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Abstract 

Hedging bond positions under the assumption of a parallel shift of the interest rate curve is well-known and used for 
a long date in finance. The approximation duration-convexity introduced by L. Fisher and R. Weil is the 
corresponding main tool. However this last is inaccurately formulated since: the time-passage is neglected, the shift 
size is assumed to be infinitesimal and the error approximation is out of the control. Our main purpose here is to 
present how to enhance this classical approximation such that these simultaneous inconveniences may be overcome. 
Not only our modified approximation leads to a perfect fit of the bond change, but a shift of any arbitrary size is also 
allowed and a deterministic and explicit estimates of the approximation error becomes available. Though the parallel 
shift of the interest rate curve is a strong and unrealistic assumption, it remains a standard reference among 
practitioners and academics. The analysis performed here finds a valuable implication in stress-testing, hedging and 
managing interest rate risks under more realistic models.  

Keywords: Bonds, Duration, Convexity, Interest rate risks 

JEL Classification: G11, G12. 

1. Introduction 

The 2007-08 crisis has put in surface malfunctioning of some glorified financial models and misuses of the existing 
models by various people (financial engineering, quants, risk managers,. . . .), see Triana (2010). Revisiting and 
improving the foundations of some financial and technical models are among the issues considered by leading 
academic searchers and supervisory organizations, see Derman (2010) and Jarrow (2010). As a little contribution on 
this effort of clarification, we consider here the classical duration-convexity approximation initiated by L. Fisher and 
R. Weil (1971), which is useful when hedging a bond position with respect to a parallel shift of the interest rate 
curve. Though such an approximation is well-known and becomes among the standard tools in interest risk 
management, the situation is really inaccurately formulated such that the obtained result is very questionable. 
Among the inconveniences which may be raised are the following: 1) the time-passage is neglected; 2) the shift is 
assumed to be infinitesimal but the sense of this last is not clear; 3) the approximation error remains unknown. 

Our main purpose here is to present how this classical Fisher-Weil bond duration-convexity approximation can be 
enhanced, such that we are able to solve simultaneously all of these three inconveniences. The parallel shift 
assumption underlying the duration-convexity approximation is well-known to be a too strong, not realistic 
assumption and not consistent with the no-arbitrage assumption, which is the basic assumption for valuation, see for 
instance Hegde & Nunn (1988) and Nawalka & Sotto (2009). However there are at least four reasons why the 
Fisher-Weil approach still deserves our consideration here. Indeed   

• Parallel shift assumption is historically well-known and used as a benchmark approach of interest rate risk measure 
among practitioners and academics Our contribution here is to provide a consistent analysis and enhancement for 
this standard.  



www.ccsenet.org/ijef             International Journal of Economics and Finance            Vol. 4, No. 3; March 2012 

                                                          ISSN 1916-971X   E-ISSN 1916-9728 116 

• A parallel positive shift (as 100 basis points) remains also a standard and easily tractable approach in the 
perspective of stress-testing. The result we obtain in this paper enables the user to consider any large shifts lying 
inside a given range. This is particularly useful to grasp turmoil situations as we are faced frequently since the 2007 
financial crisis. Moreover any non-parallel shift of the interest rate term structure may be seen as including in some 
range corresponding to suitable high and low parallel shifts.  

• A correct approach and understanding of the situation related to the parallel shift is a main step to provide a good 
risk management analysis for the case where the interest rate curve term structure moves in a non-parallel fashion. 
We will develop in a next project that the ideas underlying this work lead to new and practical results related to 
bond risk management in the setting of a one-factor model of short interest rate.  

• Though it is restrictive, considering a parallel shift of the interest rate has also the advantage to avoid the 
consideration of the shift distribution nature and consequently gives a fast and clear vision of the core of the interest 
risk issue.  

