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Abstract

The paper concerns high-order collocation implementation of the integral equation approach for pricing American
options with stochastic volatility. As shown in Detemple and Tian (2002) , the value of American options can be
written as the sum of the corresponding European option price and the early exercise premium (EEP). This EEP
representation results in a nonlinear Volterra integral equation for the optimal exercise boundary. There are no
efficient and reliable numerical methods for solving the integral equations in the literature. The aim of this paper is
to develop a high-order collocation method for solving the nonlinear integral equations. Collocation methods are
widely studied in the area of numerical integral equations. After the exercise boundary is resolved, the value of the
American options is obtained by evaluating the EEP representation.
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1. Introduction

The major difficulty and key to pricing American options are to identify the optimal exercise boundary. It is not
possible to get the closed-form of the optimal exercise boundary. So the numerical methods are the necessary tools
in resolving the optimal exercise boundary. For the underlying asset price following a lognormal process, Kim
(1990), Jacka (1991), and Carr et al. (1992) show that the American option price is equal to the corresponding
European option price plus an Early Exercise Premium (EEP) which captures the benefits from exercising prior to
maturity. Detemple and Tian (2002) give the EEP representation of American options under general diffusion
process with stochastic volatility and interest rate. From the EEP representation, the optimal exercise boundary
satisfies an integral equation whose analytical and numerical solutions are difficult to find. To this end, Ma et al.
(2010) construct a high-order collocation method on non-uniform meshes for solving the integral equation arising in
the EEP representation of American put options under lognormal process. In this paper, we extend the collocation
methods to solution of the integral equations for the general diffusion process with stochastic volatility. Compared to
the case of the lognormal process, the implementation of collocation methods is much more difficult for the case of
general diffusion process with stochastic volatility.

In the history, a few of works, cf. Huang et al. (1996), Ju (1998), Detemple and Tian (2002) have studied the
implementations of the EEP methods for pricing the American put options. However their approaches are based on
low-order approximations.

The remaining parts are arranged as follows: In the next section the high-order collocation methods are described to
solve the integral equations that the optimal exercise boundary satisfies; In Section 3, an algorithm for the valuation
of the American options is constructed and implemented through a variety of numerical examples; Concluding
remarks are given in the final section.

2. Collocation methods for the integral equations

Assume that the risk-neutralized underlying asset price follows a diffusion process

ds, /S, = (r(S,.)~ q(S,.0)di + o (S,.0)dW, 0

where”" denotes the interest rate, 9 the dividend yield and O the volatility. Following

the ideas in Detemple and Tian (2002), the early exercise premium can be expressed
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as an integral form which depends on the optimal exercise boundary B (¢) :

V(S t;B() =V (S,,0)+11(S,.1:B()) @)

where

T
T —\r(S,,v)dv

TS, 6B =E | [e ™ ((S,,0)K = q(S,, S5 cpy @

t

is the early exercise premium, V. (S, ) the European option price, and1 , the indicator of the set A, K is the strike
price. The second term indicates that the incremental gain over the time period [¢,7 + dt] from exercising the option
at time? is ((S,,H)K —q(S,,1)S,)dt . Since immediate exercise is optimal when S, = B(¢), we obtain an integral
equation for the optimal exercise boundary:

K =B(0) =V, (B(0),0) +T1(B(0), 5 B() 3)

subject to the boundary condition B(7) =min{K,(r(T, B(T)/q(T, BT))K} It is well-known that the implied
volatility of the market often shows a smile structure.

The model displays this property is the constant elasticity of variance (CEV) model

introduced by Cox and Ross (1976), in (1): r, g are constants ando = 5,S°'*",

where o, 0 are positive constants. Following Detemple and Tian (2002) (Note 1), an explicit expression of (3) is
given by
K —B(t)=Ke " "$,(B(t),K,T) - B(t)e "¢, (B(t),K,T)

