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Abstract 

Individual activity coefficients of single-ion species can neither be defined in thermodynamic terms nor 
determined experimentally. This does not mean that the individual activity of a single-ion species of an aqueous 
strong electrolyte does not have a real specifically individual effectiveness. Individual ion activity coefficients 
are required, for instance, for data about the potentials of single electrodes and liquid junction potentials in 
galvanic cells with transference. A purely mathematical method is written which allows the factorizing the mean 
activity coefficient into individual parts of the single-ion species. The experimentally accessible concentration 
curve of the mean activity coefficient is fitted with a quite new mathematical approach. The parameter set of the 
mathematical approach can be determined univocally and invariantly with the help of the asymptotic theory 
using corresponding approximations. 

Keywords: aqueous strong electrolytes, concentration dependence of activity coefficients, factorization of the 
mean activity coefficients, individual ion activity coefficients 

1. Introducation 

The analytical concentration “m” of a component within a real and homogeneous mixed phase has to be 
modified for the thermodynamic interpretation of equilibriums, according to Eq. (1): 

 ma                                          (1) 

The modified concentration “a” is denoted as activity. The multiplicative term “γ” is known as activity 
coefficient. The activity coefficient considers all deviations from ideal behaviour of the component within the 
real mixed phase by forming of interaction forces.  

The activity “a” is defined thermodynamically from the change of the chemical potential “μ” of a component 
within a mixed phase by transfer from one state into another (see Eq. (2a)): 

alndRTd                    (2a) 

alnRT                 (2b) 

μ ..... chemical potential 

μ° ..... integration constant (standard chemical potential) 

R ..... gas constant 

T ..... absolute temperature [K] 

a ..... activity (  ma ) 

The experimental determination of the activity is possible for every concentration by implication.  

According to IUPAC recommendations, the activity has the dimension of the concentration, the activity 
coefficient is dimensionless. 

By all means, it is to bear in mind the fact that strong electrolytes dissolved in water are dissociated in cations 
and anions in general. 
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2. Individual Activity Coefficients of Single-ion Species 

The experimental determination of the activity or the activity coefficient of an aqueous strong electrolyte yields 
principally a product from the individual activities (aC and aA) or the individual activity coefficients (γC and γA), 
respectively, of the complementary ionic species of the electrolyte Cν+Aν-, according to Eqs. (3a) and (3b): 

 
   

AC aaa               (3a) 

 
     AC               (3b) 

  , ........stoichiometric number of cations and anions from one molecule Cν+Aν- 

This geometrical average of the individual activities or individual activity coefficients for the cations and anions 
are known as the mean activity “a±” and the mean activity coefficient “γ±”, respectively, (Stokes, 1991). 

It is valid for uni-univalent electrolytes CA: 

AC
2 aaa              (4a) 

AC
2               (4b) 

AC a,a  ….. individual activities of cations, of anions 

AC ,  ….. individual activity coefficients of cations, of anions 

a  ….. mean activity 

  ….. mean activity coefficient 

The separate experimental determination of the individual activity or individual activity coefficient for a 
single-ion species of an electrolyte is strictly impossible, because of the condition of electro-neutrality in accord 
with Eq. (2a) it is only possible to transfer particles without charge. This means that cations and anions could be 
transferred both together, but never a particle with an electrical charge like single ionic species alone.  

Despite this fact, formal is a splitting of the Eq. (2b) into separated parts for cations and anions indeed thinkable: 

      AACCAC
2 alnRTalnRTalnRT                       (5) 

AC ,    ….. formal chemical potential of the cations, anions 

AC ,    ….. formal standard chemical potential of the cations, anions 

However, such a splitting is thermodynamically senseless, as has been clarified on principle by the eminent 
thermodynamican Guggenheim already in 1929 (Guggenheim, 1929). The conception of splitting the 
electrochemical potential ( i

~ ) of an ion of the type i into the sum of a chemical term i  and an electrical term 
 i  ( 

i : charge; ψ: electrostatic potential) has no physical significance. Thus, the basis of the thermodynamic 
definition is missing for the single-ion activity ai. Puritans of electrochemistry claim out of it, that individual 
activity coefficients of single-ion species are imaginary entitles without physical significance. But there is a 
dogma for these Puritans of electrochemistry. A part of them denies the existence of single-ion activity 
coefficients on principle. In contrast to it, many electrochemists (and this group increases) accept an essential 
importance of the individual activities of single-ion species to many a field of electrochemistry. This group of 
electrochemists is of opinion that the notion of single-ion activity coefficients is worthwhile and, in deed, it is 
necessary to tackle this problem. And this point of view are in existence very good reasons.  

Guggenheim attempts to show in his milestone article (Guggenheim, 1929) that the knowledge of individual ion 
activities is unnecessary because the individual ion activity is not defined in thermodynamic terms. However, he 
had to be confessed the fact that the ratio of the individual activities of two ion species with the same charge is 
also defined thermodynamically. Guggenheim states explicitly: “Thus, in particular, the ‘mean activity 
coefficient’ of a salt is defined, as is also the ratio of the activities or activity coefficients of two ionic species 
with the same charge” (Guggenheim, 1929). Quotients of individual activities or individual activity coefficients 
of single-ion species can also be determined experimentally by implication using thermodynamically precise 
methods. The ratio of the individual activity coefficients of the I- ions and OH- ions (γI-/γOH-) is directly 
measurable with the help of a galvanic cell without transference, e. g.  
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(Pt)H2/NaOHx m, NaIy m, AgI(s)/Ag                               (A) 

A erroneous potential in the galvanic cell (A) is no fear of it because the solubility product constants (at 25 °C) 
of Ag(OH) (LAg(OH)=2.02·10-8 mol2/kg2) (Ferse, 2005) and of AgI (LAgI=8.52·10-17 mol2/kg2) (Lide, 2006-2007) 
differ by more than eight order of magnitude. 

