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Abstract 
This paper describes the interaction of a octa (3-chloropropyl)octasilsesquioxane (SS) functionalized with 
imidazole (SSI) groups, and its subsequent reaction with silver (AgSSI) and hexacyanoferrate (III) (AgHSSI). 
The materials SS, SSI were characterized by infrared (FTIR); solid state 13C and 29Si nuclear magnetic resonance 
(NMR). The AgSSI and AgHSSI were characterized by electronic (Uv-Vis) and infrared spectroscopy (FTIR).  
The AgHSSI was incorporated into a graphite paste electrode and the electrochemical studies were conducted 
with cyclic voltammetry. The AgSSI system was studied first, followed by the AgHSSI. The spectroscopic 
studies reveals that preparation was conducted with success. The cyclic voltammogram of AgSSI obtained from 
a graphite paste electrode modified (50% m/m) exhibited a redox couple with average potential (Eθ’) of 0.01 V 
(vs Ag/AgCl(s), KNO3, 1.0 mol L-1; v = 20 mV s-1), attributed to the Ag0/Ag+ redox process. The cyclic 
voltammogram of AgHSSI with AgHSSI (50% m/m) exhibited a single redox couple, much wider with Eθ’= 0.14 
V, (vs Ag/AgCl(s), KNO3, 1.0 mol L-1, v = 20 mV s-1) attributed to the Fe2+(CN)6/ Fe3+(CN)6 process. 

Keywords: silsesquioxane, imidazole, silver, potassium hexacyanoferrate (iii), voltammetry 

1. Introduction 
Polyhedral oligosilsesquioxanes (POSS) refer to all structures that have the empirical formula (RSiO1,5)n, where R 
can be a hydrogen or any organic group such as alkyl, methyl, aryl, vinyl, phenyl, arylene, or any organofunctional 
derivative thereof, n can vary between 4 and 30, but it is usually 6, 8, 10 and 12 (Cordes, Lickiss, & Rataboul, 
2010; Lickiss & Rataboul, 2008; Voronkov & Lavrent'yev, 1982). Silsesquioxanes (POSS) are a class of 
nanomaterials with great potential in the field of nanoscience and nanotechnology. The interest in the properties of 
silsesquioxanes has been the subject of research in various companies and universities in the development of new 
materials, what can be observed with the substantial increase in the number of patents and publications related to 
these materials (Phillips, Haddad, & Tomczak, 2004).  

Due to the highly symmetrical three-dimensional nature of their nucleus, POSS are good precursors for the 
production of hybrid organic-inorganic materials (Dutkiewicz, Maciejewski, & Marciniec, 2009; Gnanasekaran, 
Madhavan, & Reddy, 2009; Skaria & Schricker, 2010). They are also used as catalysts (Dutkiewicz, Maciejewski, 
& Marciniec, 2009; Fina et al., 2006), dendrimic precursors (Dutkiewicz, Maciejewski, & Marciniec, 2009; 
Ropartz, Morris, Foster, & Cole-Hamilton, 2002), polymer precursors (Pielichowski, Njuguna, Janowski, & 
Pielichowski, 2006), biocompatible materials, and as precursors for developing liquid crystals (Lin & Chen, 2010), 
homogeneous and heterogeneous catalysis (Fina et al., 2006; Abbenhuis, 2000), electroactive films (Morán, 
Casado, & Cuadrado, 1993), additives (Devaux, Rochery, & Bourbigot, 2002; Wann et al., 2008), antibacterials 
and biocides (Chojnowski et al., 2006), and are also used in thin films and coatings for various applications, 
including nanocomposites (Ro, Park, Soles, & Yoon, 2010; Silveira, Silvestrini, Bicalho, & Do Carmo, 2013). 

