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Abstract 

We extend here a set of earlier articles that deal with irreversible processes across a thin boundary separating a 
system from its surroundings. We consider the transfer of heat and material when the system and reservoir are 
held at constant volume, and the temperatures (T) and chemical potentials (μ) differ by arbitrary amounts in the 
two parts of the compound system. Three distinct time variations for changing temperature and composition in 
the system are adopted. Although for any specified change of state the entropies associated with the transfer of 
heat and matter are quite different in the three cases, the overall entropy change remains the same, as is 
consistent with entropy being a function of state. The relation of the present approach to standard methodology is 
discussed. 

Keywords: irreversible thermodynamics, transfer of heat and material across a thin boundary, entropy changes, 
time-dependent transfer mechanisms 

1. Background Information

The extension of thermostatic to irreversible processes, nowadays termed extended thermodynamics, has been 
the subject of intensive research over roughly one century. A recurrent problem in the theoretical treatment has 
been the specification of temperature, as well as pressure, and entropy, under nonequilibrium conditions – a 
subject area that has been accorded a review on its own (Jou, Casas-Vázquez, & Lebon, 1999). We merely draw 
attention to several discussions of the subject (Kaufmann, Muschik, & Schirrmeister, 1996; Lebon, Jou, & 
Casas-Vázquez, 1996; Jou, Casas-Vázquez, & Lebon, 2001) which indicate the complexities involved in such a 
task. Among other matters, there is no unique formulation for the specification of temperature under 
nonequilibrium conditions which depends on the particular irreversible phenomenon under investigation. 
Nevertheless, a study of several special cases (Evans 1989; Jou & Casas-Vázquez, 1992; Fort, 1997; Jou, Casas-
Vázquez, & Lebon, 2010) indicates that the difference between the equilibration temperature and its dynamical 
analog, at least as it pertains to the flow of heat, tends to be small, generally much less than 10 %. 

In these circumstances it seemed appropriate to ignore the difference between static and dynamic temperatures 
and to concentrate on the investigation of the transfer of heat, work, and matter across a boundary separating a 
system from its surroundings under conditions where the two portions are at different temperatures, volumes, 
and chemical potentials. The situation is depicted in Figure 1 by a temperature (T) profile that remains constant 
in the two parts of the system, but changes abruptly across the thin intervening boundary; a similar profile 
obtains for the pressure (P), and chemical potential (μ). 

 

Figure 1. Sketch of a temperature profile for the combined system and reservoir at different temperatures T and 
T0. The temperature develops over only a small region l at the interface 
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The standard analysis of the problem involves setting up linear phenomenological equations that relate fluxes 
and generalized forces, and imposing steady state conditions to identify the phenomenological coefficients. Here 
we proceed along different lines, based on a didactic article (Honig, 2011), that generalizes the standard 
thermodynamic functions of state, by including the contribution to the entropy arising from the irreversible 
transfers of heat, work, and material under the conditions represented in Figure 1. The processes occurring across 
the boundaries are characterized by specifying how the relevant control variables vary with time (t), and then 
integrating to find the total entropy change over the entire time interval. The principal drawback of this 
procedure is the assumption that changes in T, P, and  occur uniformly within the system except very close to 
the boundary. By convention, all processes within the reservoir will take place reversibly, and in such a manner 
that its intensive variables remain constant. For such a situation to be approximated experimentally one could 
work with a system that is either very tiny, and/or by assuming that all processes within the system are subject to 
a very fast relaxation rate. Alternatively, one may conceive of many reservoirs surrounding the system and 
acting in concert. 

The subsequent analysis hinges on the differential of the path-dependent entropy change đθ that tracks the 
difference in entropy S when the same element of a given process in the system is carried out irreversibly as 
opposed to reversibly. The corresponding entropy changes of the reservoir are designated by dbS0 and by daS0 
respectively; thus, 

      dbS0  -  daS0  =  đθ,                                                                      (1) 

Here we may set daS0 = - dS(T,V,n), so that Eq. (1) reads 

dS(T,V,n)  +  dS0(T0,V0,n0) =  đθ.                                                              (2) 

We now set up the differential equations for energy for the system and surroundings, as applicable to reversible 
processes; variables for the surroundings carry the subscript 0. 