The reactions in the cell (A) are: 

(I)                 0aln
F2

RT
e2H2H o

1
2
H

o
112  

           (according to definition) 

(II)                2
I

o
22 aln

F2

RT
e2AgI2I2Ag2     

I-II:           I2H2Ag2AgI2H2           
IH

o
221)A( aln

F

RT
aln

F

RT
E   
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OHH
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2

aa
K


 

  (thermodynamic ion product of water) follows: 
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F

RT
)mln(

F

RT
ln

F

RT
Kln

F

RT
E

OHOHIIOHW
o
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    

and finally: 


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

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2)A(
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

 

(Ferse, 2008; Ferse & Müller, 2011).  

Of course, it is basically always only possible the determination of the chemical potential of electrically neutral 
electrolytes. But in electrolyte mixtures, the individual activity coefficient of the one ionic species can disappear 
by the subtraction. On this way it is the ratio of the individual activity coefficients of two ionic species with the 
same charge accessible. The quotients can differ significantly from 1. Hence, it is known that the thermodynamic 
effectiveness of different ionic species with the same charge may differ from one other by more than one order of 
magnitude in electrolyte mixtures of the same composition (A. Ferse & E. Ferse, 1966; Schwabe et al., 1974; 
Ferse, 2008). Guggenheim negates the physical significance of individual ion activity, but he confesses 
simultaneously that the ratios of the activities or activity coefficients of two ionic species with the same charge 
are defined thermodynamically (Guggenheim, 1929). As a matter of fact, this is a criterion to prove whether the 
purely mathematical method of factorizing mean activity coefficients into individual parts for cations and anions 
produces meaningful results. 

It can be concluded from the interpretation of differ experimental investigations that in contrast to the individual 
activity coefficients of the cations the individual activity coefficients of the chlorid ions of alkali chlorides and 
alkaline earth chlorides are only small different and they do not reach values higher than one in the concentration 
range up to 5 mol/kg (Schwabe, 1967; Schwabe et al., 1968). This assumption is affirmed by the results obtained 
with the purely mathematical method (see Figure 5) (Ferse & Müller, 2011).The exclusive use of mean activity 
coefficients permanently at the thermodynamic treatment of equilibriums and processes where dissolved 
electrolytes take part is not justified. This implies the risk of arriving at erroneous conclusions. 

3. Importance of Individual Activity Coefficients 

It continues to be the subject of controversial discussion in electrochemistry as to whether the individual activity 
of a single-ion species has a real significance alone or not. Of course, individual activity coefficients of 
single-ion species can neither be defined thermodynamically nor determined experimentally. But this does not 
mean that one can simply conclude that the individual activity of a single-ion species of an aqueous strong 
electrolyte has no real significance singly. However, it is a fact, that individual ion activities ai and individual 
activity coefficients γi of a single-ion species i do not apply in classical thermodynamics. Thereby, it is arisen 
“breaches” in different fields of electrochemistry. The knowledge of individual ion activity coefficients is 
necessary to eliminate these “breaches”. Precise information about the individual activity coefficients of 
single-ion species are the essential requirement for e.g. data of the potential of single electrodes, the calculation 
of the liquid junction potential in galvanic cells with transport, the answer to residual questions within the 
kinetics, the clarification of reaction processes in biochemical and physiologic-medicinal fields or the research 
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on the politically-economically important field of corrosion protection. 

It was attempted a great many of ways knowledge to attain on the desired individual activity coefficients. The 
present paper cannot deal with the wide variety of attempted ways. Reviews with critical discussions of the used 
methods are given by the author in 1978 (Ferse, 1978) as well as in 2008 and 2011 (Ferse, 2008; Ferse & Müller, 
2011). The discussed methods in these three articles do not claim to be complete, only basic methods on selected 
examples have been discussed. Experimental methods cannot be successful, on principle. The existence of a 
thermodynamic state variable fails as a precondition. Its measurable change with the concentration of the 
electrolyte in the solution alone shows the clear function of the activity of the single-ion species. 

Therefore, an experimental determination of individual activity coefficients is excluded (Malatesta, 2000; 
Malatesta, 2010), which could also be proved once more using the example of the pH measuring (Bates, 1964). 
The importance of pH for chemical processes and reactions in biologic-medicinal fields is beyond all question. 
The potentiometric pH measuring is used in scientific work e.g. in chemical laboratories or to control chemical 
processes as well as in biological-medicinal fields as standard method (Schwabe, 1976; Galster, 1990). But in 
many cases, the users are oblivious to the fact, that the pH which is measured by a galvanic cell allows no 
conclusions about the ‘true acidity’ of the measured solution (Degner, 2009) because the pH value defined by 
Sørensen in 1924 (Sørensen & Linderstrøm-Lang, 1924). 


