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Abstract 

The Analytic Hierarchy Process (AHP), the multicriteria decisions making support methodology widely 
recognized and accepted as the prioritization and choice theory may deliver different answers for a decisional 
problem, providing various rankings of its alternative solutions. The variety in priorities order exists because 
there are many methods that can be successfully implemented within the AHP, although its inventor, Thomas 
Saaty strives to convince researchers that there is only one i.e. principal right eigenvector method (REV) created 
alongside. Facts tell us however, that REV has some drawbacks and few flaws. The research described in this 
paper reveals some important discoveries within this field due to application of novel scenario for computer 
simulations concerning the entire AHP framework (contrary to single matrix simulation results). Statistically 
significant findings convince that REV concedes other methods being under study what authorize to claim that 
from the perspective of this research, as long as reciprocal pairwise comparison matrices are considered 
(condition embedded in the AHP), it should not be perceived as the dominant method. 

Keywords: multicriteria decisions making support methodology, analytic hierarchy process, prioritization, 
theory of choice, pairwise comparison and ranking 

1. Introduction 

1.1 Problem-Solving Activity of Human Life 

Since the conception of human race we are struggling with problems demanding decision making. It is probably 
the fundamental reason why we continuously deal with explanation and modeling of decisional problems in the 
way we can comprehend them. Plenty of methods, tools and procedures have been devised in order to make 
decision making process easier or sometimes even possible. It can be noticed that problem-solving activity 
pervades all aspects and levels of human life. There are economic, political, social, and technological problems, 
all of which can be found at individual, group, organizational, or societal levels. Moreover, because of the 
interdependent nature of most problems, they can affect or be affected by other problems at any level of human 
activity. Then, we may call ourselves decision makers for everything we do either consciously or unconsciously 
is the result of some decision (Saaty, 2000). It seems that all information we gather, we need for better 
understanding of occurrences around us, and for some kind of judgmental analysis in order to make decisions 
facing these occurrences (Glimcher et al., 2009). One may notice, that the immense scope of hierarchical 
classification is here very clear. It occurs, this is the most powerful method of classification used by the human 
brain in ordering experience, observations, entities and information. Some scientists even claim that the use of 
hierarchical ordering must be as old as human thought, both conscious and unconscious (Whyte, 1969). 

However, psychologists have proven that the human brain is limited in both its short term memory capacity and 
its discrimination ability. It was scientifically verified that a human being will give inaccurate answers when 
forced to choose from a range of twenty alternatives, because the range exceeds man’s bandwidth of perception 
channel (Martin, 1973). It has been demonstrated that humans are not capable of dealing accurately with more 
than about seven things at a time. It is crucial to notice that results of numerous psychological experiments, 
including the well known Miller’s study (Miller, 1956) verified this notion. It also seems reasonable to accept the 
fact that a human being learns about anything in two ways. The first way involves examining and studying a 
given object, feeling or an idea in itself to the extent that it has various properties, then synthesizing the findings 
and drawing conclusions from such observations about it. The second way, entails studying that entity relative to 
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other similar entities and relating it to them by making comparisons (Saaty, 2006). It seems that making pairwise 
comparisons is for human being as natural as binary counting is for computers. This occurs because humans 
have limited, so called bandwidth of their channel for perception, the phenomena standing behind quests on the 
path to improve our cognitive efficiency. Fortunately, there are some clues which emerged from this search. The 
first is to enable a man making rather relative than absolute judgments. The second is to organize tasks into 
groups in order to make several judgments in succession. Absolute judgment involves the relation between a 
single stimulus and some information held in short-term memory, whereas comparative judgment entails the 
identification of some relation between two stimuli both present to the observer (Blumenthal, 1977). 

1.2 Decision Making and Its Support Methodology 

We can perceive decision making nowadays as more mathematical science than it was centuries ago (Figuera et 
al., 2005). The process of decision making is now more formalized in the way we can track and analyze each 
step we undertake in order to make better decisions. So, the activity itself is more transparent today, in all its 
aspects. However, there are still different kinds of decisions that may or may not need formalization, i.e. intuitive 
and analytical. Intuitive decisions are not supported by data and documentation and may appear arbitrary. 
Unfortunately, a significant number of corporate decisions could still be classified as intuitive ones. Analytic 
decision making on the other hand scientifically endeavor to deal with complex reality challenges.  