.),,(;),,( 0000000000 dndVPdSTnVSdEdnPdVTdSnVSdE                     (3) 

However, since E and E0 are functions of state we may reconstitute the above so as to apply to irreversible 
processes, by substituting for dS0 from Eq. (2). We next invoke energy conservation for the compound system by 
setting dE + dE0 = 0, impose volume conservation by setting dV + dV0 = 0, and conservation of material by 
setting dn + dn0 = 0. Lastly, we introduce the functional dependence of the entropy of the system by 
setting       ./// dnnSdVVSdTTSdS  This leads to the fundamental relation derived earlier by using a 
different approach (Honig, 2011) : 

T0đθ  =  (T0 – T)[(CV/T)dT + )/( TP  dV  + S


dn]  -  (P0 – P)dV  + (μ0 – μ)dn,                       (4) 

where CV is the heat capacity at constant volume, the appropriate Maxwell relation has been invoked, 

VTi nSS ,)/( 


 is the differential entropy, and all other symbols retain their conventional significance.   

In what follows we now assume special operating conditions in which the individual volumes are held fixed, 
leaving  

đθ  =  (1 – T/ T0)[(CV/T)dT ] +  [ (1 – T/ T0) S


 + (μ0/T0) (1 – μ /μ0)]dn.                         (5) 

With T, V, and n as control variables, the relevant function of state is the Helmholtz free energy, for which 
.ˆˆˆ STEA    Eq. (5) may then be rewritten in the form 

đθ  = đθT  + đθn =  (1 – T/ T0)[(CV/T)dT ] + [ S


+ μ0/T0 - Ê /T0]dn,                       (6) 

where VTnEE ,)/(ˆ   is the differential energy.  

For definiteness we adopt the Berthetelot gas as a working substance in both parts of the compound unit; the  
equation of state for the system is specified by 

,///),,( 2222 TVanVRTbnVnRTnVTP                                          (7) 

where a and b are materials-specific parameters. The energy derivative with respect to volume is then found 
from the caloric equation of state as 

,/2)/()/( 22 TVanPTPTVE                                              (8) 
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which may be integrated to yield 

     
./42/3),,(ˆˆ

;/22/3;/22/3),,(),,( 222

VTnaRTnVTEE

VTannRCVTannRTnVTEnVTE

ii

Vii




                       (9) 

The entropy of the system (at constant volume) at temperature T relative to the initial temperature Ti is specified 
via 

),,,()/1/1()/()/ln()2/3()/(),,( 222
iiiiV nVTSTTVanTTnRdTTCnVTS                       (10) 

where ),,(),,,( iiii nVTSnVTE are the energy and entropy at initial temperature Ti and mole number  ni, while the 
energy and entropy are to be evaluated at a temperature T and mole number n.  Then 

)).,,(ˆ)/1/1()/2()/ln()2/3(),,(ˆ 22
iiii nVTSTTVnaTTRnVTS                         (11) 

With Eqs. (6) and (9) the entropy contribution associated with the temperature variation is given by  

           .)/2()/2()2/3()2/3( 0
2232

0 dTTVTandTVTandTTnRdTTnRT                  (12)  

The contribution associated with the transfer of matter is specified via the second bracketed term in Eq. (6) as  

        Θn=∫ .),,(ˆ),,(
ˆ2112

2

3
ln

2

3

00

0

0
22
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dnnVTSnVT

T

E

TTTTTV

na

T
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T
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ii 
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
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




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










    (13) 

This completes the specification of the fundamentals.   In what follows we shall temporarily ignore the 
contributions arising from ),,,(ˆ/),,(ˆ/ 000 iiii nVTSTnVTET  which remain unchanged in the operations 
outlined in the next section. 

2. Specification of Entropy 

To determine the contributions of irreversible processes to the entropy of the combined unit we selected three 
different paths, by introducing time t (0 ≤ t ≤ τ) as a parameter and adopting three types of time dependence. We 
assume that Ti  ≤ T ≤ Tf  ≤ T0; ni  ≤ n ≤ nf  ≤ n0.   

2.1 Case 1  
We set )./ln(/)/(ln/),(exp/),(exp),exp(/),(exp ififnTnifniTifTi nnTTkkknntknnkTTtkTT     
Insertion of these relations into Eq. (12) and carrying out the required integrations is a tedious but 
straightforward process and leads to the following contribution to the entropy arising from the transfer of heat 
associated with the temperature change: 

           ,11111 TdTcTbTaT                                                           (14) 

where the first two terms on the right apply to the ideal gas case (via the first two terms in  Eq. (12)), and the 
second set involves the additional corrections arising from the Berthelot equation of state.  We find that 
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Similarly, on applying this case to Eq. (13), corresponding to the transfer of matter, we obtain 

,11111 ndncnbnan                                                                (16) 

where the first two terms relate to the contribution involving terms in 1/T0  (excepting 0/ˆ TE ), as specified by 
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and the remaining terms read 

