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Abstract 

Through a thermodynamic argument based on Planck’s as well as the total entropy irreversibility criterions it is 
possible to prove that contrary to common wisdom, infinite-time irreversible processes constituted by a 
succession of equilibrium states in which all the thermodynamic properties are defined and quantifiable, are 
possible. As such, these irreversible processes are capable of graphical representation in thermodynamic state 
space. It is also shown that these infinite-time irreversible processes are thermodynamically equivalent to their 
finite-time counterparts. Not only do these results demand a revision of our current conceptualization of 
irreversibility; they also bring a purely thermodynamic alternative to the postulate of local equilibrium for the 
thermodynamic analysis of the evolutionary path of irreversible processes. 
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1. Introduction 

The most general criterion of irreversibility offered by thermodynamics takes form in the total entropy increase 
principle: “… Any actual or irreversible process is characterized by an increase in the total entropy of all systems 
concerned.” (Lewis & Randall, 1961). This statement finds re-expression in a number of equivalent propositions 
(Schmidt, 1966), one of which takes form in Planck’s principle of the impossibility of recuperation of the 
original condition of the universe: “… A process which can in no way be completely reversed is termed 
irreversible, all other processes reversible. That a process may be irreversible, it is not sufficient that it cannot be 
directly reversed… The full requirement is, that it be impossible, even with the assistance of all agents in nature, 
to restore everywhere the exact initial state when the process has once taken place” (Planck, 1990).  

Notwithstanding the generality of the previous statements, a number of subsidiary characteristics are commonly 
ascribed to these processes. Thus, irreversible processes are commonly described as finite-time processes 
(Graetzel & Infelta 2002) comprised by a temporal succession of non-equilibrium states in which some of the 
relevant thermodynamic state functions such as T, P, and S are neither defined nor quantifiable (Tolman & Fine, 
1948; Kestin, 1991; Vavruch, 2002; Garfinkle, 2002), situation that hinders their representation as continuous 
graphs in state space (Schmidt, 1966).  

The argument to be introduced below based on Planck’s as well as the entropy increasing criterions of 
irreversibility shows, however, that these subsidiary conditions are not general; that infinite time irreversible 
processes constituted by a succession of equilibrium states and capable of graphical representation are indeed 
possible; that an infinite-time isothermal irreversible process is thermodynamically equivalent to its irreversible 
finite-time counterpart; and that this equivalence constitutes an alternative approach to that embodied by the 
postulate of local equilibrium for the thermodynamic analysis of irreversible processes.  

These results will be obtained by way of proving that an infinite-time irreversible process can be generated via 
the concatenation of its reversible counterpart–the reversible version of the original irreversible process–in which 
an amount of work revW is produced, with a work degrading step in which revW is degraded as heat at the 

temperature of a heat reservoir. The fact that in the said concatenation the irreversible process comes about at the 
conclusion of its reversible counterpart makes it an infinite-time irreversible process. The proof that this 
infinite-time irreversible process is thermodynamically equivalent to its irreversible finite-time counterpart rests 
on the fact that the total entropy change for the two paths mentioned is one and the same.  
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2. Entropy Production as a Gauge of Lost Work in Irreversible Processes 

According to Planck (1990), 

“… The second law of thermodynamics states that there exists in nature for each system of bodies a quantity, 
which by all changes of the system either remains constant (in reversible processes) or increases in value (in 
irreversible processes). This quantity is called, following Clausius, the entropy …” 

According to Smith and Van Ness (1965), 

“… Actual processes are irreversible, and every irreversibility results in lost work …”  

The fact that according to these statements every irreversible process is accompanied by the production of 
entropy as well as the production of lost work, strongly suggests the existence of a connection between these two 
magnitudes. That this is indeed the case is the matter of the argument that follows which compares the effects of 
the reversible (rev) evolution of a thermodynamic system (s) from a given initial to a given final condition, with 
those produced when the evolution between the same two states takes place irreversibly (irr). In these processes 
the surroundings take the form of a heat bath of temperature T , and a mechanical reservoir. Combined, system 
and surroundings, define the universe (u) of these processes.  