However, a last and often crucial disadvantage of many traditional analytic decision making methods is that they 
demand specialized expertise to design the appropriate structure and then to bring the decision making process in 
it. It seems that, ideally most wanted method overwhelming disadvantages of others would be: simple in 
construct, natural to human intuition and general thinking process, promoting consensus and compromise, 
adaptable to both individuals and groups, and not requiring any sophisticated skills to master. As it occurs, these 
criteria are met by the decision making process called Analytic Hierarchy Process (AHP) which can be 
considered to be both a descriptive and prescriptive model of decision making. Its methodology compares 
criteria, or alternatives with respect to a criterion, in a natural, pairwise mode. The comparison process proceeds 
with the application of fundamental scale of absolute numbers that has been proven in practice. In fact, it has 
been validated in hundreds of experiments that the method does indeed generate results conforming to classic 
ratio scale measurement in physics, economics, and other fields where standard measures already exist (Saaty, 
1988, p. 39; Saaty, 2006, pp. 192–195; Saaty, 1980, pp. 38–42; Saaty, 2008). It is also, the most widely used 
decision making approach in the world today, as well most validated methodology, see e.g. Kazibudzki (2012) 
and references in there. 

Generally, in order to make a decision one needs various kinds of knowledge, information and technical data. 
These concern: details about the problem to be decided, the people or actors involved, their objectives and 
policies, the influences affecting the outcomes, and the time horizons, scenarios and constraints (Saaty, 2001). 
That is why the AHP is grounded on the well-defined mathematical structure of consistent matrices and their 
associated principal right eigenvector’s ability to generate true or approximate weights (Merkin, 1979; Saaty, 
1990), what also constitutes the principal source of its criticism, see e.g. (Grzybowski, 2012; Basak, 1998; 
Budescu, Zwick & Rapoport, 1986; Hovanov, Kolari & Sokolov, 2008; Lipovetsky & Tishler, 1997; Zahedi 1986; 
Bana e Costa & Vansnick, 2008; Belton & Gear, 1983; Lipovetsky & Conklin, 2002). 

1.3 Basic Notations of the AHP 

When we suppose that a decision maker has only judgments (estimates) of the relative weights of a set of 
activities, then it is possible to express them in a pairwise comparison matrix (PCM) denoted as A(a) with 
elements aij=ai/aj Obviously, true relative weights themselves can be expressed analogically. Let us denote then 
A(w) as the symbol of a matrix with elements wij=wi/wj  

If the elements of a matrix A(a) satisfy the condition aij=1/aji for all i,j=1,…,n then the matrix A(a) is said to be 
reciprocal (RPCM). If its elements satisfy the condition aikakj=aij for all i,j,k=1,…,n and the matrix is reciprocal, 
then it is called consistent. Finally, the matrix A(a) is said to be transitive (TPCM) if the following conditions 
hold: (i) if for any l=1,…,n, an element alj is not less than an element alk then aij  aik for i=1,…,n, and (ii) if for 
any l=1,…,n, an element ajl is not less than an element akl then aji  aki for i=1,…,n. Obviously, in the case of the 
reciprocal PCM the two conditions (i) and (ii) are equivalent.  

Thus, if we would like to recover the vector of weights w=[w1, w2, w3,…, wn ]
T which true relative weights of a 

set of activities can be created from, as in the case of matrix A(w), we can apply either eigenvector method (REV) 
or any optimization method that seeks a vector w as a solution of the minimization problem given by the 
formula: 
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Min D(A(a), A(w))                                   (1) 

subject to some assigned constraints such as for instance positive coefficients and normalization condition.  

Because the distance function D measures an interval between matrices A(a) and A(w), different ways of its 
definition lead to various prioritization concepts and prioritization outcome. It seems that the biggest competitor 
in comparison to REV, and also most popular method among optimization ones constitutes the logarithmic least 
squares method (LLSM), known also as geometric mean method (Crawford, 1987). 

1.4 The Essence of the Matter 

It seems prerequisite for a credible decision making support methodology to provide unambiguous answers for 
the alternatives of a decision. Obviously it also concerns the AHP, especially that a variety of operational 
procedures were invented in order to support this methodology. When decision makers preferences are more or 
less consistent, the priority vectors derived from their intuitive judgments rather coincide. Nevertheless, 
especially in managerial decisions, preferences are constantly inconsistent what leads directly to the situation 
that we have various rankings for different procedures. It was also demonstrated that especially in multicriteria 
decisional problems even when different procedures deliver priority vectors that are close to each other, both on 
criteria and alternatives, after standard AHP aggregation based on weighting and adding (Saaty, 1980) the 
alternatives priorities can change (Saaty & Hu, 1998). It seems that such ambiguity within the single decision 
making support methodology cannot be accepted. Certainly, we are being implicated that exclusively principal 
right eigenvector method (REV) counts in this matter but let us remember that REV, despite of its advantages, 
has also few flaws that should not be neglected. That is the basic reason we initiated novel simulations study, i.e. 
not such that deals exclusively with one single PCM, but such that concern hypothetic decisional problem within 
a given AHP framework which consists of different number of criteria and different number of alternatives. 