The parallel shift hypothesis is not consistent with the no-arbitrage assumption. Though alternative consistent 
models do exist, each of them remains a metaphor of the reality, see Derman (2010), and has its limitation and 
usefulness depending on the user's perspective (seller or buyer). However once a given model is chosen it becomes a 
crucial point to provide a correct and coherent approach, as we hope to provide in this paper for the case of 
Fisher-Weil bond duration-convexity approximation.  

The results derived in this work are devoted to present the essential ideas we have launched in our previous working 
paper Lajili & Rakotondratsimba (2008). They are not based on specific historical or simulated data. It means that 
their scope are only limited by the underlying assumptions used (as the parallel shift of the interest rate curve). For 
convenience, non-technical summary of the ideas underlying this present work is given in the next Section 2. Full 
statments of results are displayed in Section 3. We first recall in Subsections 3.1 and 3.2, the sensitivities and 
classical duration-convexity approximation. Then we present our contribution in Subsection 3.2. For shortness, very 
few numerical examples are given in Section 4 to illustrate the analytical formulas we have derived here. However 
the reader may consult Lajili & Rakotondratsimba (2008) for the proofs and further details. We conclude in Section 
5.  

2. Non-technical Presentation of Our Results 

It is common in financial practice and theory to measure bond price changes, under a parallel shift of the interest 
rate curve, by means of sensitivities tools as the duration and convexity These last (whose the precise definitions are 
given in (4) and (6)) are then used by people to immunize a portfolio of assets and liabilities.  

Therefore the price relative change of a bond position is seen as given approximately by the sum of two terms (see 
the full statement in (8)). The first term is the opposite of duration times the parallel shift value of the interest rates. 
The second term is the product of convexity and the square of this shift value. In the sequel, we refer such an 
approximation as the classical Fisher-Weil duration-convexity approximation. Actually the idea of approximation of 
bond change comes back to various authors as F. Macaulay (1938), F. Redington (1952)and L. Fisher and R.Weil 
(1971).  

Such a key approximation is very often mentioned in finance text books (see for instance Hull (2009)) to be valid for 
small change values of the interest rates. However there is no available references which precise the exact meaning 
of the term small change. Moreover the accuracy of the given approximation remains also unclear. Another 
important deficiency of the classical duration-convexity approximation is the lack of consideration of the 
time-passage. Indeed with a zero shift for the interest rate, the duration-convexity approximation leads to a zero 
relative change for the bond. However in reality the bond value changes, though the interest rate curve remains the 
same due to the passage of time (see for instance the examples in Section 4). All of these three inconveniences 
(disregard of the time-passage, indistinctness on the shift size to use, approximation error out-of-the control) lead to 
a frustrating situation when using the classical Fisher-Weil approximation in the bond portfolio hedging. Apparently 
a rough approximation approach may lead to an economic loss which goes in the opposite of the initial hedge 
intention.  

Our purpose in this paper is to enhance this classical duration-convexity approximation approach so as to overcome 
the three inconveniences mentioned above. Therefore we will show in (26) of Theorem 6 that the bond relative 
change may be seen as the sum of three terms. The first (deterministic) term represents the value of the passage of 
time not present in the classical approximation. The second term is the sum of two other terms. There is first the 
opposite of a modified-duration times the parallel shift value of the interest rates. The next term is the product of a  
modified-convexity by the square of this shift value. The third term is the remainder error term when using the 
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approximation as a replacement of the initial bond change. The modified-duration and modified-convexity (see (23) 
and (24)) are defined similarly as the classical duration and convexity. The only change is just the incorporation of 
the time-passage, and the classical duration and convexity are recovered when the time passage is reduced to zero. 
We refer our new approximation as the modified duration-convexity approximation. In our approach, any arbitrary 
parallel shift of the interest rate is allowed to be used. But in return, we have to grant an attention on the size of the 
corresponding remainder approximation error. This last term is of course unknown, however we are able here to 
derive (see for instance (29) and (30)) an explicit bounds under the assumption that the shift is bounded below. This 
is a very minimal assumption and no hypothesis on the shift distribution is required. In other terms, we obtain a 
pointwise estimate of the approximation error. This is an interesting point in bond hedging for example, since a 
pointwise estimate leads immediately to an economical meaning (as maximum loss or gain level). In contrast the 
hedging error in term of variance, very often used by many authors, leaves a level of uncertainty and a lack of 
economical interpretation. Moreover the variance requires in priori the knowledge of the distribution associated to 
the interest rate shift. 