Let us start by writing the following equations for the internal energy change ( U ) of the system along each of 
these evolving paths 

revrev,srev,s WQU                                       (1) 

irrirr,sirr,s WQU                                       (2) 

In the previous equations revW  and irrW  represent, respectively, the work outputs along the reversible and 

irreversible paths. The fact that heat lost by the system is heat absorbed by the bath, and vice versa 

baths QQ                                           (3) 

allows us to write Equations (1) and (2) as follows 

revrev,bathrev,s WQU                                    (4) 

irrirr,bathirr,s WQU                                    (5) 

In Equations (4) and (5) the terms rev,bathQ  and irr,bathQ  refer, respectively, to the heat exchanged between the 

bath and the system when the latter evolves along the reversible path, and that exchanged when the system’s 
evolution follows the irreversible path. As known (Denbigh 1968), the entropy change for the heat bath is 
determined by the quotient of the actual amount of heat by it exchanged divided by its temperature, with 
independence of the nature of the process in which such a heat originated, or to which such a heat is destined.  

The fact that the initial and final conditions of the system are the same for the reversible and irreversible 
evolutions being considered, combined with the fact that the internal energy is a state function, leads to 

irr,srev,s UU                                        (6) 

Introduction of this condition in Equations (4) and (5) produces, after rearrangement, the following expression 

rev,bathirr,bathirrrevlost QQWWW                              (7) 

Equation (7) makes it clear that the lost work ( )lostW , defined as the difference between the reversible and 
irreversible work outputs 

irrrevlost WWW                                       (8) 

appears as that extra amount of heat rejected to the heat bath in excess of that rejected in the reversible path.  

Upon division by T , Equation (7) transforms into 

rev,bathirr,bathrev,bathirr,bathlost SS)T/Q()T/Q(T/W                   (9) 

The following equations will now be written for the entropy changes of the universes of these two paths 

rev,bathrev,srev,u SSS                                  (10) 

irr,bathirr,sirr,u SSS                                   (11) 

The same reasoning leading to Equation (6) is here used to write 

irr,srev,s SS                                      (12) 
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Substitution of Equation (12) in (11) leads to 

irr,bathrev,sirr,u SSS                                   (13) 

Once Equation (10) is solved for rev,sS , and the resulting expression substituted in Equation (13), we get 

rev,bathirr,bathrev,uirr,u SSSS                               (14) 

The adequate combination of Equations (9) and (14) leads to 

T/WSS lostrev,uirr,u                                    (15) 

And the fact that 0S rev,u  , to 

T/WS lostirr,u                                       (16) 

Equation (15) states that the total or universe entropy change for an isothermal irreversible process is equivalent 
to the summation of the entropy changes of its reversible counterpart, in which an amount of work revW  is 

produced, plus that of the process in which this work is degraded as heat at the temperature of the heat reservoir. 
Equation (16), obtained combining Equation (15) with the known fact that the total entropy change for a 
reversible process is zero, identifies the entropy change as a gauge or measure of the work lost in irreversible 
processes. Let us also point out that constancy of temperature was the only restriction introduced in the 
thermodynamic argument leading to Equations (15) and (16). Consequently, no other limitation than this applies 
to the use of these equations. Alternative derivations leading to the result shown in Equation (16) can be found in 
the literature (Smith & Van Ness, 1965; Balzhiser et al., 1974; Di Liberto, 2007). 

3. The Degradation of Work and the Transition from Reversibility to Irreversibility 

“The significance of the second law of thermodynamics depends on the fact that it supplies a necessary and far 
reaching criterion as to whether a definite process which occurs in nature is reversible or irreversible … A 
process which can in no way be completely reversed is termed irreversible, all other processes reversible. That a 
process may be irreversible, it is not sufficient that it cannot be directly reversed … The full requirement is, that 
it be impossible, even with the assistance of all agents in nature, to restore everywhere the exact initial state 
when the process has once taken place” (Planck, 1990).  

To understand the significance of Equation (15) let us consider the reversible and isothermal expansion of an 
ideal gas from an initial condition )V,P( ii  to a final condition )V,P( ff  as represented in Figure 1(b). The 

effect of this process, the first step of the concatenation made explicit by the right hand side of Equation (15), 
takes form in the transformation of an amount of heat revQ  absorbed from the heat bath of temperature T, into 

an equivalent amount of work )V/Vln(nRTW ifrev   deposited in the mechanical reservoir. Let us now point 

out here two facts regarding the expansion that has just taken place: First, that on reason of its reversibility, the 
entropy change for the universe of this process is equal to zero; Second, that also on reason of its reversibility, 
the transit of the ideal gas from its initial to its final condition can be represented as a continuous path in state 
space; here in the form of a trajectory on a P-V graph. Let us now retrieve from the mechanical reservoir the 
amount of work there previously deposited, and degrade it as an equivalent amount of heat at the temperature of 
the heat bath. This action embodies, it should be clear, the second step of the concatenation previously noted. Let 
us now point out four facts in regard to the just performed work-to-heat degradation. First, that in accord with 
Equation (16), this work degrading process is accompanied by a total entropy increase of magnitude

