidation more quickly even 
for firms with greater risk tolerance, counter-cyclical economic movements tend to reduce default risk for firms with 
higher sustainability. We also detect that when a series of economic noises exhibits a higher autocorrelation 
although average default probabilities decline, firms tend to default more quickly, thus making it more difficult for 
traders to predict corporate failure. Moreover, a longer memory series with reduced autocorrelation increases default 
likelihoods but simultaneously allows firms to survive over a longer period of time, as opposed to a shorter memory 
series having higher autocorrelation.  

In the following sections we first present a brief theoretical background on the Merton (1974) model for assessing 
corporate default risk. We then describe five time-series colours of noise – the white, the red, the pink, the blue, and 
the black noises – along with their potential impact on default risk. Next, we construct five different computer 
simulations to measure the long-term influence of each colour of noise on corporate survival. Finally, we discuss the 
findings and their economic significance.  

2. The Merton Model 

Merton (1974) presents a model in which a firm’s equity can be considered as a European call option on the firm’s 
assets. The model can be simplified by assuming that the firm has one zero-coupon bond outstanding, which 
matures at time T. Because the model considers only one debt time to maturity, academicians and practitioners often 
employ the Macaulay duration to combine various debt components into a single maturity. The Merton model 
defines the following variables: V0 as the market value of the firm’s assets today, VT as the stochastic market value 
of the firm’s assets at time T, E0 as the value of the firm’s equity today, ET as the value of the firm’s equity at time T, 
D as the deterministic total amount of debt due to be repaid at time T, V as the volatility of assets’ return, E as the 
volatility of the firm’s equity, and rf as the risk-free interest rate.  

If VT < D, the firm cannot service its debt and defaults at time T, and then the value of the equity becomes zero. 
However, if VT > D, the firm pays back its outstanding debt at time T, and its equity value becomes VT – D. Thus, 
the value of the firm’s equity at time T can be written as  
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The firm’s equity is therefore a European call option on the market value of assets, with the total amount of debt due 
to be repaid at time T as the exercise price. The Black-Scholes (1973) model solves the value of the firm’s equity 
today as follows:  
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The Black-Scholes options model considers Φ(d2) as the probability for an option to be exercised, where Φ(.) is the 
cumulative distribution function (CDF) of the Normal distribution. In the Merton (1974) model context, Φ(d2) is the 
risk-neutral probability that the firm does not default, so 1 - Φ(d2) = Φ(-d2) is the likelihood that the firm defaults on 
the debt. An increase in V causes a decrease in d2. As (-d2) increases, the risk-neutral probability for the firm to 
default on the debt Φ(-d2) increases as well. We later examine these relations with respect to the volatility of assets’ 
return as derived by different time-series colours of noise.  

In the standard Merton model Vt and V are not directly observable but can be postulated. Jones, Mason, and 
Rosenfeld (1984) find the probability for a public company to default on the debt Φ(-d2) by solving two equations 
with two unknowns. The first equation is the interpretation of the Black-Scholes formula for the value of a firm’s 
equity as in equation (2), and the second necessary equation compares the diffusion coefficients from the equity 
value dynamic and the one from the Itô’s lemma for equity movements:  
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Hull, Nelken, and White (2004) present a different approach to estimate the volatility of assets’ return V by using 
the implied volatility from existing options on the firm’s traded stocks. In practice, however, Moody’s avoids 
solving these simultaneous equations, since the model linking equity and asset volatility holds only instantaneously. 
Crosbie and Bohn (2003), and Bharath and Shumway (2004) discuss an alternative and preferable method to 
calculate Vt and V through sequential iterations.  

Numerous studies including Ronn and Verma (1986), Kealhofer (2003), and Vassalou and Xing (2004) have 
adopted the Merton model to assess corporate default risk. We therefore utilize here the Merton model to measure 
default risk.  