3. The Results  

3.1 Fixed Income Value and Their Sensibilities 

In this paper we will focus on fixed income products of any kind, assuming that all future cash flows of the 
respective investments are known and not subject to default risk. For doing let us introduce the cash flows payment 
dates kt , },{1, nk  , with Ttttt nk =<<<<0 1  . Denoting by t  the present time, then let us set by 

ttt kk =)(  the time elapsed until the k -th cash flow 
kC  is due. 

Standard par-bond products are given by the particular cash flows cNCC n 100=== 11   and ,)100(1= NcCn   

where N100  is the principal (or face value) and c  is the coupon rate.  

No-arbitrage considerations lead us to define the price tP  of the stream of positive cash flows 
nk CCC ,,,,1   

by  

 ),(=
1=

kk

n

k
t ttDCP   (1) 

 where ),( kttD  is a discount factor. We will work with the continuous compounding setting for which ),( ttD , 

with <0 , is given by  

 ][exp=),( ,  trttD   (2) 

 where 
,0 tr . With (1) and (2), it appears that the current price tP  depends both on the tenor 

)(,),(,),(1 ttt nk    and the zero interest rates 
)(,)(,)(1, ,,,, tnttkttt rrr    at this time t . These last are 

defined by the interest rates curve .[[0, ,utru    

Usually, people try to grasp the consequence of a parallel shift of the current zero interest rates by considering the 
quantity  

 .)]()([exp ,0;)(,
1=

  tktktk

n

k

PtrC   (3) 

 The concern task is then to analyze the price absolute change 
tt PP ,0;
 or the corresponding relative change 

t

tt

P

PP ,0; . The common approach of this relative change is to make use of the concept of duration and convexity.  

The (Macaulay) duration, of any fixed income product whose the price is as considered in (1) and (2) is defined by  

 )].([exp)(
1

=)(D )(,
1=

trCt
P

tur ktktkk

n

kt

   (4) 

The duration can be interpreted as a weighted arithmetic average of the )(tk 's with the weights 

)]([exp
1

=)( )(, trC
P

t ktktk
t

k   . As a consequence one has  
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 ).()(D tTtur   (5) 

To take into account the convexity, we need to introduce  

 )].([exp)(
2

1
=)(C )(,

2

1=

trCt
P

tonv ktktkk

n

kt

   (6) 

Similarly to (5) it can be easily seen that  

 .)(
2

1
)(C 2tTtonv   (7) 

3.2 Classical Duration-Convexity Approximation 

From the finance literature (pioneered by the papers of F. Macaulay (1938), F. Redington (1952) and L. Fisher and 
R. Weil (1971) the following approximation  

 ,)(C)(D 2,0;  


tonvtur
P

PP

t

tt  (8) 

is refered here as the classical (Fisher-Weil) bond duration-convexity approximation. It expresses the relationship 
between parallel spot rate curve shift and relative price changes of the fixed income security, and consequently plays 
a role in hedging risks associates to the interest rates.  

In textbooks as in Hull (2009), it is often stated that (8) can be used for small values of  , but there is no clear 
available analyses and references indicating the size of   for which it remains reasonable to make use of the 
approximation (8). Actually it is a consequence of the Taylor expansion for which the derivatives of order more than 
3  are ignored, so that some accuracy is consequently lost. Among our contributions in this Section is to clarify the 
quality of such approximation (8) with respect to the size of  .  

Actually the strength of (8) relies on the information brought about this relative variation when the value of   is 

uncertain. Indeed if there is uncertainty about the value of  , then 
t

tt

P

PP ,0;  remains also uncertain. However in 

most of the cases, the investor may have a more and less view about the range of values possibly taken by  . For 

instance she/he may suspect a parallel shift of the rate curve by  , with 0<<0   for some given 0 . 