H

alogpH             (6) 

contains the individual activity of the hydrogen ion aH+. The pH which is defined on this way cannot be 
measured, on principle. In the galvanic cell for pH measurements 

       (Pt)H2/Soln. (H+)//KClsatd., Hg2Cl2(s)/Hg          (B) 

the cell reaction is: 

    ½ H2(g) + ½ Hg2Cl2(s) ↔ Hg(l) + Cl- (in satd. KCl) + H+ ± ion transfer        (C) 

The individual activity of hydrogen ion in solution (aH+) can be related to the total e.m.f. (EB) of the cell (B), the 
potential of saturated calomel reference electrode (E°´), and the potential (Ej) across the liquid junction as 
follows: 

TR

F)E´EE(
aln jB

H 


                   (7) 

The liquid junction potential (Ej) is arisen by force between the measured solution and the reference electrode in 
the transition layer which is marked in the galvanic cell (B) with a double line. A liquid junction potential is not 
preventable in cells with transport neither by a salt bridge. In addition, a calculation of the liquid junction 
potential without the knowledge of individual activity coefficients is impossible as well. As Harned said:“We are 
thus confronted with the interesting perplexity that it is not possible to compute liquid junction potentials without 
knowledge of individual ion activities, and it is not possible to determine individual ion activities without an 
exact knowledge of liquid junction potential. For the solution of this difficult problem, it is necessary to go 
outside the domain of exact thermodynamics” (Harned, 1924). 

Conventions are concluded to eliminate the resulting “breaches” in different fields of electrochemistry as a 
consequence of absence of individual activity coefficients. Such conventions are e.g. the proposition by Nernst 
that the potential of the normal hydrogen electrode is zero at every temperature and also the agreement that the 
determination of a ‘conventional pH value’ has become accepted instead of the pH according to Eq. (6). The 
‘conventional pH value’ allows no conclusions to be drawn about the ‘true acidity’ of the measured solution, 
because in the measured e.m.f. the unknown liquid junction potential is contained. The conventional pH value is 
eligible for comparisons beyond doubt. However, it is not identical with the negative decadal logarithm of the 
hydrogen ion activity in the measured solution according to Eq. (6). 

4. The Purely Mathematical Method of the Calculating the Individual Activity Coefficients 

4.1 Preliminary Remarks  

On principle, it should be desirable to get information about individual activity coefficients. Certainly, it must be 
sought a quite new way. As Harned already said, it is necessary to use methods outside the domain of classic 
thermodynamics (Harned, 1924). An approach is justified when the methods used are as completely logical in 
their entirety as are classical thermodynamic methods. The mathematics then fulfils the requirements. The author 
developed a purely mathematical procedure to achieve knowledge on the desired individual ion activity 
coefficients in solutions up to high electrolyte concentrations (Ferse, 1977; Ferse & Neumann, 1977; Ferse, 2008; 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 4, No. 4; 2012 

49 
 

Ferse & Müller, 2011).  

4.2 Principal Thoughts 

An extension or modification of the Debye-Hückel approach where the known preconditions are restricted step 
by step and individual ionic parameters are used will not work. Nevertheless, the mathematical correlation 
between the accessible concentration dependence of the mean activity coefficient and the hypothetical 
concentration functions of the individual activity coefficients of the complementary ionic species allows finding 
a new perspective to factorize the mean activity coefficient into parts of either the cations or anions.  

It must be accepted, that the mean activity coefficient to the required power of an aqueous strong electrolyte is 
purely mathematical. It is the product of individual activity coefficients of the complementary ion species, 
according to Eq. (4b) for uni-univalent electrolytes.  

Of course, a one-to-one breakdown of a product into factors is impossible without making additional 
assumptions. But the curve of the product of the individual activity coefficients of the single-ion species (γC γA) 
versus the concentration is accessible experimentally and this additional information renders it possible to split 
the mean activity coefficients to the required power into individual factor functions for cations and anions. This 
is accomplished by using basic parametric approaches in relation to their approximation to the experimentally 
determinable concentration curve of the mean activity coefficients to the required power. To obtain the desired 
individual parts γC and γA for cations and anions, respectively, a product functions for the mean activity 
coefficients to their required power [ )m(2

 for uni-univalent electrolytes] were split into factor functions of 
predefined structure. Assuming the existence of a univocal solution, estimating a product function yields the 
factorization of the product (Bates & Watts, 1988; Ratkowsky, 1990; Neter et al., 1996; Seber & Wild, 2003).  

4.3 The Mathematical Structure of the Concentration Functions 

In contrast to the general point of view, it is possible to make predictions for the mathematical structure of the 
concentration functions for individual activity coefficients of single-ion species. When the concentration 
approaches to zero, the Debye-Hückel limiting law equation became valid for aqueous strong electrolytes as 
accuracy improves. For univalent ion species is valid: 

mÁlnlnln AC                    (8) 

A……. Debye-Hückel constant 

At infinite dilution all activity coefficients become the value 1: 

1)0()0()0( AC                     (9) 

And all ionic species with the same charge number have the same slope as well. For univalent ionic species is 
valid: 

A'
m

lim
m

lim
m

lim A

0m

C

0m0m




















                  (10) 

Eqs. (9) and (10) are designated as limiting infinite dilution conditions in present paper.  

In the mathematical approach by Ferse the infinitely diluted solution is considered as one fixed point for the 
structure of the product function. Just even with this point as reference it is possible to make accurate statements 
about the individual activity coefficients. This fact is considered by the first term in both factor functions of the 
product function (14).  

In addition, a special concentration range exists indirectly for those statements about individual activity 
coefficients. This is the special concentration range 5 ≤ m ≤ 10 mol/kg where the logarithm of the mean activity 
coefficient of strong electrolytes is linearly dependent on the concentration, see Figure 1 (additional details see 
(Ferse & Müller, 2011)).  

Concerning the concentration range 5≤m≤10 mol/kg the following linear equation for mean activity coefficients 
of uni-univalent electrolytes is valid:  

  m)m(ln 2                    (11) 

Φ,ρ = constants  

The mathematical approach (14) is based on this concentration range, as well. 