3. The Colours of Noise 

A stochastic process such as the one describing the market value of corporate assets can be affected by different 
“colours” of noise, analogous to the colours of a light spectrum. For instance, white noise, like the white light, 
consists of an even mixture of variation over all frequencies with no memory of past events. This is an entirely 
stationary dynamic. One can simulate a white noise by adding a normally distributed random variable to the mean 
value of the parameter in question for each time step, hence to command a zero autocorrelation within the 
time-series dimension. In the traditional Merton model only changes in market value of assets are subject to 
stochastic influence; therefore, we examine the behavior of the following AR(1) time-series vibrations:  
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where   denotes a constant parameter scaling the variance of time series,   is a random effect drawn from the 

standard Normal distribution, and   is a constant autocorrelation parameter, but in this case it takes no role in the 
process.  

Similar to the red light, a red noise portrays a mixture with a higher proportion of low-frequency thus long-term 
ingredients. A red noise often describes a dependency on the most recent events. Because of its relations to the 
Brownian motion, the red noise is also called a brown noise. To simulate a red noise one can compute the parameter 
in question at every time interval as a combination of the lagged corresponding value and a random variable with 
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zero mean. To assure that the most recent history continues to dominate this time-series of noises, one must select a 
positive though smaller-than-one constant autocorrelation parameter. In this context, a rising   denotes a stronger 
dependency on the most recent events, for example right after a clear bubble burst. This setting triggers the 
following momentum effect on fluctuations in the market value of assets:  

11   ttt VV                                (5)  
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Between these two extremes, the white and the red noises, lies a whole family of pink noises, which depict more or 
less reddened frequency spectra. The pink noise generally represents common influences of both historical events 
and stationary tendencies. It is therefore considered to be a quasi-stationary process, as its variance grows slowly, at 
a pace proportional to time. One can simulate this class of noises through a wavering autocorrelation parameter 
within the time-series regression, which can preferably allocate higher weight to the white or the red noises, as 
follows:  
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The autocorrelation parameter  1,0t  is no longer fixed, but it varies with time within its quasi-stationary 

domain. For that purpose we appoint the absolute value of the trigonometric function sine with respect to the ratio 
between   and one plus the remainder (using the modulo function) of a fraction of the time. Consequently, the 
autocorrelation cycles repeat themselves once every 36 months. This way, we generate repeated downward sloping 
convex waves for the autocorrelation function with a greater emphasis on the spectrum of colours from white to 
light red.  

A blue noise often expresses a process with similar properties to that of the red noise, yet with a negative rather than 
a positive constant autocorrelation parameter. In reality, negatively autocorrelated noise has great importance, when 
describing for example the mean reversion phenomenon, the investment strategy of contrarians, or common cyclical 
economic movements. In the Merton model context we conduct the following experiment:  
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A black noise portrays a more persistent dynamic with heavy dependency upon its distant past. Because of that, Bak 
and Chen (1991) explain that a black noise process could govern various economic catastrophes, and due to its black 
spectra, if such a major disaster occurs, it could stretch and cluster over a long period of time. We thus utilize the 
next time-series regression with reliance on three prior changes and thus four preceding assets’ values:  
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We would like to further examine how assets’ volatility varies across the different noise processes. Chatfield (2004, 
Chapter 3) shows that the theoretical variance of a stationary time-series of infinite length is:  
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In addition, Heino, Ripa, and Kaitala (2000) develop the expected variance of an autocorrelated sample of length T, 
assuming that T is large enough that initial provisions convey no impact as:  
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For a stochastic process with a white noise, the expected sample variance does not depend on the sample length, and 

in this case   222  sE . If the dynamic exhibits positively (negatively) constant autocorrelated noise, as in 

the red (blue) spectra analysis, its variance is lower (higher) the shorter the sample. Unfortunately there are no 
analytical derivations for the variance of the pink or the black noises. In the latter simulations we contrast the 
theoretical and the expected variances of assets’ value during default processes across and within the three relevant 
noise colours: the white, the red, and the blue.  