              .
/1

/
;)(ln

2

3
2

2

2

2

2

2

2

2

11











































i

i

i

f

i

i

f

f

nt

nT
ndfi

i

f
f

n

T
nc T

n

T

n

T

n

T

n

kk

kk

V

a
nn

n

n
n

k

kR                        (18) 

2.2. Case 2 

We set ).1//()/(ln/,1/),1(),exp(/),(exp  ififnTnifniTifTi nnTTkkknntknnkTTtkTT   

Proceeding as before, for the contribution to the entropy from the temperature difference we write  

    ,22222 TdTcTbTaT                                                           (19) 

where the first two terms involve the ideal gas contribution, and the others, the Berthelot portion. We obtain 
from Eq. (12) 
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As regards the transfer of matter as specified by Eq. (13), we find that 

     ,22222 ndncnbnan                                                  (21) 

where the first two terms relate to the contribution involving terms in 1/T0  (excepting 0/ˆ TE ), as specified by 
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and the remaining terms read  
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2.3. Case 3 
Set ).1//()1/(/,1/),1(),1(/),1(  ififnTnifniTifTi nnTTkkknntknnkTTtkTT   
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For this case the integrals associated with the Berthelot corrections become extremely unwieldy. We therefore 
opted to examine only the contributions associated with the ideal gas.  Proceeding as before we find that 
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3. Discussion  

We call attention to an important point that was also encountered in earlier treatments of other irreversible 
phenomena (Hoehn & Honig, 2011; Honig & Hoehn, 2011): Even though the θT and θn contributions to the total 
entropy are vastly different for the three cases treated above, the sum of these two terms is invariant, which is in 
consonance with the requirement that entropy be a function of state. We find that in all cases the entropy 
production for an ideal gas is given by 
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If we include the Berthelot corrections we obtain 
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One must, however, not forget to take account of  the contributions that have been neglected, namely  
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On the right hand side we determined the chemical potential via μ0 ,ˆˆ
000 STE   where 000
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ni cancel against identical terms contained in 00 /T ,  because the material in the system and the reservoir is the 
same. Since the latter remains at constant temperature T0 (and the volume remains fixed as well) only the change 
in mole number enters in the derivation. We obtain 
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where 000 /Vnc  is the concentration of gas in the reservoir. 

This completes the specification of the entropy change under the assumed condition for the exchange of heat and 
transfer of matter.   

4. Relation to Standard Methodology 

The present approach has its antecedent in early work (Bejan, 1997; Honig, 2008; Jarzynski, 1997; Kestin, 1996; 
Tolman & Fine, 1948), who dealt with special aspects, as reviewed by Honig (2011). Earlier work along the 
present line of approach may be found in Ben Amotz and Honig (2006a; 2006b), Honig and Ben Amotz (2005; 
2008), Hoehn and Honig (2011) and Honig and Hoehn (2011).  

It is also of interest to relate the above methodology to standard procedures (de Groot & Mazur, 1962; Gyarmati, 
1970; Haase, 1990; Kondepudi & Prigogine, 1998; Meixner, 1954; Mueller & Ruggeri, 1993; Prigogine, 1967) 
for treating irreversible processes in discontinuous systems such as depicted in Figure 1. In this latter approach 
these authors focused attention on identifying the prevailing forces and fluxes for particular situations and then 
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invoking a linear response of the various forces or fluxes to their the conjugate variables. This engenders the 
standard linear phenomenological equations subject to the Onsager reciprocity conditions. These relations are 
then solved under a variety of assumed steady state conditions, so as to analyze thermomolecular and 
mechanocaloric effects. In the present procedure emphasis is placed on investigating irreversible processes in 
discontinuous system whose path is specified by a predetermined time variation, which precludes the 
establishment of steady state conditions. It is nevertheless possible to link the current approach to standard 
methodology. Toward that end we reformulate Eq. (4) under constant volume conditions as 

           T0 đθ = (- .)
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Now take derivatives with respect to time for an infinitesimal step, to write 
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Now introduce the entropy density, , where for a junction of cross section A and length l 
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In the limit of a very thin junction, and on adopting the standard formulation for entropy flux JS and particle flux, 
Jn, we obtain ( is the gradient operator) 

                             đ  .1

0
nS JJT

T
                                                                (33) 

This expression is the standard formulation for the entropy density flux in terms of the conjugate force-flux pairs.  
Thus, the present formulation is seen to be a variant of the ordinary treatment of irreversible thermodynamics 
procedure, and is therefore subject to the extremum and variational principles and Hamilton’s principle, as 
discussed by Gyarmati (1970). 
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