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Abstract 

The paper concerns high-order collocation implementation of the integral equation approach for pricing American 
options with stochastic volatility. As shown in Detemple and Tian (2002) , the value of American options can be 
written as the sum of the corresponding European option price and the early exercise premium (EEP). This EEP 
representation results in a nonlinear Volterra integral equation for the optimal exercise boundary. There are no 
efficient and reliable numerical methods for solving the integral equations in the literature. The aim of this paper is 
to develop a high-order collocation method for solving the nonlinear integral equations. Collocation methods are 
widely studied in the area of numerical integral equations. After the exercise boundary is resolved, the value of the 
American options is obtained by evaluating the EEP representation. 

Keywords: American put options, Optimal exercise boundary, Collocation methods, Integral equations 

1. Introduction 

The major difficulty and key to pricing American options are to identify the optimal exercise boundary. It is not 
possible to get the closed-form of the optimal exercise boundary. So the numerical methods are the necessary tools 
in resolving the optimal exercise boundary. For the underlying asset price following a lognormal process, Kim 
(1990), Jacka (1991), and Carr et al. (1992) show that the American option price is equal to the corresponding 
European option price plus an Early Exercise Premium (EEP) which captures the benefits from exercising prior to 
maturity. Detemple and Tian (2002) give the EEP representation of American options under general diffusion 
process with stochastic volatility and interest rate. From the EEP representation, the optimal exercise boundary 
satisfies an integral equation whose analytical and numerical solutions are difficult to find. To this end, Ma et al. 
(2010) construct a high-order collocation method on non-uniform meshes for solving the integral equation arising in 
the EEP representation of American put options under lognormal process. In this paper, we extend the collocation 
methods to solution of the integral equations for the general diffusion process with stochastic volatility. Compared to 
the case of the lognormal process, the implementation of collocation methods is much more difficult for the case of 
general diffusion process with stochastic volatility.  

In the history, a few of works, cf. Huang et al. (1996), Ju (1998), Detemple and Tian (2002) have studied the 
implementations of the EEP methods for pricing the American put options. However their approaches are based on 
low-order approximations.  

The remaining parts are arranged as follows: In the next section the high-order collocation methods are described to 
solve the integral equations that the optimal exercise boundary satisfies; In Section 3, an algorithm for the valuation 
of the American options is constructed and implemented through a variety of numerical examples; Concluding 
remarks are given in the final section. 

2. Collocation methods for the integral equations 

Assume that the risk-neutralized underlying asset price follows a diffusion process 

tttttt dWtSdttSqtSrSdS ),()),(),((/  ,                                     (1) 

where r denotes the interest rate, q the dividend yield and the volatility. Following  

the ideas in Detemple and Tian (2002), the early exercise premium can be expressed  
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as an integral form which depends on the optimal exercise boundary )(tB : 

))(;,(),())(;,(  BtStSVBtSV ttEt ,                                          (2) 

where  
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is the early exercise premium, ),( tSV tE the European option price, and
A1 the indicator of the set A , K is the strike 

price. The second term indicates that the incremental gain over the time period ],[ dttt  from exercising the option 

at time t  is dtStSqKtSr ttt )),(),((  . Since immediate exercise is optimal when )(tBSt  , we obtain an integral 

equation for the optimal exercise boundary: 

                   ))(;),(()),(()(  BttBttBVtBK E                            (3) 

subject to the boundary condition })))(,(/))(,((,min{)( KTBTqTBTrKTB  . It is well-known that the implied 
volatility of the market often shows a smile structure. 

The model displays this property is the constant elasticity of variance (CEV) model  

introduced by Cox and Ross (1976), in (1): qr, are constants and 12/
0

  tS , 

where  ,0 are positive constants. Following Detemple and Tian (2002) (Note 1), an explicit expression of (3) is 

given by 
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and functions x , y are defined by 
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The function ),;( 321
2  is the complementary noncentral chi-square distribution function (Note 2) evaluated at

1 , 

with
2 degrees of freedom and noncentral parameter

3 . 

The integral equation is subject to the boundary condition })/(,min{)( KqrKTB  . 

To compute the optimal exercise boundary, we transform (4) into an initial value  

Problem, by the coordinate transformations, tT  , )(
~

)( BtB  ,  
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KqrKB  . 