4. Monte Carlo Simulations 

For purpose of robustness and to examine intra-colour and cross-colour behavior, we construct five independent 
simulations, one for each colour of noise: the white, the red, the pink, the blue, and the black. Every simulator 
executes 27 different experiments, each one over 60,000 monthly simulated observations. All the simulations derive 
the risk-neutral default probabilities from the traditional Merton (1974) model, with the following origin values: D = 
$100, V0 = {$100, $150, or $200} to proxy different initial corporate creditworthiness, T = 5 years, rf = 5%, and 

V = 0.1 for the first 12 monthly iterations.2 We then compute the annual volatility of assets’ return directly from 

changes in V after the first year by multiplying a moving window standard deviation of historical assets’ returns 

 1/ln tt VV  by the square root of 12.3 We draw a new random number from the standard Normal distribution in 

every time interval for  , and appoint   = {10%, 20%, or 30%} of V0 in all the simulations as a meaningful 

variance scaling constant. We further set   = 0 in the white noise test,   = 0.6 in the red noise test, and   = 

-0.6 in the blue noise test. We also denote 1  = 0.3, 2  = 0.2, and 3  = 0.1 in the black noise analysis. The 

reader should notice that we select these particular quantities to represent a realistic scenario with gradually 
decreasing autocorrelation coefficients, and at the same time we preserve comparable tests by inducing 

321    = 0.6 as in the red noise experiment. Within the pink noise simulation we denote a representative 

function for   as described in equation (6), where we keep tracking the time t.  

We let each of the five simulations run over 60,000 monthly iterations or 5,000 collective years of simulated data. In 
every iteration we compute VVV tt  1 , where the changes V  can be positive, negative, or zero. We set 

three default thresholds based on the maximum default probability Max{Φ(-d2)} ≤ {0.90, 0.95, or 0.99} to represent 
different levels of corporate risk tolerance.4 Given the other model parameters, these three default thresholds cover a 
fairly wide range of ratios between the stochastic market value of assets and the fixed face value of debt.  

Furthermore, to prevent any single firm from becoming disproportionally large through a continuous enhancement 
of assets’ value, and by that to consume too many iterations of the simulation, we limit the growth of all firms to 
three times the initial market value of assets, thus the growth limit = {$300, $450, or $600}, which varies between 
three to six times the face value of the debt. These proportions denote very secure firms, with exceptionally low 
chances to default. To authenticate our findings, in the robustness checks we use other growth limits as well.  

Whenever either a default occurs, hence if Φ(-d2) exceeds the selected default threshold, or when assets’ value 
touches its upper growth limit, the simulation continues with a new firm having the same initial arbitrary values as 
with its predecessor. Because of the misbalance between the distances assets’ value is allowed to shift, either 
towards the upper limit (200% up) or to the lower boundary (near 100% down), we expect a relatively high 
percentage of defaults out of the simulated scenarios. We confirm this presumption when we cap the growth of 
assets’ value at a lower level; thus we place similar constraints on assets’ value to rise or decline not more than 
100%, and we obtain a more balanced proportion of defaults. Due to the repetitive nature of the robustness tests we 
do not report them here, but we further utilize different quantities for the remaining time until maturity T, the risk 
free rate rf, as well as for the face value of debt D. All of the results remain consistent with the ones drawn from our 
main settings.  

5. Results and Conclusions 

In this section we report the key findings of the intra-colour and the cross-colour analyses. We further discuss some 
important economic conclusions, but we first start with the intra-colour investigations. Within each colour of noise 
we hold everything else constant, except for the growth limit, which is set to be proportional to 0V , and alternate 

three variables: the variance scaling parameter  , the initial market value of assets 0V , and the default threshold 

Max{Φ(-d2)}. Each time, we record how three things vary: the average number of years to default (after mapping 
monthly observations to annual records), the mean default probability, and the two measures of volatility 2  and 

 2sE . We summarize the results of these simulations in Tables 1 – 5.  
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Throughout all of the tests we find consistent relations between the time-series variance scaling variable   and the 
credit simulated parameters. When   rises the average number of years to default declines, the mean default 
probability increases, and both volatility measures intensify. These findings suggest that in a more volatile 
environment firms tend to default more quickly. At the same time, as opposed to a more stable economy, with the 
presence of strong macroeconomic shocks, which might be either constructive or destructive, firms portray a higher 
default risk along the way to liquidation. Therefore we can conclude that although default risk rises with the 
intensity of economic noises, so does the predictive power of traders aiming to forecast defaults.  

