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Abstract 

The estimation of the coefficient of equalization of velocities (D), and the wall effect factor (k) in a cylindrical 
flow–through packed bed reactor equipped with wire gauze packing is presented via properly truncated 
eigenfunction series subjected to regression analysis. The first numerical example indicates adequate fit of (posited) 
experimental data on the fraction of the total fluid in the wall layer by nonlinear regression, while the second 
example portrays the opposite situation where the same model fails to reliably represent the (posited) observation 
set. Regression upon linearization produces poor to absurd results. 
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1. Introduction 

An early characterization of liquid-flow distribution in a packed column with wall effect (Porter & Jones, 1963) 
describes the two-dimensional flow pattern in terms of a “liquid spread factor” and a “wall factor” appearing in an 
infinite series which describes the radial distribution by Bessel functions of the first kind order zero (J0) and order 
one (J1), and the axial distribution by negative exponentials. Overestimation of the wall effect, tested 
experimentally in a six-inch diameter cylindrical column using half-inch Raschig rings, was ascribed to liquid 
channeling ignored by the model where the spreading mechanism of the liquid flow was assumed to be analogous 
to diffusion. 

Adopting a somewhat different treatment of the theme (Jenson & Jeffreys, 1977), the wall effect here is presented, 
upon some algebraic rearrangements, as 
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where a is the radius of the concentric inlet tube at the top of the column, b is the cylindrical column radius, D is the 
dimensionless coefficient of equalization of velocities (a property of the packing and the fluid used), F is the 
fraction of the total fluid in the wall layer, k is the wall-effect factor, and z is the dimensionless axial length. The 
summation represents an infinite series with alternating signs caused by the oscillatory behaviour of the J0(x) and 
the J1(x) functions with respect to the horizontal axis; this is an intrinsic property of the Jn(x) family (n is an integer) 
of Bessel functions (Watson, 1966). The eigenvalue set {λ n} contains the ascending roots of the algebraic equation 

0)b(J)b(Jk n1n0n                                    (2) 

The step-by-step derivation of Equation (1) is an elegant demonstration (Jenson & Jeffreys, 1977) of converting an 
a-priori non-orthogonal set of eigenfunctions into an orthogonal set allowing the conventional application of 
orthogonality theory. It follows from Equation (1) that if the column is sufficiently long, F(z→∞) = 2k/(b + 2k) is 
an acceptably close approximation to the true fluid flow fraction. The value of z = 0 denotes the position where the 
fluid flow first extends continuously across the entire (horizontal) cross section. 

When a packed column is used as a chemical reactor (with the packing material serving e.g. as a catalyst), its 
characteristic (D; k) parameters can be expected to differ from their counterparts in the simple flow-through case. 
Depending on the specifics of the reaction(s), certain physical properties in the reactor might also become 
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sufficiently different to deny validity to Equation (1). Motivation for the current communication stems (i) from the 
desire for a relatively uncomplicated quantitative procedure to test the applicability of Equation (1) to any packed 
bed reactor with its geometry conforming, at least approximately, to the Jenson-Jeffreys formulation, and (ii) from 
the supposition that highly accurate and reliable (e.g. nanotechnology-based) fluid fraction versus axial position 
observations will be eventually available for practical utilization of the sequel. 

The numerical illustrations demonstrate (i) a strong and a weak case for accepting Equation (1) as a good model of 
fluid fraction distribution, and (ii) the perils incurred when Equation (1) is linearized in search for an (apparently) 
effort-saving means of data fitting. 

2. Method 

In the first step, the wall effect factor is estimated by neglecting the eigenfunction expansion term in Equation (1), 
yielding 
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if z is sufficiently large (i.e. F(z) increases very little when z is further increased). A least-squares estimate of the 
parameter D can be obtained via conventional regression theory from the expression 
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where Fe (zj); j =1, . . . , J are the experimentally obtained flow ratios and F(zj), j = 1, . . . , J are the flow ratios 
predicted by Equation (1). The D-estimate is given by solving 
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where ε is an arbitrarily assigned constant located near zero. 