)V/Vln(nRT/WT/W ifrevlost  . Second, that in confirmation to that expressed by Equation (15), the 

addition of this entropy change–corresponding to process 1(c)- to that of magnitude zero corresponding to its 
reversible antecedent–process 1(b)- produces a total entropy change of magnitude )V/Vln(nR if , identical to 

that known to correspond to the isothermal irreversible counterpart represented in Figure 1(a) consisting in an 
ideal gas free-expansion transiting between the same initial and final states (Klotz & Rosenberg, 1986). Third, 
the fact that in only involving the heat and mechanical reservoirs, the degradation of revW  has no effect on the 

values of the thermodynamic variables (P, V) defining the state of the gas. At the end of the degradation of 

revW  the gas remains at its final condition ( ff V,P ). Fourth, the realization that the moment the work 

degrading process takes place, the universe of the reversible expansion becomes irreversible. The reason is 
simple and subsumed in Planck’s quote given at the beginning of this section. As long as revW  is available we 

can use it to reverse each and every change produced in the reversible expansion, and in doing so bring the right 
hand side universe back to its precise original condition, without changes in other bodies remaining. Once revW  

is lost, however, the compression of the gas back to its initial condition can only be performed at the expense of 
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leaving a permanent change in at least that body called to supply the missing work. Our inability to recover the 
original condition of the universe without changes in other bodies remaining is what makes the universe of this 
concatenation irreversible. The reversibility of the expansion, guaranteed by the availability of revW , turns into 

irreversibility the moment this work is degraded as heat, and when this happens, the universes at both ends of the 
equal sign in Figure 1 become identical.  

Keeping the previous description in mind it shouldn’t be difficult to understand that if starting from its initial 
condition the expansion is carried on as a succession of reversible expansion steps of infinitesimal extent, 
degrading at the conclusion of each of them the reversible work there produced, a reversible to irreversible 
transition will be experienced by each and every point of the expansion’s path without otherwise affecting the 
values of the state functions already in place (entropy excluded), and in being this so, at the conclusion of this 
process the continuous P-V curve originally describing the evolving path of a reversible process will become the 
path of an irreversible process. The fact that each and every point of the irreversible path thus defined can only 
come about after its reversible antecedent has taken place, an event demanding an infinite time, leads to the 
inescapable conclusion that the said irreversible path will also demand an infinite time. Furthermore, the 
identical entropy changes produced by the processes at both sides of the equal sign in Figure 1 leads to the 
realization that the finite-time irreversible process represented in 1(a) is thermodynamically equivalent to the 
infinite time irreversible process produced by the concatenation of Figure 1(b) with Figure 1(c). 

 

 

Figure 1. The universe of the irreversible and isothermal ideal gas free-expansion shown in (a) is equivalent to 
that defined by the concatenation of its reversible counterpart, the reversible and isothermal ideal gas expansion 

shown in (b), with the work degrading process shown in (c) 

 

It should be obvious that a similar line of reasoning can be applied to any other isothermal irreversible process, 
and that different types of graphs can be targeted besides the one chosen above to exemplify the concept. Some 
of these graphs, like an  vsSu , -with   representing the degree of advancement of the process being 

considered- will be continuous but certainly not coincident with that corresponding to the reversible universe. In 
this case each and every point in the continuous irreversible path will be displaced from its reversible counterpart 
in an amount T/W ,lost  , with ,lostW  representing the total amount work degraded up to that point   in the 

advancement of the process. 

Another fact worth noticing in regard to Figure 1 is that in the universe of the free expansion there is no 
degradation of tangible work into heat, as is the case in the second step of the concatenation. The fact that the 
same entropy change applies for these two processes is a clear indication that the wasted dissipation of the 
work-producing potential taking place in the irreversible expansion, is equivalent or entropically 
indistinguishable from the actual degradation of tangible work into heat. 

4. Discussion 

“The admonishment of Brostow that thermodynamicists are mistaken in assuming that the scope and contents of 
thermodynamics are time independent has not been appreciated, neither by thermodynamicists, let alone by 
kineticists” (Garfinkle, 2000). 