We also detect coherent results with respect to changes in the original market value of assets. In all of the 
experiments, when 0V  grows, the average number of years to default increases, and the mean default probability 
decreases as expected. However, the volatility measures exhibit interesting patterns. While the theoretical 
time-series variance of infinite length 2  remains fixed throughout the white, the red, and the blue noise 
simulations, the expected variance of length T remains constant in the white noise test, rises at the red noise 
simulation, but declines within the blue noise recreation.  

The reason for that lies within the structure of the formula of  2sE  given in (10) and in particular the ratio of 
elements depending on T. This ratio is smaller than one at the red noise test but bigger than one in the blue noise 
simulation. Both ratios converge to one when T climbs, and therefore the expected variance of a time-series sample 
with an average length T increases with red and decreases with blue spectra noises. We therefore conclude that when 
a macroeconomic environment exhibits positive (negative) time-series autocorrelation, the expected variance of 
assets’ value increases (decreases) with the creditworthiness of a firm, which is captured here by the distance 
between the floating market value of assets and the fixed face value of the debt.  

When the default threshold Max{Φ(-d2)} rises from 90% to 95% and then to 99%, we generally observe a rise in the 
average number of years to default as expected, yet this effect is less pronounced within the red and the black noise 
simulations. These two colours of noise tend to intensify already existing trends and therefore force liquidation more 
quickly even for firms with greater risk tolerance. Furthermore, we detect a tendency of increased mean default 
probability, but merely minor fluctuations at the blue noise test. Therefore, counter-cyclical economic movements 
tend to ease default risk for firms with higher sustainability. Although we find no changes in 2  when the default 
threshold varies, we identify a steady  2sE  within the white noise test, no clear trend with negligible vibrations at 
the red noise experiment, but a continuous decline at the blue noise simulation. This decay is associated with the 
levitation in T.  

We further conduct cross-colour analyses. We match the variance scaling parameter  , the origin market value of 
assets 0V , and the default threshold Max{Φ(-d2)} and compare the average number of years to default, the mean 
default probability, and the volatility measures across the different simulations. In essence, we examine the impact 
of changes in the autocorrelation variable   on these credit simulated parameters.  

Once we sort the simulations according to their autocorrelation levels we find three consistent relations as follows. 
When   rises across the noise colours, the average number of years to default as well as the mean default 
probability simultaneously decrease. This striking evidence suggests that although the chances to default decline, 
firms tend to default more quickly when a series of economic noises exhibits a higher autocorrelation. This means 
that when the economy is more reddened, i.e. with a stronger positive autocorrelation within the sequential 
economic shocks, it would be more difficult for traders to predict corporate failure because of the growing impact of 
a potential extended catastrophe.  

To evaluate whether a single random shock damages a firm’s survivability more or less than a series of reduced 
noises, we compare the red and the black noise simulations. We find that both the average number of years to 
default and the mean default probability are higher within almost all of the black noise tests. We therefore conclude 
that a longer memory series with weaker autocorrelation increases default likelihoods but simultaneously allows 
firms to survive over a longer period of time, as opposed to a shorter memory series having higher autocorrelation.  

In addition, when we evaluate the volatility measures at the blue, the white, and the red noise simulations, we 
observe that when the autocorrelation variable   rises, both the theoretical variance 2  and the expected 
variance  2sE  first decrease but then increase. This non-monotonic behavior of assets’ volatility suggests a higher 
likelihood of extreme fluctuations from economic shocks when conditions are either blue or red, compared to 
markets inherently having random shocks as in the white noise simulation.  
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Notes 

Note 1. Benjamin Graham (1894 – 1976) is considered one of the first advocates of “value investing” and an early 
mentor of Warren Buffett.  

Note 2. Although in practice the remaining time until maturity of the outstanding debt T is gradually decreasing, we 
wish to isolate the effects of economic noises on default risk, and therefore we fix this parameter along the 
simulations, while assuming that firms issue more debt over time and through that maintain a constant weighted 
average time to maturity on their denominated bond issuances.  