3. Potential Applications to Chemical Reactions 

3.1 Illustration No.1: Treatment of an Industrial Effluent 

An industrial effluent entering an experimental cylindrical flow reactor (a = 0.20 m; b = 0.80 m) packed with a 
certain wire gauze is envisaged to leave it with its BOD (biochemical oxygen demand) reduced by chlorination 
within the range of 12–18 mg/dm3. The packing ensures a sufficiently large contact area, and it also acts as a 
suspended solids collector [the outflow is to contain less than 30 mg/dm3 suspended solids (Pletcher & Walsh, 
1990)]. Continuous flow-through operation is interrupted, when packing efficiency is no longer adequate, to install 
fresh packing and resume the normal treatment process. The experimental data contained in the first and second 
column of Table 1 are assumed, in the absence of currently available information, for the sole purpose of numerical 
demonstration of the method of attack. 
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Table 1. Analysis of regression of Equation (1) in Section 3.1. a= 0.2 m, b = 0.8 m, k = 0.058 m, 4bk/a = 0.928 m 

Dimensionless 
axial length, z 

Fraction of total fluid at the wall, per cent 
Experimental(1) Equation (1); n = 1 Equation (1); n = 1,2 Equation (1); n = 1,2,3

0.2 5.38 4.26 3.99 3.98 
0.3 8.48 8.02 7.25 7.25 
0.4 9.35 10.11 9.44 9.44 
0.5 9.71 11.27 10.78 10.78 
0.6 10.92 11.91 11.57 11.57 
0.7 11.85 12.27 12.04 12.04 
0.8 12.12 12.46 12.32 12.32 
0.9 12.48 12.57 12.48 12.48 

(1) posited for the sake of illustration. 

Eigenvalues: λ1 = 4.490, λ2 = 8.225, λ3 = 11.987, [λ] = m. 

Eigenfunctions: Φ1 = -1.3266, Φ2 = 0.2926, Φ3 = -0.1936, [Φ] = m-1. 

Coefficient of determination R2 = 0.924; 0.932; 0.931. 

Dimensionless coefficient of velocity equalization D = 0.292; 0.263; 0.263; ε ≤ 10-5. 

Residuals distribution [Fe(z) - F(z) versus F(z)]: quasi–random. 

 

3.2 Illustration No.2: An Electro-Organic Reaction System 

While, in principle, many reaction systems could qualify for the purpose, the electrolytic oxidation of aqueous 
phenol solutions to hydroquinone HQN (known also as p-quinone, 1,4-benzoquinone, and 1,4 dihydroxybenzene) 
in the presence of dilute sulphuric acid) is employed as an example. The reaction is assumed to be studied in an 
exploratory flow-through reactor, whose wire gauze packing is coated with finely dispersed lead oxide particles 
acting as anode. Vertical cathode rods are inserted in a proper pattern allowing prior supposition of a multiple – 
undivided-cell structure. For the purpose of the current subject matter it is sufficient to indicate the simplified 
process mechanism (Rifi & Covitz, 1974) amongst e.g. the thirty four pre-1975 reports on its electro-organic 
synthesis (Swann & Alkire, 1980).Accordingly, phenol first reacts with water to produce quinone, free protons and 
free electrons, whose subsequent interaction yields the desired product HQN and molecular hydrogen. 
Reoxidation of HQN is avoided by simultaneous/competitive adsorption of phenol and quinone at the anode. The 
first and second column of Table 2 show the experimental data posited by the same reasoning as in Section 3.1. 

 

Table 2. Analysis of regression of Equation (1) in Section 3.2. a = 0.1 m, b = 0.5 m, k = 0.038 m, 4bk/a = 0.760 m 

Dimensionless axial length, z 
Fraction of total fluid at the wall, per cent 

Experimental(1) Equation (1) n = 1 Equation (1) n =1,2 
0.05 8.20 7.50 7.56 
0.10 10.30 12.37 12.37 
0.15 11.60 13.07 13.07 
0.20 12.30 13.17 13.17 
0.25 12.90 13.19 13.19 
0.30 12.95 13.19 13.19 
0.35 12.98 13.19 13.19 
0.40 12.99 13.19 13.19 
0.45 13.05 13.19 13.19 
0.50 13.12 13.19 13.19 

(1) posited for the sake of illustration. 

Eigenvalues: λ1 = 7.15, λ2 =13.13, [λ] = m. 

Eigenfunctions: Φ1= - 0.3919;Φ2 = 0.4960, [Φ] = m-1. 

Coefficient of determination: R2 = 0.662; 0.664. 

Dimensionless coefficient of velocity equalization D = 0.756; 0.735 ε ≤ 10-7; 5x10-4. 