In the concentration range 5 ≤ m ≤ 10 mol/kg follows from the concentration function of the mean activity 
coefficient for an uni-univalent electrolyte 
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 m2
 )m()m( AC                     (12) 

the logarithmic relationship (13): 

   AACCAC mm)m(ln)m(lnm)m(ln2        (13) 

with ACAC ,,,,,  = constants; they are valid: AC   , AC    

Without doubt, it is a fact that the concentration function of the mean activity coefficient to the required power 
represents implicitly the mathematically analytical properties of the concentration functions of the individual 
activity coefficients of the complementary ionic species. 

If the sum of two functions results in a linear function on the concentration, it is very probable that both single 
functions have to be linearly dependent on the concentration as well. There is only one exception to this rule in 
mathematics. The differences in the linearity of the two functions are exactly compensated for in form and size. 
Such a coincidence for individual activity coefficients is not thought to be plausible in view of mathematical and 
physical aspects at all of the strong electrolytes. That means that the logarithms of the individual activity 
coefficients of complementary ion species should be linearly dependent on the concentration in this range 5 ≤ m 
≤ 10 mol/kg. This fact is considered by the second summands in both factor functions in Eq. (14). 

The experimentally accessible curve for the mean activity coefficient of a strong electrolyte to the required 
power as a function of the ionic strength ‘J’ can be well approximated up to highest concentrations using the 
basic product function (14) (Ferse & Müller, 2011): 

                 

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






 
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3

1k

J
kAC

2

k
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2

k

k ee)J()J()J(            (14) 

γC and γA: individual parts obtained for cations and anions by the mathematical splitting of the mean activity 
coefficients.  

J: ionic strength [mol.kg-1] in the commonly used definition as the half sum of the concentration of all ions 
multiplied by the square of their charge numbers, e.g. (Monk, 1961) 

kkkk ,,,   (index variables k = 1 up to 3): parameters 

Concerning the case k = lower bound of summation 1 and upper bound of summation 3, the relationship (14) is 
written in the paper by (Ferse & Müller, 2011) dissolved in summands with a different designation of the 
parameters: 
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1AC ecececececec)J()J()J(  

A predefinition was not established for the concentration range between infinite dilution and 5 mol/kg. The 
values in this concentration range ensue from the sum of the first and the second summand in the factor functions 
in relationship (14). Accordingly, the comparison of the product of the calculated individual activity coefficients 
in this range with data of the mean activity coefficients from the literature results a criterion for accurate 
adjusting. The basic product function (14) was deduced from mathematical thoughts (Ferse, 1977; Ferse & 
Neumann, 1977; Ferse & Müller, 2011) and is not a result from the calculation of the excess Gibbs energy using 
the statistical mechanics. Thus, the approach (14) differs in principle from the classical approximation of the 
mean activity coefficient to the concentration curve (additional details see (Ferse & Müller, 2011)). 

The factor functions in the relationship (14) represent the concentration functions for the individual activity 
coefficients of complementary ion species of the dissolved electrolyte (Ferse & Müller, 2011). Both factor 
functions have the same predefined mathematical structure because all forming interaction forces in an 
electrolyte solution influence cations and anions as well. It is known that the result is different for the both ionic 
species. Concerning the mathematical approach, the values of the parameters in the factor functions of 
relationship (14) are the only factors responsible for the gradually different concentration curves of the 
individual activity coefficients of the complementary ionic species of an electrolyte. 
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4.4 Parameter Determination of the Mathematical Approach 

4.4.1 The Use of the Limiting Infinite Dilution Conditions 

On principle, the parameter determination of the basic product function (14) should be possible from the optimal 
approximation of the existing experimental data for the concentration curve of the mean activity coefficients to 
the required power applying the non-linear regression analysis (Bates & Watts, 1988; Ratkowsky, 1990; Neter et 
al., 1996; Seber & Wild, 2003).  

Indeed, using relationship (14), for index variable k = 1,2,3, it is generally possible to fit the mean activity 
coefficient of a strong electrolyte in the entire concentration range, from infinite dilution up to highest 
concentrations of about 15 or 20 mol/kg. But applying the non-linear regression analysis, the parameter 
determination of the approach (14) is ambiguous in the case of k = 1, 2, 3 due to the ill-conditioned coefficient 
matrix (Ferse & Müller, 2011). The mathematical approach (14) is univocally solvable in the cases of k = 1 and 
k = 1, 2 only. The validity of the estimated parameter set is limited to a part of the experimental concentration 
curve of the mean activity coefficient considering only the first summand or the first two summands in the both 
factor functions of Eq. (14). In these cases, the use of the limiting infinite dilution conditions (9) and (10) is 
requisite to solve the approach (14).  

For the individual activity coefficients, the data are known at concentration zero. The limiting infinite dilution 
conditions (9) and (10) clearly require in the case of k = 1 (consideration of only the first term of relationship 
(14)): 111   and 'Az 2

i11    (where zi is the charge number of the ionic species i (cation or anion) 
in the molecule Cν+Aν-). If only the first summand is considered, these values are strictly valid only at infinite 
dilution where the activity coefficients have the same size as well as the same slope. This is valid for all ionic 
species with the same charge number. Thus, the resulting relationship (15) agrees with the Debye-Hückel 
limiting law equation: 
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AC ee)J()J()J(             (15) 

It is necessary to consider the first two summands in both factor functions in the case of the factorizing the mean 
activity coefficient also when the electrolyte concentration approaches zero.  

It is important to bear in mind the fact that the corresponding product function parameters in (14) change when 
an additional summand is included in both factor functions because the system of functions is not orthogonal.  