Note 3. Alternatively we could have generated daily fluctuations, then scaled it to annual volatility, and further 
calibrated   to be a smaller variance scaling value. But since it often takes many years for firms to default, this 
would have obligated us to considerably increase the number of iterations and to face computation difficulties. In 
addition, we aim the five different colours of noise to represent significant macroeconomic shocks that can alter a 
firm’s market value of assets from various industries and diverse geographic markets, yet these economic shocks 
rarely happen every day. It is therefore more intuitive and more applicable to consider aggregate monthly noises.  

Note 4. Occasionally firms default prior to the moment they are forced to do so by creditors. For example, mall 
owner General Growth Properties filed for chapter eleven on April 16, 2009, while its assets’ value was estimated as 
$29.5 billion and its outstanding debt was merely $27.3 billion.  

 

Table 1. White Noise Monte Carlo Simulations 

    0V  D  

G
ro

w
th

  
  

L
im

it
 

D
ef

au
lt

 
T

hr
es

ho
ld

 

N
um

be
r 

of
 

M
on

th
ly

 
O

bs
er

va
ti

on
s 

T
ot

al
 N

um
be

r 
of

 
F

ir
m

s 

T
ot

al
 N

um
be

r 
of

 
D

ef
au

lt
s 

A
ve

ra
ge

 
N

um
be

r 
of

 
Y

ea
rs

 to
 D

ef
au

lt
 

A
ve

ra
ge

 D
ef

au
lt

 
P

ro
ba

bi
li

ty
 

2  
 2sE

 

             

0 10 $100 $100 $300 90% 60,000 448 336 14.881 0.269 100.00 100.00

0 15 $100 $100 $300 90% 60,000 1,050 819 6.105 0.345 225.00 225.00

0 20 $100 $100 $300 90% 60,000 1,843 1,444 3.463 0.394 400.00 400.00

0 15 $150 $100 $450 90% 60,000 381 287 17.422 0.206 225.00 225.00

0 22.5 $150 $100 $450 90% 60,000 775 571 8.757 0.268 506.25 506.25

0 30 $150 $100 $450 90% 60,000 1,430 1,040 4.808 0.323 900.00 900.00

0 20 $200 $100 $600 90% 60,000 361 262 19.084 0.164 400.00 400.00

0 30 $200 $100 $600 90% 60,000 733 513 9.747 0.215 900.00 900.00

0 40 $200 $100 $600 90% 60,000 1,366 980 5.102 0.293 1,600 1,600 

0 10 $100 $100 $300 95% 60,000 377 284 17.606 0.327 100.00 100.00

0 15 $100 $100 $300 95% 60,000 859 641 7.800 0.386 225.00 225.00

0 20 $100 $100 $300 95% 60,000 1,511 1,140 4.386 0.442 400.00 400.00

0 15 $150 $100 $450 95% 60,000 287 181 27.624 0.209 225.00 225.00

0 22.5 $150 $100 $450 95% 60,000 699 475 10.526 0.296 506.25 506.25

0 30 $150 $100 $450 95% 60,000 1,304 929 5.282 0.356 900.00 900.00

0 20 $200 $100 $600 95% 60,000 306 195 25.641 0.170 400.00 400.00

0 30 $200 $100 $600 95% 60,000 715 487 10.267 0.250 900.00 900.00

0 40 $200 $100 $600 95% 60,000 1,228 869 5.754 0.314 1,600 1,600 

0 10 $100 $100 $300 99% 60,000 315 221 22.624 0.342 100.00 100.00

0 15 $100 $100 $300 99% 60,000 664 466 10.730 0.420 225.00 225.00

0 20 $100 $100 $300 99% 60,000 1,266 898 5.568 0.483 400.00 400.00

0 15 $150 $100 $450 99% 60,000 285 194 25.773 0.245 225.00 225.00

0 22.5 $150 $100 $450 99% 60,000 679 489 10.225 0.325 506.25 506.25

0 30 $150 $100 $450 99% 60,000 1,113 767 6.519 0.395 900.00 900.00

0 20 $200 $100 $600 99% 60,000 294 193 25.907 0.192 400.00 400.00

0 30 $200 $100 $600 99% 60,000 618 407 12.285 0.272 900.00 900.00

0 40 $200 $100 $600 99% 60,000 1,136 767 6.519 0.355 1,600 1,600 
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Table 2. Red Noise Monte Carlo Simulations 
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0.6 10 $100 $100 $300 90% 60,000 2,680 1,560 3.205 0.167 156.25 144.55