+ I('”Ke_”v'”% (B(t), B(v),v) — gB(t)e """ ¢,(B(t), B(v),v))dv

4)
where i ,¢2 are given by
2 .
12(2)’(52,53);2+ﬁ,2x(51=53)) ifo <2
¢1(51952’53)= , 2
/1/ (zx(5|353);792y(52953)) lf‘9>2
0-2 , (5)
2 .
1—;(2(2x(51,§3);ﬁ,2y(52,53)) if6 <2
¢2(51’§2553): 2
1- 27 (2)(6,,6,);2 +———=.2x(6,,6;)) if0>2
-2 , (6)
and functions X, are defined by
2(r—q) 2-0 _(r-q)(2-0)(v,~t)
x(vy,v,) = 2 (—q)(2—-60)(v—1) 1€ ’
o,(2-0)(" -1) ’ %
2(r—q) 2-9
V,V,) = - v
y,vy) o2 (2—O) (I ) ®

The function 4° (& ;&,,&,) is the complementary noncentral chi-square distribution function (Note 2) evaluated at &, ,

with £ degrees of freedom and noncentral parameter &, .
The integral equation is subject to the boundary condition B(T) =min{K,(r/q)K} -

To compute the optimal exercise boundary, we transform (4) into an initial value

Problem, by the coordinate transformations, 7 = T—t , B(t) = B(7) ,
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B(r)- K =B(r)e " ¢,(B(2),K,T)— Ke " ¢,(B(r),K,T) 9
+ qzi(r)jef‘”f-%1 (B(7),B(v),T —v)dv— rKJT.e”(H)giz (B(7),B(v),T —v)dv
with B(0) = min{K,(r/¢)K} -

Now we develop a collocation method (Note 3) to solve the integral equation (9). As proved for the case of constant
Volatility (see the summary in Ma et al. (2010)), the solution of the integral equation is singular in general. So using
uniform meshes cannot get an optimal accuracy in the numerical solution of the integral equation (5).

We use the graded meshes which is developed in Brunner (1985) (cf. Brunner (2004)).
The graded meshes are defined as7, = T(i/ L)2 , i=0,l,..., L . Obviously mesh points are
clustered around the origin. Based on graded meshes, we introduce the collocation methods:

Define a piecewise polynomial space [1;'(0,7]={p: p(r) € P,,7 € (z,,7,,,],i =0,,.... L -1},

-1
where P, is the set of polynomials of degree 3. The high-order collocation method is defined by: Find Y(7) el
such that

Y@)-K=Y(@)e "¢ (Y(2),K,T)-Ke " ¢,(Y(7),K,T)

(10)
+ qY(z')J-e""(T"V)¢l Y(7),Y(v),T —v)dv - rKJ-e'r(T"V)¢2 Y (z),Y(v),T —v)dv
0 0
holds exactly at the collocating points
J
. =T7T. += =T,
T;qj 7; 4(T1+1 Tz) j:1;2,3,4; iZO,l,...,L_ll
At time interval (Ti 2T ], polynomial Y(z) can be written by
4 N N
Y(£) =3 Yl (7)
= ; an
where L@ is the Lagrange basis at points bij , J=L234
; -1,
l'(7) = &
Inserting (11) into (10) gives the computational form
FI(YLY,,Y,Y)=0, j_1234; i=0,],..,L—1 (12)
for the unknowns VL1 YL Y, i=01,., L -1 , where the function Fj is given by
Fjl:le_K_leeiqj¢l(YA;>K5T)+Keirj¢2(Y;>K5T) (13)
—q¥ [e TG (Y YOLT =v)dv+ K [e "6,V Y (), T = v)dv
0 0
OF;
To solve the nonlinear algebraic equations (13), the Newton’s method is used. The Jacobians (Note 4): an." and

o)
oY, Jfor j z jare given in the appendix.
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Denote ¥ = (¥, ¥}, ¥,¥))" and 2 =2\, 2", 2", 2{)".
Then the Newton’s method is given by

i (k)
Fl(z")

() _ oy _ 2\
;" =2, P j=1234; k=0]1,..M, (14)
where
i (k)
A% = max 8F/. )
1<j<a  g7Z®

0
The initial value Z © is taken as the extrapolation of yi-1 at the interval (z;,7,,;]- The stopping value of

Newton’s method gives the solution at interval (7;,7,,,], i, yi _ yon. All the involved integrals are
approximated by four-points Gauss-Legendre quadrature.
3. Numerical implementations

In the examples, we use collocation method (10) to find the solution of integral equation (4). The result gives the
value of the optimal exercise boundary. Then inserting the value to EEP Representation (2) gives the value of the
American options. Two examples for the cases r < g andy > g are computed. For each example, two figures are

drawn to illustrate the alidity and efficiency of our algorithm.