The relationship (14) in the case of index variable k = 1, 2 is as follows: 
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This means in the case of index variable k = 1, 2 in relationship (14) (see Eqs. (16), considering the first two 
summands in both factor functions) compared to the case k = 1: 111  , and 'Az2

i11   . 

The relationship (17) is obtained using a new denotation of the parameters ( 42322111 b,b,b,b   ) 

and in consideration of the limiting infinite dilution conditions (9) and (10). In the case of index variable k = 1, 2 

in relationship (14), the limiting infinite dilution conditions (9) and (10) clearly require the parameters: 
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Where b1,…, b4 are the parameters and A´ is the Debye-Hückel constant 

(The following value is used after the year 1977 (Staples et al., 1977): A´= 1.17625 (A = 0.51084), previously it 
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was used this value: A´= 1.1711 (A = 0.50860); the value is valid for aqueous electrolyte solutions and the 
temperature 298.15 K). 

Thus, the number of parameters in Eq. (17) is reduced compared to Eq. (16) from eigth to four. 

The non-linear least square regression method yields for approach (17) many sets of best fit independent 
parameters b1,…, b4 of )J()J( AC

     for )J(


  in consequence of the ill-conditioned coefficient 
matrix. All combinations are nearly equally suitable for fitting the concentration curve of the mean activity 
coefficients. This problem is solved with the help of the previously developed asymptotic theory (Ferse, 1977; 
Ferse & Neumann, 1977).  

4.4.2 The Asymptotic Theory - The Use of Corresponding Approximations 

A univocal parameter determination of Eq. (17) is possible using the previously developed asymptotic theory 
(Ferse, 1977; Ferse & Neumann, 1977; Ferse & Müller, 2011). Stable and reproducible results are attained 
applying the asymptotic theory. The parameter combination is invariant. The basic product approach (17) is to 
unequivocally split into factor functions. A successive estimation of the parameters ensues from the use of 
corresponding approximations which are deducible from Eq. (17) for very low and high concentrations. 

The following relation can be applied for J ≥ 5 mol/kg: 
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Thus, the corresponding approximations (19) and (20) result from Eq. (17) for high concentrations:  
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

     .      (20) 

In the concentration range of J between 5 and 10 mol/kg, lnγ± for a strong electrolyte generally is a linear 
function of J, therefore, in the first step, the sum (ν+b3 + ν-b4) as well as the product [(1-b1)

ν+(1-b2)
ν-] are 

determined with the linear regression analysis as the standard mathematical method by using the corresponding 
approximation (20). In Figure 1, the determination of the ordinate intercept β is shown: 

    )b1()b1(ln 21             (21a) 

or Eq. (21a) in modified form 

 e)b1()b1( 21            (21b) 

And the determination of the slope (ν+b3 + ν-b4) is depicted in the way of the examples NaOH solutions and 
KOH solutions. The values are βNaOH=-2.2415168, βKOH=-1.5256335 and the values for the slopes (b3+b4)NaOH 
=0.457198, (b3+b4)KOH=0.519862, respectively. The γ± values of NaOH solutions and KOH solutions were taken 
from the book by (Robinson & Stokes, 1959/65) and the paper by (Hamer & Wu 1972).  
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Figure 1. Determination of the ordinate intercepts β and the slopes (b3+b4) from the concentration curves of 
2
NaOHln (m) vs. NaOHm  and 2

KOHln (m) vs. KOHm  

 

Parameters b1 as well as b2 can be determined separately by applying an additional corresponding approximation 
for very low J, e.g. J = 10-3 mol/kg (then Jb3e ≈ Jb4e ≈ 1). Thus, Eq. (22) is valid because the term eJ at the 
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The mean activity coefficients for the ionic strength 10-3 mol/kg in Eq. (22) are calculated preferably with the 
help of the extended Debye-Hückel equation (23):  
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a~ = (empirical) ion parameter [Å] 

A’ and B = Debye-Hückel constants 

(The following values are used for the constants A’ and B after the year 1977 (Staples et al, 1977)): A´ = 1.17625 
(A = 0.51084), B = 0.32866, previously it were used these values: A´ = 1.1711 (A = 0.50860) and B = 0.3281; all 
values are valid for aqueous electrolyte solutions and the temperature 298.15 K) 

Extremely high accuracy is in reality certainly not important. Accurate values afford excellent services as 
operands. 

Concerning the examples NaOH solutions and KOH solutions, the values of γ±
2(0.001) were calculated to be 

0.931561 and 0.931896, respectively, using the extended Debye-Hückel equation (23). With these values in 
equation (22) and using the ordinate intercept for NaOH βNaOH = -2.2415168, the values b1(NaOH) and b2(NaOH) are 
calculated to be 0.1758 and 0.8710, respectively, and for KOH solutions (ordinate intercept βKOH  = -1.5256335) 
b1(KOH) = 0.1654 and b2(KOH) = 0.7394 (Ferse, 1978; Ferse, 2008). The graphical separation of b1(NaOH) and b2(NaOH) 
is depicted in Figure 2 and exemplifies NaOH solutions. 
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Figure 2 

 

Graphical separation of b1 and b2 with function (21b): (1-b1)(1-b2)=eβ and function (22): 
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Finally, the sum (b3+b4) gets separated with measured γ± values in the area of the strongest curvature of the 
m2   curve (0 ≤ m ≤ 5 mol/kg) with the help of the Fibonacci search approach (Fletcher & Powell, 1963).  

Thus, the values b3(NaOH) = 0.3046 and b4(NaOH) = 0.1526 result for NaOH solutions, and the values b3(KOH) = 
0.3725 and b4(KOH) = 0.1474 result for KOH solutions. For additional details, see (Ferse, 1978; Ferse, 2008). This 
method proved to be successful (Ferse, 1977; Ferse, 1978; Ferse, 2008; Ferse & Müller, 2011). 