Therefore if the size of the remainder term related to approximation (8) is available, then we may assert that 

2
11

,0; )(C)(D  


tonvtur
P

PP

t

tt  for any suitable 1 . The fact that 1  or other values is taken has few 

importance since in any case the real value of   at the future time cannot be determined at the present time t . It 
just gives to the investor the magnitude order of things. The main point here is rather on the error size knowledge of 
such an approximation. It becomes a valuable tool informing the investor on the possible economic consequences of 
her/his anticipation in spite of the interest rates uncertainty change.   

We first state the exact value of the price relative change 
t

tt

P

PP ,0; .     

Proposition 1: Let   with 0 . Then there is some real number   such that:  

2,0; )(C)(D=  


tonvtur
P

PP

t

tt  

.)])()([exp)((
6

1 3
)(,

3

1=

  trCt
P ktktkk

n

kt

                           (9) 

Explicit value of   is not known here, but the only information available we have is that  <<0  or 0<<   

depending on the sign of  .   

The restriction to 0  is considered since 
,0;0tP  is trivially reduced to tP . The identity (9) can be just obtained 

using the Taylor formula with remainder term written in Lagrange form (see Lajili & Y. Rakotondratsimba 
(2008)for details). As a consequence the shift   has any arbitrage size, in contrast with the Fisher-Weil (8) 
approximation which is rather obtained from a second order Taylor expansion for which   is assumed to be 
infinitesimal. 
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In accordance with the financial standard basic use, we limit here our analysis on the second order approximation. 

Though (9) may lead to an acceptable approximation of 
t

tt

P

PP ,0;  for small values of  , it should be very 

insufficient when considering the absolute difference tt PP ,0; . For instance if the precision of the relative value is 

about 310  and tP  has a magnitude of order 710  (as in the case of bonds with face value 100 and nominal 

00010 ) then the approximation by (8) may suffer of an error of order 410 . This paper is focused on the relative 

change 
t

tt

P

PP ,0;  but for the bond hedging purpose, there is the need to consider the absolute change 
tt PP ,0;
 

and to analyze the corresponding error approximation. The size of the estimate of this last should be acceptable in 
the perspective of the user and consequently a restriction on just the duration and convexity may be insufficient. 
Therefore introducing high order sensitivities (as can be seen in Lajili&Rakotondratsimba (2008)) becomes useful, 
but here we do not pursue in such a direction.  

In this Subsection we derive explicit bounds of the unknown remainder term  

 )].()([exp
6

1
)(,

3

1=

trC
P ktktkk

n

kt

    

Therefore for an upward shift of the interest term structure we can state the following.     

Proposition 2:  Let 0> . Then we have  

|})(C)(D{| 2,0;  


tonvtur
P

PP

t

tt  

 .)])([exp)((
6

1 3
)(,

3

1=

  trCt
P ktktkk

n

kt

   (10) 

Observe that for 0>  then 
tt PP <,0; . It means that the price decreases as   increases. As in (5) and (7), it is 

clear that  

 .)()])([exp)((
1 3

)(,
3

1=

tTtrCt
P ktktkk

n

kt

  
 (11) 

This last inequality with the second member of (10) leads to  

 .)(
6

1
|})(C)(D{| 332,0;  tTtonvtur

P

PP

t

tt 
  (12) 

 This estimates yields a practical quality control of the approximation of 
t

tt

P

PP ,0;  by 2)(C)(D   tonvtur . 

In other terms our estimate (12) says the following:   

   

Corollary 3: When the spot rate curve moves in a parallel shift of size  , with <0 , then the error in using the 
classical approximation (8) does not exceed 33)(

6

1 tT  .   