Example 1 Consider the free boundary value problem for pricing American put options with

r=4% 4=06% g-100 7-1,0=0,5""

with® =02Y10 . 4601 13 1619, (thecase © <),

Figure 1 gives the price of the American options with 0=1.6. The figure shows that the curve goes to the pay-off
when t approaching to the maturity T. Figure 2 gives the optimal exercise oundaries for9=1, 1.3, 1.6, 1.9. Figure 2
shows that the optimal exercise boundaries are ecreasing with eincreasing, and in fact converge to the exercise
boundary of lognormal model (0:2). Actually this phenomenon is reasonable, since the volatility of the underlying
asset price raises with Hincreasing and henceforth the value of the American option increases.

So the exercise boundary for the American put options will decrease when @ increasing. As&approaches 2, the

underlying asset price process converges to the lognormal process and the convergence of the optimal exercise
boundary and the value of American options follows.

Example 2 Consider the free boundary value problem for pricing American put options with
0/2-1
r=6% q9=4% K=100 71 9= 7S,

with® =010 30401 13 16,19, (the case "~ ).

Figures 3 and 4 show the case r > g . The discussions are similar to that for Example 1.

4. Concluding remarks

In this paper we have developed the high-order collocation method for solving the nonlinear integral equations
arising in the EEP representation of the American options with stochastic volatility. The optimal Exercise boundaries
and the value of the American options are calculated with high accuracy and efficiency. The high-order
implementation is essential to the development of the EEP or integral equation approaches for pricing American
options.

Since the quasi-Monte-Carlo methods can be applied easily for the integral forms, the EEP or integral equation
approaches are especially important for pricing multi-dimensional American options.
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Appendix 1: The density function of chi-square distribution is given by

1 (r+).) k1

felskA)=2e * )751,( ()

B

7 w
T(m) = [¢"edt

and 0 is Gamma function.

I,(y)= (%)”i

where o pl(a+h+d)

With the definitions of functions” “and I’ , the density function ) X can be re-written into a more concrete form:

A Lo
| ) (5)'](%)2 ’
fr(k,A)=—e * ZT

PG

The accumulative function of the chi-square distribution is defined by:
= A2
Pk 2) =3 e O otk +2p)
p=0
0y =212 )= [ ay
where [(k/2) and 0 is an incomplete Gamma

function. The accumulative function can be written into the following form:

% k-¢—2p1
.o (& )p I e’'dt . ) 7(M’f
P(xk/I) zez‘ 2 0 22671/2(1/2) i 2 2
! o k+2p - ' k+2
Pl e P T
. 2

Now derive the derivatives of the cumulative functions with the first and third inputs.
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KA _ o ik, 1)
Ox (15)
and
Asp k+2p x P A p k+2p x
Pk ) s 1,59 1)) 456" 10y )
oA - 2 p! Iﬂ(k+2p) p! r(k+2p)
2 2
A k+2p x A, k+2p x
- 2 ()" o GO L4 o
:z_lez.z', Y e R
e T
2 2
A k+2p x A, k+2p x
B L e S G
-2 2 2, Nt 2 o 2 2
23 p! k+2p 245 (p-1! k+2p
I( ) I'——)
2 2
A k+2p x A k+2)+2q x
B S T A e A0
=—72e 2. 20 2 2 +*Ze 20 2 2
P p! k+2p 243 q! (k+2)+2¢q
I'( ) rC——)
2 2
1 1
=——P(x;k,A)+—P(x;k+2,4)
2 2 ' (16)
Appendix 2: The Jacobians are derived as follows:
OF ; . 04, (YK,T 04, (Y K,T
- =1—ef‘”’[¢1(Yf’,K,T)+Y.’—¢1( — )]+Ke " —¢2( L )
oY; : ! oY; oY;
RN A (Y Y (), T —
_ q[J.e*Q(Tﬁv)[¢l (Y; ,Y(V),T —V) 4 Yl, ¢1( Jj (V) V)]dv
0 ’ del
Ui A (YL Y(0),T -
+ rKje—r(rj—v) ¢2( J d}(]‘l)) V)dv
0 j (17