Applying the asymptotic theory, the ill-conditioned coefficient matrix of Eq. (17) unfavorably influences the 
separation of the sum (b3+b4) in summands only. But the variation width of b3 and b4 is limited during the 
separation of the sum (b3+b4) which is considered as a function of b3 only because b1, b2 and the sum (b3+b4) 
have already been determined.  

The obtained set of parameters is valid for the range of an ionic strength 0 ≤ J ≤ 5 mol/kg. This limitation ensues 
from a comparison between experimentally determined ratios of single-ion activity coefficients to quotients 
formed with individual ion activity coefficients calculated with the purely mathematical procedure developed by 
Ferse (Ferse, 1977; Ferse, 2008; Ferse & Müller, 2011). The product function (17) is univocally solvable for 
electrolyte concentrations (ionic strengths) of less than 10 mol/kg only. As the electrolyte concentration (ionic 
strength) is increased over 5 mol/kg, the results begin to become increasing unreliable.  

Of course, a purely mathematical extension of the Eq. (14) [or Eq. (17)] using a concentration function seems to 
be possible. This assumption would lead to ambiguous results. On principle, a possible mathematical extension 
of Eq. (14) [or Eq. (17)] can be excluded for the case of calculating individual ion activity coefficients. The 
verification is pointed out by (Ferse & Müller, 2011), Chapter: “Impact of a hypothetical multiplicative 
concentration function G”. The results of the purely mathematical procedure by Ferse to calculate individual ion 
activity coefficients are univocal in any case.  

With the help of the computed values b1,…,b4 , and using Eq. (17), the individual ion activity coefficients of 
NaOH solutions are calculated with Eqs. (24a) and (24b): 
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and the individual ion activity coefficients of KOH solutions are calculated with Eqs. (25a) and (25b): 
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The calculated individual activity coefficients are plotted as logarithmic values vs. m0.5 and m, in the Figures 3 

and 4, respectively, for NaOH solutions (lnγNa+ and lnγOH-(NaOH)) as well as for KOH solutions (lnγK+ and 

lnγOH-(KOH)). 
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Figure 3. Individual activity coefficients as a function of m0.5 in the concentration range 0 ≤ m0.5 ≤ 1 on a 
logarithmic scale: γNa+ and γOH-(NaOH for NaOH solutions and γK+ and γOH-(KOH) for KOH solutions, together with 

the mean activity coefficients γ±(NaOH) and γ±(KOH) and the Debye-Hückel limiting law equation (DHLL) 
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Figure 4. Individual ion activity coefficients for aqueous NaOH solutions (γNa+’ and γOH--(NaOH) and for aqueous 
KOH solutions (γK+ and γOH-(KOH)) on a logarithmic scale as a function of the concentrations mNaOH or mKOH, 

respectively 
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4.4.3 Decision on the Allocation of the Factor Functions to the Cation or Anion 

The allocation of the factor functions to the cation or anion is possible only in the case of the polyvalent 
electrolytes from the results of calculation if the exponents (ν+; ν-) of the factor functions of the basic product 
approach (17) have different values. With equal exponents and thus for all uni-univalent electrolytes too, it is not 
possible to decide on a purely mathematical basis alone which of the two obtained factor functions of the basic 
product approach (17) describes the concentration curve of the activity coefficients of the cation or anion. The 
factor functions can be allocated clearly to either the cation or the anion with the help of specially mixed 
electrolyte solutions (Ferse, 1977; Ferse, 2008; Ferse & Müller, 2011).  

Mixed electrolyte solutions (such solutions contain a strong electrolyte κα as well as a great surplus of neutral 
salt) are suitable for taking a decision if the general condition mκα << mneutral salt is valid. Of course, the mean 
activity coefficients can also be measured in these especially mixed electrolyte solutions only. But, in electrolyte 
mixtures with this special composition, the interionic interaction between the ions of the diluted electrolyte κα 
one with another is negligibly small compared to the interactions with the ions of the neutral salt which are in 
great surplus in the electrolyte mixture (Ferse, 1977; Ferse, 2008; Ferse & Müller, 2011). Hence, diluted 
electrolytes (e.g. NaCl and HCl or HCl and HBr), each with a great surplus of the neutral salt NaClO4 of the 
same concentration, have the same individual activity coefficient in consideration of the common ion species: 
γCl-(NaCl in  NaClO4) = γCl-(HCl in NaClO4) or γH+(HCl in NaClO4) = γH+(HBr in NaClO4), additional details see (Ferse, 1977; Ferse, 
2008; Ferse & Müller, 2011). Of course, the absolute values of the individual activity coefficients are still 
unknown. The mean activity coefficients of the diluted electrolytes κα (NaCl and HCl or HCl and HBr, each in 
solutions containing a great surplus of NaClO4 of the same concentration) are certainly different as a result of the 
different magnitude of the individual activity coefficients of the counter ions, for instance: γNa+(NaCl in NaClO4) ≠ 
γH+(HCl in NaClO4) and γCl-(HCl in NaClO4) ≠ γBr-(HBr in NaClO4. This was verified by factorizing the mean activity 
coefficients of the diluted electrolyte γ2

± κα (by mκα = 0.01 = const.) as a function of the neutral salt concentration 
by estimating the parameters of the basic approach (17) using the asymptotic theory like it is shown previously. 
The theoretically required congruence is found in all of the investigated electrolyte systems without exception 
(Ferse, 1977; Ferse, 1981; Ferse, 2008; Ferse & Müller, 2011). Thus, the obtained individual factor functions by 
splitting the concentration function of the mean activity coefficient can be allocated to the cation or anion by 
implication. 