It may be noted that the maximal size error  

 tTwithmax  =
6

1
),( 33   

does not depend on the bond face value. To fix the idea about the magnitude of this quantity we have the following  

Table. Some values of ),( max   
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335
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105.63101.67102.080.1%

105.63101.67102.080.01%

15=10=5=
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



















yearsyearsyears 

 

It appears here that for fixed income products whose the maturity is five years, then approximation (8) can be used 
up to 2% . For a ten years maturity, it seems that the approximation is fully significant for 0.75% . The case 

<0 , which corresponds to a loss, deserves particular attention for the risk management point of view.  

For 0< , the price appreciates since ,0;< tt PP  and holding the position leads to some profit. We also would like 

to be able to get a similar estimate as (10) when the size of   is not too big, in the sense that  

 }}.,{1,|{min<|=| )(, nkr tkt    (13) 

This ensures that )(<0 ,  
ktr  for all },{1, nk  . Condition (13) is consistent with the assumption that if the 

interest rate depreciates, then it cannot reach the zero level.  

Precise statement for the analogous of Proposition 2 is as follows.  

Proposition 4: Let us consider   satisfying  

 }},{1,|{min< )(, nkwithkallforr tkt   (14) 

 Then for any parallel shift   satisfying  

 0<   (15) 

 we have the estimates  

|})(C)(D{| 2,0;  


tonvtur
P

PP

t

tt  

 .||)])()([exp)((
6

1 3
)(,

3

1=

  trCt
P ktktkk

n

kt

   (16) 

In contrast with Proposition 2, devoted to the case 0> , here the estimate accuracy is only stated under condition 
(15), which is justified by (13). 

To get a simple bound for the approximation size error as in Corollary 3, we observe that  

 .))](([exp)])()([exp)((
1 3

)(,
3

1=

tTtTtrCt
P kktktkk

n

kt

  
 (17) 

 This last inequality with the second member of (16) leads to  

 .||))](([exp
6

1
|})(C)(D{| 332,0;  tTtTtonvtur

P

PP

t

tt 


 (18) 

Corollary 5:  When the spot rate curve moves in a parallel shift of size  , with 0<  satisfying assumptions (15) 

and (14), then the error in using the classical approximation (8) does not exceed 33 ||))](([exp
6

1  tTtT  .  

Therefore the accuracy of approximation (8) can be quickly seen from the smallness of 33 ||))](([exp
6

1  tTtT   

when 0<  , or 33)(
6

1 tT   when <0 . The values of ),( max  as described in the above Table may be 

useful to appreciate the accuracy of the error estimates.  
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3.3 Enhanced Duration-Convexity Approximation 

Let us consider again a fixed-income instrument whose the value tP  at the current time t  is defined by (1) and 

(2). For clearness, we make a little change in our notations. Therefore the value tP  may be considered as given by 

some function P  such that  

 )))(,(,)),(,();(,),((= 11 ttrttrttPP nnt    (19) 

 where ttt kk =)(  and  

 .=))(,(,,=))(,( )(,)(1,1 tntntt rttrrttr     

For the future time st  , with s<0 , the interest rates curve evolves to ),( ustru  . At the current time t , the 

value of ),( ustr   is unknown and can be viewed as given by some random variable. Usually people talk about a 

parallel shift of the zero interest rates curve whenever for some real number    

 0),(=),(  umaturitiesallforutrustr   (20) 

 To simplify, we assume that the elapsed time s  is no more than the distance between the present time t  and the 
next cash-flow payment, i.e.  

 .<<< 1 nttstt   

This means that no cash-flow is paid until the future time st  . At time t , the investor is willing to grasp the 

fixed-income future value stP   which is the random variable given by:  

 =stP  

 ))).(,(,)),(,();(,),(( 11 ststrststrststP nn     

 Assuming a parallel shift of the interest rates curve as in (20) and using the fact that  

 ,},{1,)(=)( niallforstst ii    

then stP   takes the form  

 )))(,(,,))(,(;)(,,)(( 11   sttrsttrststP nn   

 .;, stP  (21) 

 It should be emphasized that ;,stP  represents the fixed-income value at the future time st   when the time t  

all the points of the zero interest rates curve is shifted by  .  