“Time has no role to play in settling issues of thermodynamics” (Radhakrishnamurty, 2010). 

The fact that the analytical tools of classical thermodynamics are “… correct for equilibrium systems, for 
reversible (equilibrium) processes, and for processes between equilibrium states …” (Vavruch, 2002), combined 
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with the fact that an irreversible process is conceived as a temporal succession of non-equilibrium states in which 
most of the thermodynamic variables are nor defined nor quantifiable, leads to the realization that if a 
thermodynamic description of the path of irreversible processes is to be obtained it will have to be through the 
application of the said tools properly complemented with a number of assumptions (postulates). The classical 
approach to the thermodynamic description of irreversible processes is based on the Postulate of Local 
Equilibrium. In Garfinkle’s version of this postulate for closed systems, an irreversible process consists of a 
succession of cells “… of short duration, with each occupying the whole system …” (Garfinkle, 2002); The 
essential idea being, in the words of Moore, that “… at a time t, the … cell is isolated from its surroundings and 
allowed to come to equilibrium, so that at tt  , the P and T of the cell can be specified. The Postulate of 
Local Equilibrium is that we can take the P and T … in the original nonequilibrium system at time t to be equal 
to the P and T … when equilibrium is reached at tt  ” (Moore, 1972); here t  represents what is called the 
time of relaxation, an extra-thermodynamic, kinetic concept. From the modus operandi of this postulate it is 
understood that the equilibrium values adopted by the relevant variables at tt   necessarily correspond to 
those of a point in the path of the reversible counterpart to the original irreversible process. By this postulate a 
finite-time irreversible process becomes, according to Kestin “… a reversible process which occurs at a finite 
rate …” (Kestin, 1991). In reference to Figure 1 this postulate allows the use the continuous P-V graph 
associated to the reversible expansion, to represent also that of the irreversible one. 

The argument presented in section 3 has allowed us to realize that the thermodynamic description of the evolving 
path of isothermal irreversible processes via the continuous reversible graph finds sustenance in a purely 
thermodynamic argument devoid of non-thermodynamic notions such as the relaxation time or the relaxation 
rate. This argument managed to prove–via the reversible to irreversible switch produced in an isothermal process 
by a work degrading step–that the reversible locus is common to both of these processes, and if so that a 
sequence of equilibrium states in which all the pertinent thermodynamic variables are defined and quantifiable 
applies equally to reversible and irreversible processes. 

In regard to the question of the role of time in thermodynamics, it serves to highlight the fact that 
thermodynamics finds irreversible process 1(a) to be equivalent to the irreversible process coming out of the 
concatenation of 1(b) with 1(c) with independence of the fact that the former is a finite-time process while the 
latter is an infinite-time process. The time demanded by their respective occurrences–as different as two amounts 
of time can be–is inconsequential, i.e. plays no role in thermodynamics deciding their equivalence; a fact that 
constitutes evidence for positions such as Radhakrishnamurty’s denying time any role in thermodynamics’ affairs. 
In the same direction points the fact that the purely thermodynamic approach previously presented to treat 
isothermal irreversible processes as reversible makes unnecessary the time-related, extra-thermodynamic 
concepts of time and rate of relaxation. 

The previous considerations suggest that in classical thermodynamics neither time nor the nature of the 
succession of states connecting the initial and final conditions of a given isothermal process can be considered as 
indicators of the reversible or irreversible nature of such process. If these subsidiary conditions were the only 
ones at our disposal for the assessment of irreversibility we would be forced to agree with Kestin’s proposition 
“… that the distinction between reversible and irreversible processes … be dispensed with entirely: the former 
being a special case of the latter, only lacking direction” (Garfinkle, 2000). 

The fact that the introduction of the entropy function into the analysis of the expansions of Figure 1 brings 
forward two separate and distinct  vsSu  graphs for the reversible and irreversible versions of this process 
unambiguously indicates that it is entropy, total entropy that is, the true thermodynamic criterion of 
irreversibility and not the subsidiary conditions previously referred. 

5. Conclusions 

Two main conclusions can be obtained from the previous discussions. First, that neither time nor the 
thermodynamic nature of the states along its path has any role in defining the irreversibility of a thermodynamic 
process. This task is the sole province of the total entropy increase principle. Second, the fact that the evolving 
path of any isothermal irreversible process can be associated with a succession of thermodynamically defined 
intermediate states constitutes a purely thermodynamic alternative to the postulate of local equilibrium for the 
analysis of such processes. 
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