However, it is not necessary to carry out the direct comparison for every single uni-univalent electrolyte with 
corresponding suitable three-component systems to decide on the allocation of the obtained factor functions to 
the cation or anion. A multitude of electrolytes affirm that the calculated individual activity coefficients of the 
cations and anions show a characteristic shape in the concentration curve, which always differs in like manner 
between cation and anion (Ferse, 1978; Ferse, 1981; Ferse, 2008). Thus, a corresponding allocation is possible 
by means of analogue curve shapes. 

For multivalent electrolytes, whose allocation is already decided from the result of the parameter estimation due to 
different large exponents (ν+ ≠ ν-) on the factor functions of the basic product approach (17), the characteristic 
difference was also confirmed between the concentration curves of the calculated individual activity coefficients 
of the cations and anions (Ferse, 1981; Ferse, 2008). 

5. Verification of the Results as Concentration Functions of the Individual Activity Coefficients of 
Single-ion Species 

A direct experimental verification of the results as concentration functions of the individual activity coefficients of 
single-ion species is known to be impossible. Therefore, another method has to be applied to verify that the 
determined factor functions are compatible with the concentration functions of the individual ion activity 
coefficients. 

Thermodynamic conditions of the mathematical structure of the concentration functions of individual activity 
coefficients of single-ion species do not exist, because it is missing a thermodynamic definition of individual ion 
activity.  

However, it must be accepted that the mean activity coefficient to the required power is purely mathematical and 
represents the product of the individual activity coefficients of the complementary ion species. Therefore, the 
concentration function of the mean activity coefficient to the required power implicitly represents the 
mathematically analytical properties of the hypothetical concentration functions of the individual ion activity 
coefficients of complementary ion species of the dissolved electrolyte. This way renders it possible to obtain 
information on the mathematical structure of the concentration functions of individual ion activity coefficients (see 
Chapter 4.3). The product of these deduced concentration functions have to be the concentration function of the 
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mean activity coefficient to the required power. This fact allows computing the individual ion activity coefficients 
by the experimentally accessible mean activity coefficients applying the non-linear regression analysis. 

Mathematical monographs about non-linear regression analysis (Bates & Watts, 1988; Ratkowsky, 1990; Neter et 
al., 1996; Seber & Wild, 2003) point out the fact that by factorizing a product function the prerequisites are (i) the 
meaningful structure of the product function (ii) the univocal splitting regarding the factor functions as well as (iii) 
the verification that the obtained results yield plausible values.  

Factorizing the concentration function of the mean activity coefficient to the required power into individual 
functions for the single-ion species using Eq. (17) and applying the asymptotic theory, is actually univocal. The 
parameter determination is invariant. Additional multiplicative terms in Eq. (17) can be excluded (Ferse & 
Müller, 2011). This proves that the results comply exactly with the mathematical concept of factorizing and are 
not a random pair of factor functions. The theoretically required congruence of the individual factor functions in 
three component systems is also found by independently factorizing of the mean activity coefficients of diluted 
electrolytes as a function of neutral salt admixtures in all of the investigated electrolyte systems. For the mixtures 
of 0.01 m NaOH in NaClO4 solution and 0.01 m NaCl in NaClO4 solution, the factor functions γNa+(NaOH in NaClO4) 
and γNa+(NaCl in NaClO4) in dependence on the NaClO4 concentration which be obtained by independently factorizing 
of the mean activity coefficients of NaOH and NaCl are both coincide. Thus, both factor functions are identical 
with the factor function γNa+ of the pure NaClO4 solution (Ferse, 1977; Ferse & Neumann, 1977). The factor 
functions γCl- (NaCl in NaClO4) and γCl- (HCl in NaClO4) in the mixed electrolyte solutions of 0.01 m NaCl in NaClO4 and 
0.01 m HCl in NaClO4 (also independently calculated as a function of the NaClO4 concentration from the mean 
activity coefficients of NaCl and HCl, respectively) are equal (Ferse, 1977; Ferse & Neumann, 1977; Ferse & 
Müller, 2011). Based on the independently calculated factor function of γCl- in pure KCl solution, the 
theoretically required congruence was found also for the factor function γCl- (HCl in KCl) (factorized independently 
from the mean activity coefficients of 0.01 m HCl as a function of KCl admixture) (Ferse, 2008). In 0.01 m HCl 
in SrCl2 solution, the factor function γCl- (HCl in SrCl2) of the HCl in dependence on the SrCl2 concentration is 
identical with the factor function γCl- of pure SrCl2 solutions (factorized independently from the mean activity 
coefficients of pure SrCl2 solutions) (Ferse, 1981). 

These findings cannot be explained as coincidental results but they contain an additional conformation of the 
efficacy of the purely mathematical procedure as well as of the fact that the obtained results represent the 
concentration functions of the individual activity coefficients of single-ion species (Ferse, 2008; Ferse & Müller, 
2011).  

Without exception, the calculated and experimentally determined quotients of the single-ion activity coefficients 
for all investigated electrolyte systems also show a good congruence (Ferse, 2008; Ferse & Müller, 2011). This 
fact is significant, as the ratios of individual ion activity coefficients are defined thermodynamically 
(Guggenheim, 1929). Certainly, a good congruence alone does not validate the fact that the single-ion activity 
coefficients can actually be calculated using the purely mathematical procedure by Ferse. Conclusiveness 
however is given because the possible existence of additional multiplicative terms in the mathematical approach 
can be excluded in the light of its derivation and the limiting infinite dilution conditions as well as of the 
calculated values (Ferse & Müller, 2011).  