Let us recall that the investor main concern is to get an accurate idea (preferably at the current time t ) of the 

difference 
tst PP   or the corresponding relative change .

t

tst

P

PP   Therefore the main issue remains now to 

control the difference tst PP ;,  or the relative change 
t

tst

P

PP ;,  whenever 0>s . The classical approach, as we 

have analyzed in the previous subsection, is just focused on 
tt PP ,0;
 and 

t

tt

P

PP ,0; , i.e. just for the case 0=s . 

Here the zero interest rate curve movement is taken into consideration but the time passage is not taken into 
consideration. It means that the classical approach, as described in the previous Subsection, is not satisfactory the 
investor would like to grasp the fixed-income instrument value at a future time st   for which s  satisfies 
always 0>s . In this paper, we would like to put in evidence that taking into account the time passage leads to 
enhance the approximation of the price change. Having an accurate approximation is valuable to get a good hedging 
and risk management. Applications of the results, we obtain here, on stress-testing and bond hedging is developed in 
our recent working paper Jaffal&Rakotondratsimba (2011).   

From now, we will deal with:  
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which should be understood as the future price at time st   under a parallel shift   of the zero interest rates 
curve. 

Variants of the duration and convexity introduced in (4) and (6), taking into account the passage of time, are defined 
by  
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and  
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where  
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Observe that 
;0,stP  is reduced to 

tP  whenever s  is allowed to be equal to 0 . Similarly to (5) and (7) we also 

have:  
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We can now state our result about the estimate of the ratio 
t

tst

P

PP ;,  under a parallel shift of the curve of interest 

rates as described in (20).   

Theorem 6:  Let s , with tts  1<0 . Assume that for the future time st  , the term structure of the interest 

rates has done a parallel shift of  , as described in (20). Then for all  , with 0> , we have the approximation  
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The size of the remainder term  
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is given by the following estimates  
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As in (11) we also get :  
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which, combined with (28), leads to the more practical error estimates  
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Our result in Theorem 6 deals with the upward shift of the zero interest rates curve. For the downward movement 
we get the following statement.    

Theorem 7:  Let s , with tts  1<0 . Let us consider   satisfying  

 }.},{1,|{min< )(, nkwithkallforr stkt   (31) 

Assume that for the future time st  , the term structure of the interest rates has done a parallel shift of  , as 
described in (20). Then for all   satisfying  

 0<   (32) 

the approximation (26) remains true. The size of the remainder term is governed by the following estimates  
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Under (32) we also have  
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In Theorems 6 and 7, the future date st   precedes the time 1t , where the first cash flow 1C  takes place. In 

Lajili & Y. Rakotondratsimba (2008) we have also considered the case where some cash-flows are paid before the 
considered future time st   by using the same line of ideas we have used here.  

For shortness we have limited our analysis to an approximation limited to the second order. Details for high level 
approximation may be seen in our recent working paper Jaffal&Rakotondratsimba (2011). The proofs of our results 
in Proposition 1 to Theorem 7 are also essentially contained in Lajili&Rakotondratsimba (2008), so we do not report 
here the details. It may be just useful to note that Proposition 1 and the first parts of Theorem 6 and 7 are based on 
Taylor formula with remainder term written in Lagrange form. All the error estimates use elementary inequalities 
involving exponentials.  

4. Numerical Illustrations   

For our illustration, we deal with a coupon-bond with annual payment and a remaining maturity of 5  years. The 
face value is 100 (Euros for instance) and the coupon rate is 5% . The interest rate curve is assumed to be given 
by the following  

3.543.212.872.512.16)(%),(

54321)(




tr

yearmaturity
 

To simplify we make use of linear interpolation to define ),( tr  for any   which is not among the pillars 

yy ,5,1  . To fully appreciate the efficiency of the modified duration-convexity introduced in this paper, we consider 

parallel shifts of the interest rate with large sizes as  

 ,2.5%,3%},0%,1.5%,2%,{   

in coherence with the shocks we meet frequently on the market since the 2007 financial crisis. We are interested on 
analyzing the bond relative change after 30=s  days and 90=s  days. Observe that some investment manager 
regularly revise the allocation of their portfolio on a quarterly basis.  