 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 5, No. 4; 2013 

116 
 

4. Analysis and Discussion 

The conventional coefficient of determination (or squared correlation coefficient), written for the context of this 
paper, as 

2
m

J

1j
je

J

1j

2
jje

2

]F)z(F[

)]z(F)z(F[

1R













                                   (6) 

expresses the extent to which a regression explains the variation in the experimental data [or, put otherwise, gives 
“…the proportion of the variation of the dependent variable which is taken up by fitting the regression line…” 
(Porkess, 2005)]. Regressions with R2 ≥ 0.9 are generally considered to be a good fit of data, if the distribution of 
the residuals Fe(zj)–F(zj) shows at least a reasonable tendency toward randomness (e.g., Montgomery, Runger, & 
Hubele, 2001). Appendix 1 summarizes certain tests concerning hypotheses about large-experimental-set based 
(population) values in face of the set of experimental observations considered as a sample from said population. 

4.1 The Packed Bed Reactor in Section 3.1 

Table 1 demonstrates a close fit of data by Equation (1), and it also indicates that treatment based on the leading 
eigenvalue alone is quite adequate from a statistical point of view. Nevertheless, a process analyst might prefer the 
results based on both the first and second eigenvalues and accept D = 0.263 rather than 0.292; consideration of 
higher eigenvalues would be redundant (except perhaps at z values very close to zero). 

4.2 The HQN Reactor in Section 3.2 

As depicted in Table 2, Equation (1) is at best weakly adequate for correlating the F versus z relationship. Reasons 
for this weakness are not immediately obvious, but flow channeling, adhesion to cathode rods and (partial) local 
clogging of the gauze anodes e.g. would be likely candidates. 

4.3 Regression on the Linearized Form of Equation (1): The Case Against It 

Linearization of Equation (1) by considering merely the leading eigenvalue and the leading eigenfunction (the only 
possibility for linear regression), might appear to be tempting in order to simplify numerical encumbrance often 
accompanying nonlinear regressions. Under such conditions an auxiliary function Y1 can be defined as 
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Equation (7) implies, in principle, a linear regression y1 = b0 + b1z on the experimental F versus z data strings. The 
slope of this regression yields a parameter estimate 
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by neglecting b0 on the basis of failing to reject the null hypothesis H0: β0 = 0 (Appendix 2; β0 is the population 
intercept). 

While Appendix 1 and Appendix 2 along with Table 3 and Table 4 indicate sufficient quantitative reasons for 
avoiding linearization in the two illustrations, linearization itself is objectionable in principle, however 
manipulatively convenient it might appear to be. If Y = f(X) denotes transformation of a random variable X to 
random variable Y, the variance relationship V(Y) = (dY/dX)2V(X) finally leads to V(Y) = V(X)exp(-2Y) in the case 
of linearization, hence V(Y) changes from observation to observation. The weighted linear least squares method 
(e.g. Mickley, Sherwood, & Reed, 1957) employing sample variance sY

2, in place of the (unknown) population 
variance V(Y), usually different at each observation, offers no particular advantages over regressions involving 
nonlinear least squares. 
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Table 3. Linearized regression of Equation (1) in Section 3.1. a = 0.2 m, b = 0.8 m, k = 0.058 m, 4bk/a = 0.928 m 

Dimensionless axial length, z
-y1 (z) 

F1(z)(2) 
Experimental Equation (7)(1)

0.2 1.3193 1.1760 1.80 

0.3 1.8631 1.6859 5.83 

0.4 2.0993 2.0968 9.37 

0.5 2.2127 2.5577 9.97 

0.6 2.7291 3.0186 10.98 

0.7 3.4621 3.4795 11.62 

0.8 3.8389 3.9404 12.02 

0.9 4.7809 4.4013 12.28 
(1) -y1(z) = 0.2532 + 4.6090z, R2 = 0.977, D = 0.229 ε ≤ 10-5. 
(2) F1(z) = 12.71 - 27.42 exp(-4.6085z) per cent, R2 = 0.488. 

 

Table 4. Assessment of linearization failure in Section 3.2 

Equation (7): Y1(z) = ln[0.44179 – 3.3484F(z)] = - 51.1225Dz. 

For z > 0.10, Y1(z) is a complex quantity inasmuch as the argument of the logarithmic function is negative. 