2. Research Methodology 

2.1 Examined Procedures Definitions 

Thus, we have chosen three procedures that in the literature were considered as the best ones within the AHP 
methodology (Lin, 2007; Choo & Wedley, 2004): 

– (GM) i.e. geometric mean procedure (Crawford & Williams, 1985) given by the formula: 
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– (REV) i.e. principal right eigenvector method (Saaty, 1980) given by the formula: 
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where e=[1,1,…,1]. 

– (SNCS) i.e. simple normalized column sum procedure (Choo & Wedley, 2004) given by the formula: 
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2.2 Assumptions 

We assume, the hierarchy consist of three levels: goal, criteria and alternatives. This framework in our opinion 
reflects the hypothetic case of true managerial decision problem. Thus, we simulate distinct situations (different 
scales with various number of criteria and alternatives) within this framework in relation to different sources of 
PCMs inconsistency. Basically, the inconsistency constitutes the outcome of errors caused by the nature of 
human judgments and errors determined by the technical realization of the comparison procedure. The latter ones, 
appear mainly due to the rounding errors and errors resulting from the forced reciprocity requirement. The 
rounding errors are related to the numerical ratio scale whose values should be used by prospective decision 
makers in order to express somehow their judgments (Kazibudzki, 2012; Grzybowski, 2012; Dong, Xu, Li & Dai, 
2008; Lipovetsky & Tishler, 1997; Lipovetsky & Conklin, 2002). Certainly, in conventional AHP applications 
the most popular is Saaty’s numerical scale that comprises the integers from 1 to 9 and their reciprocals. But 
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there are known also other scales (Dong, Xu, Li & Dai, 2008), e.g.:  

 geometric scale for which the linguistic variables of Saaty’s scale hold different numerical values, i.e. most 
commonly and as such also in our research: 2n/2 where n comprises the integers from minus 8 to 8;  

 arbitrary numerical scale which comprises the integers from 1 to n and their reciprocals. 

Fortunately, although more troublesome for simulation’s processes, errors caused by the nature of human 
judgments are manageable too. They are represented as the realization of some random process in accordance 
with the formula (5) given below: 

aij = eij  wi/wj          (5) 

where eij is a perturbation factor oscillating near 1, e.g. (Saaty, 2003; Sun & Greenberg, 2006; Ishizaka & Labib, 
2011). In a statistical approach and many simulation studies the perturbation factor is interpreted as a realization 
of a random variable, e.g. (Grzybowski, 2012; Zahedi, 1986) and its probability distributions mainly involve 
uniform and gamma, as well truncated normal or log-normal (Basak, 1998; Choo & Wedley, 2004; Lin, 2007; 
Zahedi, 1986). 

2.3 Simulation Scenario Description 

In our simulation study we proceed in accordance with the scenario described in Kazibudzki (2012), thus we 
generate uniformly random and normalized ‘original’ priority vector for uniformly randomly chosen number of 
criteria. Next, we generate uniformly random and normalized ‘original’ priority vectors of alternatives for the 
given set of criteria with uniformly randomly chosen number of alternatives. Then, we calculate the ‘original’ 
total priority vector (OTPV) of weights, according to an earlier described AHP algorithm. Next, on the bases of 
‘original’ individual priority vectors generated for the given set of criteria and the given sets of alternatives, we 
create correspondent pairwise comparison matrices (PCMs). Then, we make them inconsistent, first through 
perturbation of their elements in accordance with relation (5) and secondly through rounding their elements to a 
chosen particular scale. Next, on the bases of such created inconsistent PCMs we compute their respective 
priority vectors with the application of chosen methods: GM, REV and SNCS. Then, for each method we 
calculate the total priority vector (TPV) applying standard AHP aggregation algorithm. Finally, we compare 
values of such obtained TPV with the values of OTPV. The simulation study assumes that just described scenario 
is repeated given number of times. For the performance evaluation purpose we compute known from literature: 
the Pearson correlation coefficient (PCC) between the OTPV and its estimate TPV, Spearman rank correlation 
coefficient (SRCC) (Grzybowski, 2012; Moy, Lam & Choo, 1997; Budescu, Zwick & Rapoport, 1986), and 
mean absolute deviation (Kazibudzki, 2012; Choo & Wedley, 2004; Lin, 2007; Dong, Xu, Li & Dai, 2008). 