Expressed doubts (Malatesta, 2011) about the purely mathematical conception of factorizing the mean activity 
coefficient to obtain individual ion activity coefficients are not substantiated. Malatesta supports the opinion of 
the Puritans of the electrochemists. His comment is erroneous. In the example that he declared as an argument 
against the purely mathematical method, mathematical laws are purposely or unintentionally ignored. In the 
upshot, his conclusion is wrong as well. Additional details regarding his senseless comment (Malatesta, 2011) 
are contained in the reply by (Ferse, 2011). 

6. Concluding Remarks 

The reasons for the variation of the activity coefficients as a function on the concentration are doubtless of a 
complex nature. The individual activity coefficient is the quotient of the effectiveness and analytical 
concentration of an ionic species. In concentrated solutions, the concentration of an ion species is without doubt 
not more identical with the analytical concentration. Different solvation states, formation of complex ions, 
ion-pairing and other effects occur in concentrated solutions and result in effective concentrations, different from 
the analytical values of ionic species. 

With increasing deviation from Debye-Hückel condition of an infinitely diluted electrolyte solution, a physical 
meaningful interpretation of the macroscopically visible activity coefficient is becoming more and more difficult, 
if not impossible. For this, all interaction forces, their concentration dependences and their correlations need to 
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be known. Reasons, which are to search in molecular dimensions and in the structural setup, are difficultly 
determinable. Conclusions of the microstructure of electrolyte solutions being made from macroscopically 
accessible quantities are questionable, as macroscopically measurable data, being sum-effects, do not allow 
discrimination of the individual constituting components, thus adding to the complication to calculate the excess 
Gibbs energy without arbitrariness. 

However, activity coefficients have as practical values their meaning. In relation to the analytical concentrations, 
the individual activity coefficients represent the macroscopic effectiveness of the ions in solution in easy manner.  

A ranking of the individual activity coefficients of the alkaline and alkaline earth cations, and the ions of alkali 
hydroxides and hydrogen acids of halogens can be modeled on the basis of a specific electrostatic interaction (A. 
Ferse & E. Ferse, 1966; Ferse & Müller, 2011).  

It is known that hydroxide ions and hydrogen ions are a special case in aqueous solution in relation to other ions. 
Surplus hydroxide ions and protons as they exist in aqueous basic and acidic solutions need only very low 
activation energy to jump from one water molecule to another (Samoilow, 1965). The transition frequency is on 
the order of magnitude 1012 s-1 (Eigen & De Maeyer, 1958; Wicke, Eigen, & Ackermann, 1954).  

Every water molecule has a very high affinity to OH- or H+ ions, respectively. Therefore in temporal average, 
every single water molecule has a negative or positive partial charge if it is in alkaline or acidic solutions 
(Samoilow, 1965). This model allows the forming of a specific electrostatic interaction between the partial 
charges of the water molecules among each other and between the partial charges of the water molecules in the 
hydration sphere and the charges of cations of the alkali hydroxides or the anions of the acids (Samoilow, 1965; 
A. Ferse & E. Ferse, 1966; Ferse, 1978; Ferse, 2008). This model explains also the unusual ranking of the 
calculated individual activity coefficients not only of the cations of the alkali hydroxides (see present paper) but 
of the halide anions in hydrohalic acids (Ferse, & Müller, 2011). Certainly, electrostatic forces cannot be 
responsible solely for the cause of the interaction, but in this model the excess Gibbs energy can be estimated in 
good concordance with the experiments in aqueous acidic and hydroxide solutions (A. Ferse & E. Ferse, 1966; 
Ferse, 1978; Ferse, 2008). But also changes to the microstructure of the electrolyte solutions seem to play a role. 
Noteworthy are replacement effects (Glueckauf, 1964) as well as ionic volume induced changes to the first 
coordination sphere, and beyond, due to Coulomb-interactions. 

Especially for anions of salts the individual activity coefficients seem to increase with increasing volume of ions. 
But the differences are small (Ferse, 1981). On the other hand, larger cations (Rb+, Cs+, Sr++, Ba++), having 
smaller activity coefficients, induce increased activity coefficients of present anions (Ferse, 2008). 

Ion pairing in concentrated solutions of alkaline earth chlorides is leading to lower individual activity 
coefficients of the chloride anions in comparison to the perchlorate anions in concentrated solutions of alkaline 
earth perchlorates. (compare Figures 5 and 6). 
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Figure 5. Individual ion activity coefficients of the alkaline earth chlorides on a logarithmic scale as a function of 
the ionic strength J (additional details see (Ferse, 1981)) 
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Figure 6. Individual ion activity coefficients of the alkaline earth perchlorates on a logarithmic scale as a 
function of the ionic strength J (additional details see (Ferse, 1981)) 

 

Knowledge of individual activity coefficients allows a determination of the diffusion potential of galvanic cells 
with transference without difficulties. Likewise the pH-value, as defined by Sørensen (see Eq. (6)) as well as the 
true acidity of a solution, can be derived. 

While some phenomena, as those examples, can be readily interpreted by knowledge of individual activity 
coefficients, it cannot be expected that those provide answers to all electrochemical related vacant questions.  

But even while the most important electrochemical equilibriums and processes take place in surroundings that 
deviate significantly from Debye-Hückel conditions the knowledge of individual activity coefficients is helpful 
to offer new perspectives to the interpretation, e. g. also in the fields of reaction kinetics, electrode kinetics and 
electrochemical passivity. 
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