Now we develop a collocation method (Note 3) to solve the integral equation (9). As proved for the case of constant 
Volatility (see the summary in Ma et al. (2010)), the solution of the integral equation is singular in general. So using 
uniform meshes cannot get an optimal accuracy in the numerical solution of the integral equation (5).  

We use the graded meshes which is developed in Brunner (1985) (cf. Brunner (2004)).  

The graded meshes are defined as  2/ LiTi  , Li ,...,1,0 . Obviously mesh points are 

clustered around the origin. Based on graded meshes, we introduce the collocation methods: 

Define a piecewise polynomial space }1,...,1,0],,(,)(:{],0( 13
1

3  
 LiPppT ii  , 

where 3P is the set of polynomials of degree 3. The high-order collocation method is defined by: Find 
1

3)( Y  

such that 

),),((),),(()()( 21 TKYKeTKYeYKY rq                                   (10) 
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where
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is the Lagrange basis at points ji,
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Inserting (11) into (10) gives the computational form 
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j YYYYF

 ;4,3,2,1j  1,...,1,0  Li                               (12) 

for the unknowns ,,,, 4321
iiii YYYY  1,...,1,0  Li , where the function 
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 is given by 
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To solve the nonlinear algebraic equations (13), the Newton’s method is used. The Jacobians (Note 4): i
j

i
j

Y

F

and

i
k
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,for jk  are given in the appendix.                                           
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Denote Tiiiii YYYYY ),,,( 4321  and Tkkkkk ZZZZZ ),,,( )(
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Then the Newton’s method is given by 
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The initial value 
)0(Z  is taken as the extrapolation of 1iY  at the interval ],( 1ii  . The stopping value of 

Newton’s method gives the solution at interval ],( 1ii  , i.e., )(Mi ZY  . All the involved integrals are 

approximated by four-points Gauss-Legendre quadrature.  

3. Numerical implementations 

In the examples, we use collocation method (10) to find the solution of integral equation (4). The result gives the 
value of the optimal exercise boundary. Then inserting the value to EEP Representation (2) gives the value of the 
American options. Two examples for the cases qr  and qr  are computed. For each example, two figures are 

drawn to illustrate the alidity and efficiency of our algorithm.  

Example 1 Consider the free boundary value problem for pricing American put options with 

%4r , %6q , 100K , 1T ,
12/

0
  tS  

with 102.00  and =1, 1.3, 1.6, 1.9.  (the case qr  ). 

Figure 1 gives the price of the American options with =1.6. The figure shows that the curve goes to the pay-off 

when t approaching to the maturity T. Figure 2 gives the optimal exercise oundaries for =1, 1.3, 1.6, 1.9. Figure 2 

shows that the optimal exercise boundaries are ecreasing with increasing, and in fact converge to the exercise 

boundary of lognormal model ( =2). Actually this phenomenon is reasonable, since the volatility of the underlying 

asset price raises with increasing and henceforth the value of the American option increases.  

So the exercise boundary for the American put options will decrease when increasing. As approaches 2, the 
underlying asset price process converges to the lognormal process and the convergence of the optimal exercise 
boundary and the value of American options follows. 

Example 2 Consider the free boundary value problem for pricing American put options with 

%6r , %4q , 100K , 1T ,
12/

0
  tS

 

with 102.00  and =1, 1.3, 1.6, 1.9.  (the case qr  ). 

Figures 3 and 4 show the case qr  . The discussions are similar to that for Example 1. 

4. Concluding remarks 

In this paper we have developed the high-order collocation method for solving the nonlinear integral equations 
arising in the EEP representation of the American options with stochastic volatility. The optimal Exercise boundaries 
and the value of the American options are calculated with high accuracy and efficiency. The high-order 
implementation is essential to the development of the EEP or integral equation approaches for pricing American 
options. 

Since the quasi-Monte-Carlo methods can be applied easily for the integral forms, the EEP or integral equation 
approaches are especially important for pricing multi-dimensional American options. 
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Appendix 1: The density function of chi-square distribution is given by 
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and  , the density function Xf can be re-written into a more concrete form: 
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The accumulative function of the chi-square distribution is defined by:
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function. The accumulative function can be written into the following form: 
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Now derive the derivatives of the cumulative functions with the first and third inputs. 
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Appendix 2: The Jacobians are derived as follows: 
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The derivatives of 1 and 2 are derived in the following. Noting that
2 is denoted by P and using (17) and the 

expression of function x , we obtain that: for 2 ,  
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