0.6 15 $100 $100 $300 90% 60,000 4,280 2,551 1.960 0.218 351.56 309.71

0.6 20 $100 $100 $300 90% 60,000 5,973 3,658 1.367 0.240 625.00 521.82

0.6 15 $150 $100 $450 90% 60,000 2,601 1,491 3.353 0.115 351.56 326.26

0.6 22.5 $150 $100 $450 90% 60,000 4,377 2,563 1.951 0.164 791.02 696.43

0.6 30 $150 $100 $450 90% 60,000 5,698 3,424 1.460 0.190 1,406 1,187 

0.6 20 $200 $100 $600 90% 60,000 2,610 1,499 3.336 0.097 625.00 579.96

0.6 30 $200 $100 $600 90% 60,000 4,249 2,479 2.017 0.145 1,406 1,243 

0.6 40 $200 $100 $600 90% 60,000 5,794 3,451 1.449 0.168 2,500 2,108 

0.6 10 $100 $100 $300 95% 60,000 2,487 1,460 3.425 0.181 156.25 145.27

0.6 15 $100 $100 $300 95% 60,000 4,216 2,494 2.005 0.241 351.56 310.58

0.6 20 $100 $100 $300 95% 60,000 5,758 3,475 1.439 0.254 625.00 526.42

0.6 15 $150 $100 $450 95% 60,000 2,647 1,508 3.316 0.130 351.56 326.08

0.6 22.5 $150 $100 $450 95% 60,000 4,277 2,498 2.002 0.183 791.02 698.66

0.6 30 $150 $100 $450 95% 60,000 5,834 3,437 1.455 0.205 1,406 1,187 

0.6 20 $200 $100 $600 95% 60,000 2,608 1,480 3.378 0.107 625.00 580.51

0.6 30 $200 $100 $600 95% 60,000 4,194 2,426 2.061 0.156 1,406 1,246 

0.6 40 $200 $100 $600 95% 60,000 5,778 3,404 1.469 0.182 2,500 2,113 

0.6 10 $100 $100 $300 99% 60,000 2,596 1,480 3.378 0.199 156.25 145.13

0.6 15 $100 $100 $300 99% 60,000 4,223 2,434 2.054 0.261 351.56 311.49

0.6 20 $100 $100 $300 99% 60,000 5,776 3,426 1.459 0.279 625.00 527.66

0.6 15 $150 $100 $450 99% 60,000 2,577 1,471 3.399 0.147 351.56 326.68

0.6 22.5 $150 $100 $450 99% 60,000 4,235 2,442 2.048 0.192 791.02 700.58

0.6 30 $150 $100 $450 99% 60,000 5,576 3,298 1.516 0.229 1,406 1,195 

0.6 20 $200 $100 $600 99% 60,000 2,560 1,452 3.444 0.120 625.00 581.31

0.6 30 $200 $100 $600 99% 60,000 4,306 2,477 2.019 0.171 1,406 1,243 

0.6 40 $200 $100 $600 99% 60,000 5,739 3,355 1.490 0.195 2,500 2,118 
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Table 3. Pink Noise Monte Carlo Simulations 
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sin(.) 10 $100 $100 $300 90% 60,000 989 688 7.267 0.124 