The “brute force” estimate of D = 0.175 obtained from Y1(0.05) = -1.7884; Y1(0.10) = -2.2354 yields 

F1 (z) = 13.19–39.30 exp(-8.9464z) per cent with absurd negative estimates F1(0.05) = -11.94 and 

F1 (0.10) = -2.87 per cent. Consequently, R2 = 1–346.46/49.610 = -5.98 (Equation 6) is equally absurd.  

 

4.4 Computational Aspects 

A key element in the determination of parameters (D;k) is the eigenvalue set {λn}. The fortuitously rapid growth of 
the eigenvalues usually forestalls the necessity of finding eigenvalues beyond a small number (Tables 1-3 indicate 
the impunity of neglecting all but the first and second eigenvalue in the illustrations). Apart from 
mathematical/statistical software, such as Microsoft EXCEL and Press et al. (1986, 1992), extensive tabulations of 
the J0 and the J1 functions can be found in Abramowitz and Stegun (1965), Jahnke and Emde (1945), Tuma (1979, 
1989), G. Korn and Th. Korn (1968) and the standard mathematical tables published regularly by CRC Press. 
Watson (1966) provides a very thorough theoretical background for the application of Bessel functions. 
Approximations via Chebyschev polynomials carrying 20-digit decimals (Luke, 1975) exemplify the degree of 
available numerical precision. 

It is worth noting (although in a negative sense) that the experimental data in Section 3.2 can be correlated “almost 
perfectly” by the cubic regression F(z) = 0.0556 + 0.6206z – 1.6965z2 + 1.5198z3  with R2 ≈ 1.0. It would be 
useless for the purposes of this paper, since the parameters (D;k), intrinsic properties of Equation (1), could not be 
extracted from it. 

5. Final Remarks and Conclusion 

The ultimate purpose of model identification is to allow the process analyst to determine how process/design 
parameters are to be modified, if necessary, for desired performance. When useful for finding appropriate (D;k) 
values for an a-priori stipulated flow fraction distribution (such as in Section 3.1), Equation (1) would be an 
attractive tool of reactor design and performance analysis. In opposite cases (such as in Section 3.2), a different 
approach to formulating the flow mechanism is warranted. The discussion of such “follow-up” steps is beyond the 
scope of this paper. 

Acknowledgments 

The University of Waterloo and the Natural Sciences and Engineering Research Council (NSERC) of Canada have 
provided facilities for this work. 

 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 5, No. 4; 2013 

118 
 

References 

Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables (pp. 390, 392). New York, NY: Dover. 

Arnold, S. F. (1990). Mathematical Statistics (p. 420). Englewood Cliffs, NJ: Prentice Hall. 

Beyer, W. H. (1968a). Handbook of Tables for Probability and Statistics (2nd ed., pp. 125-134). Boca Raton, FL: 
CRC Press. 

Beyer, W. H. (1968b). Handbook of Tables for Probability and Statistics (2nd ed., pp. 282-285). Boca Raton, FL: 
CRC Press. 

Jahnke, E., & Emde, F. (1945). Tables of Functions with Formulas and Curves (4th ed., pp. 156-163). New York, 
NY: Dover. 

Jenson, V. G., & Jeffreys, G. V. (1977). Mathematical Methods in Chemical Engineering (2nd ed., pp. 285-290) 
London, UK: Academic Press. 

Korn, G. A., & Korn, Th. M. (1968). Mathematical Handbook for Scientists and Engineers (2nd.ed., pp. 
1036-1042). New York, NY: McGraw Hill. 

Lindley, D. V., & Scott, W. F. (1984b). New Cambridge Statistical Tables (pp. 42-45). Cambridge, UK: Cambridge 
University Press. 

Lindley, D. V., & Scott, W. F. (1984a). New Cambridge Statistical Tables (pp. 34-35). Cambridge, UK: Cambridge 
University Press. 

Luke, Y. L. (1975). Handbook of Functions and Their Applications (pp. 322-324). New York, NY: Academic 
Press. 

Mickley, H. S., Sherwood, T. K., & Reed, Ch. E. (1957). Applied Mathematics in Chemical Engineering (2nd ed., 
pp. 97-99). New York, NY: McGraw Hill. 

Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2001). Engineering Statistics (2nd ed., pp. 336-337). New 
York, NY: Wiley and Sons. 

Neter, J., Wasserman, W., & Kutner, M. H. (1990). Applied Linear Statistical Methods (3rd ed., pp. 71-73). Boston, 
MA: R. D. Irwin. 