What we would like to put in evidence in this illustrative Section is that, our modified duration-convexity 
approximation fits well the bond change when compared to the classical duration-convexity approximation.  

All numbers in Table1 are given in percentage. The interest rate shifts under consideration are displayed in the first 
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column. In the second column we present the exact value of the bond relative change which is given by 
t

tst

P

PP ;, , 

where tP  is computed from (1) by directly using the interest rate curve mentioned above. The quantity ;,stP  is 

obtained by using (22) and the interpolation of the interest rate curve. In the third column of this Table we make use 
of the classical duration-convexity approximation as recalled in (8). The last fourth column is computed from our 
modified duration-convexity approximation (26).   

Similarly, the result after a delay of 90=s  days is summarized in Table2. Focusing on this last Table, we see that 
for 0%=  the bond relative change is exactly 1.2272% . This case shows the inappropriateness of using the 
classical duration-convexity, as it lacks to take into account the time passage. It is also apparent from the other cases 

0  that the classical approximation (described in the third column) is far from the reality (described in the second 
column) and should not be used. In contrast, the modified duration-convexity approach (described in the fourth 
column) fits well practically the bond (relative) change since the difference between the modified approximated 
value and the bond change varies here from 1.26  to 4.04  basis points.  

Further examples and error analyses are performed in Lajili & Rakotondratsimba (2008) and Jaffal & 
Rakotondratsimba (2011). Particularly the implication of the modified duration-convexity on hedging and managing 
interest rate risks is developed in this last working paper.  

5. Conclusion 

The Fisher-Weil duration-convexity approximation is inaccurately formulated since the time-passage is neglected, 
the shift size is assumed to be infinitesimal and the error approximation is out of the control. In this paper we have 
presented how to enhance this classical approximation such that these simultaneous inconveniences may be 
overcome. Our modified approximation leads to a perfect fit of the bond change. Indeed a shift of any arbitrary size 
is now allowed and a deterministic and explicit estimates of the approximation error becomes available.  

Though the parallel shift of the interest rate curve is a strong and unrealistic assumption it remains a standard 
reference among practitioners and academics. The analysis performed here finds a valuable implication in 
stress-testing, hedging and managing interest rate risks as recently performed in Jaffal & Rakotondratsimba (2011). 
Moreover the ideas underlying the present work lead to new and practical results related to bond risk management in 
the framework of a one-uncertainty factor model of short interest rate, as we have been developed recently in 
Rakotondratsimba (2011).  
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Table 1. Result for s=30 days   

  exact change classical approx modified approx. 

-2 9.8336 9.5485 9.8196 

-1.5 7.3942 7.0793 7.3883 

-1 5.0119 4.6648 5.0102 

-0.5 2.6854 2.3050 2.6852 

0 0.4132 0 0.4132 

0.5 -1.8059 -2.2502 -1.8057 

1 -3.9731 -4.4457 -3.9714 

1.5 -6.0897 -6.5865 -6.0841 

2 -8.1569 -8.6725 -8.1436 

2.5 -10.1759 -10.7037 -10.1501 

3 -12.1479 -12.6802 -12.1034 

 

Table 2. Result for s=90 days 

  exact change classical approx modified approx. 

-2 10.3575 9.5485 10.3449 

-1.5 7.9960 7.0793 7.9907 

-1 5.6879 4.6648 5.6864 

-0.5 3.4321 2.3050 3.4319 

0 1.2272 0 1.2272 

0.5 -0.9278 -2.2502 -0.9276 

1 -3.0341 -4.4457 -3.0325 

1.5 -5.0928 -6.5865 -5.0877 

2 -7.1050 -8.6725 -7.0929 

2.5 -9.0719 -10.7037 -9.0484 

3 -10.9944 -12.6802 -10.9540 

 
 