sin(.) 15 $100 $100 $300 90% 60,000 1,890 1,360 3.676 0.290 

sin(.) 20 $100 $100 $300 90% 60,000 3,100 2,235 2.237 0.328 

sin(.) 15 $150 $100 $450 90% 60,000 816 544 9.191 0.161 

sin(.) 22.5 $150 $100 $450 90% 60,000 1,704 1,183 4.227 0.234 

sin(.) 30 $150 $100 $450 90% 60,000 2,620 1,778 2.812 0.266 

sin(.) 20 $200 $100 $600 90% 60,000 831 542 9.225 0.140 

sin(.) 30 $200 $100 $600 90% 60,000 1,602 1,041 4.803 0.199 

sin(.) 40 $200 $100 $600 90% 60,000 2,509 1,679 2.978 0.246 

sin(.) 10 $100 $100 $300 95% 60,000 833 560 8.929 0.265 

sin(.) 15 $100 $100 $300 95% 60,000 1,665 1,122 4.456 0.329 

sin(.) 20 $100 $100 $300 95% 60,000 2,535 1,736 2.880 0.376 

sin(.) 15 $150 $100 $450 95% 60,000 725 480 10.417 0.199 

sin(.) 22.5 $150 $100 $450 95% 60,000 1,501 961 5.203 0.250 

sin(.) 30 $150 $100 $450 95% 60,000 2,451 1,618 3.090 0.307 

sin(.) 20 $200 $100 $600 95% 60,000 720 482 10.373 0.155 

sin(.) 30 $200 $100 $600 95% 60,000 1,495 974 5.133 0.227 

sin(.) 40 $200 $100 $600 95% 60,000 2,326 1,515 3.300 0.271 

sin(.) 10 $100 $100 $300 99% 60,000 721 458 10.917 0.292 

sin(.) 15 $100 $100 $300 99% 60,000 1,406 909 5.501 0.382 

sin(.) 20 $100 $100 $300 99% 60,000 2,368 1,552 3.222 0.426 

sin(.) 15 $150 $100 $450 99% 60,000 661 414 12.077 0.220 

sin(.) 22.5 $150 $100 $450 99% 60,000 1,419 913 5.476 0.289 

sin(.) 30 $150 $100 $450 99% 60,000 2,206 1,394 3.587 0.346 

sin(.) 20 $200 $100 $600 99% 60,000 710 450 11.111 0.182 

sin(.) 30 $200 $100 $600 99% 60,000 1,426 915 5.464 0.255 

sin(.) 40 $200 $100 $600 99% 60,000 2,185 1,397 3.579 0.305 
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Table 4. Blue Noise Monte Carlo Simulations 
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-0.6 10 $100 $100 $300 90% 60,000 380 328 15.244 0.325 156.25 156.89