Pletcher, D., & Walsh, F. C. (1990). Industrial Electrochemistry (2nd ed., pp. 331-333). London, UK: Chapman 
and Hall. 

Porkess, R. (2005). Collins Dictionary of Statistics (2nd ed., pp. 49-51). Glasgow, UK: Harper Collins. 

Porter, K. E., & Jones, M. C. (1963). A Theoretical Prediction of Liquid Distribution in a Packed Column with 
Wall Effect. Transactions of the Institution of Chemical Engineering, 41, 240-247. 

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical Recipes (pp. 170-176). 
Cambridge, UK: Cambridge University Press. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C (2nd ed., pp. 
230-236). Cambridge, UK: Cambridge University Press. 

Rifi, M. R., & Covitz, F. H. (1974). Introduction to Organic Electrochemistry (pp. 157-158). New York, NY: 
Marcel Dekker. 

Snedecor, G. W., & Cochran, W. G. (1989). Statistical Methods (8th ed., pp. 187-190). Ames, Iowa: Iowa State 
University Press. 

Swann, Jr., Sh., & Alkire, R. (1980). Bibliography of Electro-Organic Syntheses 1801–1975 (p. 526). Baltimore, 
MD: Port City Press. 

Tuma, J. J. (1979). Engineering Mathematics Handbook (p. 194). New York, NY: McGraw Hill. 

Tuma, J. J. (1989). Handbook of Numerical Calculations in Engineering (p. 382). New York, NY: McGraw Hill. 

Watson, G. N. (1966). A Treatise on the Theory of Bessel Functions (pp. 38-47). Cambridge, UK: Cambridge 
University Press. 

 

 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 5, No. 4; 2013 

119 
 

Appendix 1. Statistical Testing of Hypotheses Involving the Correlation Coefficient of a Linear Regression 

Given the correlation coefficient r = √R2 of a linear regression y = b0 + b1x obtained on the basis of a sample, 
originating from a large sample/population with true regression Y = β0 + β1z. The null hypothesis H0: ρ = 0, where 
ρ is the large-sample/population correlation coefficient can be tested by the T-distribution statistic ( e.g., Snedecor 
& Cochran, 1989; Arnold, 1990): 
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to test the null hypothesis of setting an arbitrary value, i.e., H0: ρ = ρ0 (equivalent in this context  to the null 
hypothesis H0: ρ ≠ 0) and finding the error incurred if H0 were rejected from (standardized) normal distribution 
tables e.g., Beyer, 1968a; Lindley & Scott, 1984a). 

In Section 3.1 t ≈ 15.96 obtained via Equation (A.1) for y1   indicates that ρ = 0 is untenable. In Section 3.2, since 
Equation (A.1) yields t ≈ 3.67, rejection of H0: ρ = 0 would carry only a 0.5% error [t(8;0005) ≈ 3.36]. Applying 
Equation (A.2) to the correlation coefficients R2 ≈ 0.98 in Section 3.1 is too high for postulating a substantially 
lower ρ below 0.99, while material here cannot be applied to Section 3.2 on account of the failure of linear 
regression. 

Appendix 2. Statistical Testing of Hypotheses Involving the Intercept of a Linear Regression 

Given the linear regression y = b0 + b1x obtained on the basis of a sample, originating from a 
large-sample/population with true regression Y = β0 + β1x. To test the null hypothesis H0: β0 = 0, the T-distribution 
statistic (e.g., Neter, Wasserman, & Kutner, 1990) 
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is computed; n is the sample size, sx
2 the variance of the set of independent variables {xn}, and sy

2 the variance of 
the set of dependent variables {yn}. If the value of t in Equation (A.3) exceeds the critical value t(α,n-2) at a chosen 
significance level α tabulated for certain values of α and n (e.g., Beyer, 1968b; Lindley & Scott, 1984b), then H0 is 
rejected (at the chosen significance level α) and β0 > 0 or β0 < 0 is accepted, depending on the sign of b0. In Section 
3.1, sx

2 = 0.05998, sy
2 = 1.3360; b0 = -0.2532; b1 = -4.6090; n = 8; Equation (A.3) yields t ≈ -1.02, hence rejection of 

H0 carries a large error of about 20% [t(0.2;6) ≈ - 0.91 on the negative half-plane of the T-distribution]. Similarly to 
Appendix 1, material in Section 3.2 does not qualify for the test in Equation (A.3). 
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