2
The derivatives of¢1 and¢2 are derived in the following. Noting that 4 is denoted by P and using (17) and the
expression of function X, we obtain that: for 0 < 2,

0¢, (Y;,K,T)
an (18)
= PR, T2+ —2— 2x(V 0) = (2x(Y!, TY)
3 y > 4 2 _ 9 2 J? dY; Jj?
x(Y,T) 2 ,. 2 ,-
J - -
for@ > 2 we derive that
8¢1(Y;,K,T)
o (19)
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) 2
=1’1(2X(Y,-,T);6_2

)

(Yi T)

./

~202-0) Fe@a(7, T2 20K T))

Similarly, we can get
0¢,(Y;,K,T) _

o,
x(Y;,T) 2 . 2 ,
(02— [PQY(K. T+ = 28] 1) = POAK.T)2+ = 2x(Y. 1)), 0>2
2027 Dfx<2x(Y;' D2 KD, 6<2

]
Now we calculate, for” € 0,731 for@ <2,

¢1(Y’ Y(»),T-v)

dY‘
2 l
= R@Y(YO)T = V)24 5= 2x(Y].T —v)
J
+ P Qy(Y(V).T )2+ ﬁ,zw;', T )

/

=1 +1 I

2 where " 1and 1 are calculated as follows:

yY),T —v) dY(v)

1, :2(2—H)fX(2y(Y(v),T—v);2+ﬁ,2x(Y;,T—v))

Y(v) dy;
=22-0)f,2yY (), T —v);2+—— 2 Zx(Y', —V))MZ;(V)
2— Y(v) :

and similarly,

I, =

2- Q)X( )[P(2y(Y(V)T V)4+ 2?C( L, T=v)=P(Y(W), T~ V)2+ 2x( LT-)].
Analogously for? > 2 we have

dY’ ¢1(Y’ Y(v),T -v)=R, +R,

with

R =202-0)f, (x(V LT vy — 2 2y (¥ T — v T =)

1 =2(2-0) 1, 2x(Y, —V),ﬁ, y(¥(v), —V))T
and

R, =
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YYW,T-v)

2-9) Yo

[P2xX(Y, T~ V),2+ ) 5 YOI =)~ P2x(Y],T~ V) A e WL ).

In a similar
manner, we can obtain that: for? <2 ,

a; ¢2(Y’ Y(),T-v)=

(23)
20-2) 1, 2x(Y T = v —2— 29(Y (). T x¥pT =)
( - )fX( )C( J? _V)aﬁa y( (V), _V))T—F
(9—2)W(VY)(’;‘V)[P(2 (T2 2 2007 =) PO, =) 2 20T - 0
and for@ > 2,
A ) YT -v) =
dY (24)
2 i Y(Y(V)aT_V) i
26 — V)24 N\ EASR S-SRy [
(O=2) /3 QAT =242 2300 T =) PO = )+
o- 2)“ 2 Poro)T- D T AT )24 2T T-)].
Now we calculate, fork * j
Oy J o SBATOL) FK]’/e,w LAURIORIN
oy, dy; dy; , o5)
where for‘9<2
< ,¢1(Yf Y().T -v)
(26)
o 2 LTV,
- 2(2 H)f)( (Zy(Y(V)aT V),2+ 2_9’2X(Yj aT V)) Y(V) lk (V)
4 ¥ Y(0).T~v) =
dY; 27)
(6—3”?{?”[1)(%(21 D22 DU 0,T )P T2 2T, 0%
\%

and for0>2,

L YT ) =
ar, (28)

(2—9>y(Y(;)(’v§‘V)[P<2x(Y',T D2+ L DIOT )P, T 2 20T ),

,¢2(Y’ Y(),T-v)
dy; 29

2x(Y;,T— ))M; (v)

) 2
—2(9—2)fX(2y(Y(v),T—v),2+9_2, Yo
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Figure 1. Values of underlying assets (2D drawing) for Example 1 with¢ =1.6
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Figure 2. Optimal exerciseqaoundary for Example 1
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Figure 3. Values of underlying assets (2D drawing) for Example 2 with¢ =16
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Figure 4. Optimal exercise boundary for Example 2
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