-0.6 15 $100 $100 $300 90% 60,000 997 882 5.669 0.410 351.56 355.46

-0.6 20 $100 $100 $300 90% 60,000 2,004 1,797 2.782 0.456 625.00 639.20

-0.6 15 $150 $100 $450 90% 60,000 225 184 27.174 0.248 351.56 352.37

-0.6 22.5 $150 $100 $450 90% 60,000 632 525 9.524 0.323 791.02 796.22

-0.6 30 $150 $100 $450 90% 60,000 1,364 1,172 4.266 0.371 1,406 1,427 

-0.6 20 $200 $100 $600 90% 60,000 206 155 32.258 0.181 625.00 626.21

-0.6 30 $200 $100 $600 90% 60,000 531 420 11.905 0.259 1,406 1,414 

-0.6 40 $200 $100 $600 90% 60,000 1,173 978 5.112 0.329 2,500 2,531 

-0.6 10 $100 $100 $300 95% 60,000 266 225 22.222 0.360 156.25 156.69

-0.6 15 $100 $100 $300 95% 60,000 745 641 7.800 0.430 351.56 354.39

-0.6 20 $100 $100 $300 95% 60,000 1,421 1,201 4.163 0.505 625.00 634.46

-0.6 15 $150 $100 $450 95% 60,000 169 124 40.323 0.249 351.56 352.11

-0.6 22.5 $150 $100 $450 95% 60,000 550 427 11.710 0.338 791.02 795.25

-0.6 30 $150 $100 $450 95% 60,000 1,058 878 5.695 0.415 1,406 1,422 

-0.6 20 $200 $100 $600 95% 60,000 209 153 32.680 0.224 625.00 626.20

-0.6 30 $200 $100 $600 95% 60,000 466 356 14.045 0.280 1,406 1,413 

-0.6 40 $200 $100 $600 95% 60,000 1,090 923 5.417 0.378 2,500 2,529 

-0.6 10 $100 $100 $300 99% 60,000 175 124 40.323 0.322 156.25 156.49

-0.6 15 $100 $100 $300 99% 60,000 521 387 12.920 0.431 351.56 353.27

-0.6 20 $100 $100 $300 99% 60,000 1,024 829 6.031 0.547 625.00 631.51

-0.6 15 $150 $100 $450 99% 60,000 168 126 39.683 0.254 351.56 352.12

-0.6 22.5 $150 $100 $450 99% 60,000 421 321 15.576 0.388 791.02 794.20

-0.6 30 $150 $100 $450 99% 60,000 873 683 7.321 0.464 1,406 1,418 

-0.6 20 $200 $100 $600 99% 60,000 173 133 37.594 0.250 625.00 626.04

-0.6 30 $200 $100 $600 99% 60,000 393 299 16.722 0.322 1,406 1,412 

-0.6 40 $200 $100 $600 99% 60,000 799 601 8.319 0.419 2,500 2,519 
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Table 5. Black Noise Monte Carlo Simulations 
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.3,.2,.1 10 $100 $100 $300 90% 60,000 1,785 1,205 4.149 0.192 

.3,.2,.1 15 $100 $100 $300 90% 60,000 3,280 2,182 2.291 0.238 

.3,.2,.1 20 $100 $100 $300 90% 60,000 4,648 3,112 1.607 0.269 

.3,.2,.1 15 $150 $100 $450 90% 60,000 1,923 1,179 4.241 0.125 

.3,.2,.1 22.5 $150 $100 $450 90% 60,000 3,198 2,003 2.496 0.172 

.3,.2,.1 30 $150 $100 $450 90% 60,000 4,307 2,735 1.828 0.202 

.3,.2,.1 20 $200 $100 $600 90% 60,000 1,974 1,193 4.191 0.109 

.3,.2,.1 30 $200 $100 $600 90% 60,000 3,273 1,995 2.506 0.142 

.3,.2,.1 40 $200 $100 $600 90% 60,000 4,476 2,759 1.812 0.177 

.3,.2,.1 10 $100 $100 $300 95% 60,000 1,966 1,185 4.219 0.192 

.3,.2,.1 15 $100 $100 $300 95% 60,000 3,298 2,031 2.462 0.251 

.3,.2,.1 20 $100 $100 $300 95% 60,000 4,413 2,831 1.766 0.292 

.3,.2,.1 15 $150 $100 $450 95% 60,000 2,098 1,240 4.032 0.128 

.3,.2,.1 22.5 $150 $100 $450 95% 60,000 3,248 1,945 2.571 0.182 

.3,.2,.1 30 $150 $100 $450 95% 60,000 4,429 2,694 1.856 0.226 

.3,.2,.1 20 $200 $100 $600 95% 60,000 1,992 1,177 4.248 0.114 

.3,.2,.1 30 $200 $100 $600 95% 60,000 3,285 1,952 2.561 0.157 

.3,.2,.1 40 $200 $100 $600 95% 60,000 4,401 2,644 1.891 0.196 

.3,.2,.1 10 $100 $100 $300 99% 60,000 2,141 1,254 3.987 0.208 

.3,.2,.1 15 $100 $100 $300 99% 60,000 3,182 1,929 2.592 0.278 

.3,.2,.1 20 $100 $100 $300 99% 60,000 4,360 2,672 1,871 0.317 

.3,.2,.1 15 $150 $100 $450 99% 60,000 2,030 1,171 4.270 0.145 

.3,.2,.1 22.5 $150 $100 $450 99% 60,000 3,250 1,928 2.593 0.205 

.3,.2,.1 30 $150 $100 $450 99% 60,000 4,262 2,563 1.951 0.250 

.3,.2,.1 20 $200 $100 $600 99% 60,000 1,991 1,168 4.281 0.120 

.3,.2,.1 30 $200 $100 $600 99% 60,000 3,223 1,883 2.655 0.172 

.3,.2,.1 40 $200 $100 $600 99% 60,000 4,143 2,474 2.021 0.216 

 

 

 

 

 
 
 

  