The electrochemical field has few studies on modified silsesquioxanes as substrates, acting as electron mediators 
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or electrochemical sensors. It is known that after specific chemical modification the large-surface area 
nanostructured materials contain metal centers, hence powerful catalysts and electrocatalysts. Imidazole, due to 
the presence of nitrogen donor atoms, can coordinate with a variety of transition metal ions (Joseph, Ramamurthy, 
& Subramanian, 2011; Yin, Xu, Qu, Zhao, & Sun, 2010). It is has long been known that imidazole has a particular 
affinity for electrophilic silanes (Bassindale, Codina-Barrios, Frascione, & Taylor, 2008). Thus, materials 
prepared using silica-based substrates functionalized with imidazole are suitable for the sorption of toxic heavy 
metals, such as mercury and copper. Therefore silsesquioxanes are potential candidates for 
organofunctionalization with imidazole groups. When compared with silica gel, the advantage of using 
silsesquioxanes modified by covalent attachment of organofunctional groups regards their easy preparation, high 
sorption capacity and fast adsorption kinetics, in addition to their good chemical stability (Rajec & Hanzel, 2003; 
Silveira, 2012). Within this context, particularly our interest in the silsesquioxane chemistry is to prepare 
multifunctional nanostructured materials that can be used as electrochemical sensors. A preliminary 
characterization the SSI was publish recently (Silveira, Silvestrini, Bicalho, & Do Carmo, 2013). Based on our 
interest above mentioned, in this paper we present the preparation, and a complementary characterization and 
voltammetric study of interaction of a octa-(3-chloropropyl)octasilsesquioxane (SS) functionalised with imidazol 
(SSI) groups, and its subsequent reaction with silver (AgSSI) and hexacyanoferrate (III) (AgHSSI). The 
electrochemical behavior of AgHSSI provide additional information about different species formed during their 
preparation. 

2. Experimental  

2.1 Reagents and Solutions 

Unless specially state all reagents solutions and supporting electrolytes were prepared using Milli-Q water and 
the reagents and solvents were of analytical grade (Merck or Aldrich) and were used as purchased.  

2.2 Techniques 

2.2.1 Diffuse Reflectance 

The diffuse reflectance spectra of the bulk solid binuclear complex were recorded between 350 and 1000 nm on 
a Guided Wave model 260 spectrophotometer, using a tungsten-halogen lamp as the radiation source, and 
detectors of Si and Ge. 

2.2.2 Fourier Transform Infrared Spectra 

The FTIR spectra were recorded on a Nicolet 5DXB FTIR spectrometer. About 150 mg of KBr were ground in a 
mortar and a sufficient quantity of the solid sample was ground with KBr to produce a 1 wt.% mixture resulting 
in pellets. The data collection a minimum of 64 scans was collected for each sample at a resolution of ± 4 cm-1 in 
the range 4000 to 400 cm-1. 

2.2.3 NMR Solid State Analyses 

All 29Si NMR (59.5 MHz) and 13C NMR (75.4 MHz) solid state analyses were recorded on a Varian INOVA 300 
spectrometer. The samples were packed in zirconia rotors and spun at the magic angle at 4500 Hz, after 
relaxation delay of 10.0 s and 6.0 s for 29Si and 13C respectively. All chemical shifts are reported in units (ppm) 
using tetramethylsilane (TMS) as external reference. 

2.2.4 Electrochemical Measurements 

Cyclic voltammograms were performed using the Microquimica (MQP1-PGST) potentiostat. The three electrode 
systems used in these studies consisted of a modified working electrode (graphite paste electrode) an Ag/AgCl(s) 
reference electrode, and a platinum wire as the auxiliary electrode. The measurements were carried out at 25C. 

2.3 Synthesis of Octa-(3-chloropropyl)octasilsesquioxane (SS)  

For the synthesis of octa-(3-chloropropyl)silsesquioxane (SS) a procedure following as described in the literature 
(Chojnowski et al., 2006; Silveira, Silvestrini, Bicalho, & Do Carmo, 2013) after minor modifications. 800 ml of 
methanol, 27ml of hydrochloric acid(HCl) and 43 mL of 3-chloropropyliltriethoxysilane were added into a round 
bottom flask of 1000 mL. The system was kept under constant stirring at room temperature for 6 weeks. The 
solid phase was separated by filtration in a sintered plate funnel, yielding a white solid, 
octa-(3-chloropropyl)octasilsesquioxane (SS), which was then oven dried at 120 ºC for 4 hours. Figure 1(A) 
illustrates a representative scheme of this synthesis. 
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