In our simulations, we always consider approximation with forced reciprocity condition applied as it is most 
common and embedded assumption in the AHP methodology. As for the simulation procedure, the forced 
reciprocity condition operates in this way that the perturbed PCM inputs are taken only from above its diagonal 
elements, and the remaining ones are entered as the inverses of the corresponding symmetric units in relation to 
its diagonal elements. 

2.4 Introductory Exemplification within Simplified Framework 

The following example describes the simplified simulation procedure in the situation when only one PCM is 
considered as opposite to the whole AHP framework. Thus, we begin with the assumption that we know the 
‘original’ PV. Let the ‘original’ normalized PV be imposed as follows: w=[0.75, 0.15, 0.1]T. Then, the ‘original’ 
matrix A(w) derived from this vector has the following entries: 
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Following the simulation scenario, in our next step we perturb such obtained consistent PCM in order to get an 
inconsistent one. We do it firstly with an application of the equation (5) and secondly rounding its entries to the 
chosen particular scale (here it will be Saaty’s numerical scale). For the purpose of exemplification, we will 
proceed in this example only with steps limited to direct rounding (without earlier perturbation with an 
application of the equation (5)). Thus we have: 
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As we may notice due to application of rounding errors we receive nonreciprocal PCM. Thus, our further task is 
to make it reciprocal. Following the algorithm described earlier in this paper we get the following PCM: 
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Basing on this PCM that can be seen as a decision maker best attempt to estimate the ‘original’ A(w) we can 
compute its possible PVs, simply choosing the right procedure, in particular GM, SNCS and REV. Certainly, we 
can then compare such obtained results with the ‘original’ PV and calculate earlier mentioned performance 
measures such as MAD, SRCC, and PCC. The results of such calculations and priority vectors obtained due to 
application of chosen methods are presented in table 1. 

 

Table 1. Comparison of GM, SNCS and REV performances in the example with rounding errors and forced 
reciprocity applied for ‘original’ PV: w=[0.75, 0.15, 0.1]T 

Method Estimates 
Performance measures 

MAD SRCC PCC 

GM [0.747053, 0.133559, 0.119389]T 0.0129257 1 0.99878 

SNCS [0.745581, 0.134301, 0.120117]T 0.0134114 1 0.998785 

REV [0.747053, 0.133559, 0.119389]T 0.0129257 1 0.99878 

 

As we can see in the presented example both GM and REV provide the same estimates of PV, which was proven 
mathematically for n3. In this case also all methods provide the same ranks for all priorities (SRCC=1). 
Obviously, we want to check if this is true for the entire AHP model with different number of criteria and 
different number of alternatives. Fortunately, we can simulate similar scenarios with the application of various 
scales, various probability distributions for perturbation factor in the equation (5) and various size of errors 
reflected by the range of perturbation factor in the equation (5). For instance in the case of AHP framework 
constructed for 3 criteria and 3 alternatives from the same imposed w=[0.75, 0.15, 0.1]T for all its levels the 
OTPV (overall ranking) would be exactly the same as the single imposed one. The total priority vector (overall 
ranking) received due to application of chosen methods to respective perturbed (in the same way as above) 
PCMs derived from single ‘original’ PVs in this particular case also is the same as in the single PCM case, i.e. 
w=[0.747053, 0.133559, 0.119389]T for GM, w=[0.745581, 0.134301, 0.120117]T for SNCS, and w=[0.747053, 
0.133559, 0.119389]T for REV. Nevertheless, the study becomes truly realistic only then when simulation 
framework is applied without artificial assumptions and simplifications because only in this way we obtain 
results that reflect a big picture i.e. real life performance evaluation. 

3. Research Results 

Thus, let us concentrate on situations when inconsistency exists not only due to technical realization of the AHP 
process (rounding and forced reciprocity) but also human judgment errors that constantly take place in real 
decision making problems. Saaty & Hu (1998) illustrated the case where variability in PVs ranks between two 
procedures did not occur for each individual PCM but occurred in the overall ranking of the final alternatives 
due to the multicriteria process itself. Building on this example we proceeded with similarly designed 
simulations in order to validate the statement presented in there. However, our research framework encompasses 
different number of AHP frameworks (50 or 100) and various ways of inconsistency that was implemented by:  

 the perturbation factor (eij) drawn uniformly, log-normally, gamma or truncated-normally from the interval 
eij[0.05, 1.95] and;  

 rounding entries of perturbed PCM to a particular scale (Saaty’s numerical scale, geometric scale and 
arbitrary numerical scale for n=50. 

We decided to perturb each PCM within the single AHP framework either 50 or 100 times with the application of 
chosen perturbation factor distribution. Tables 2–7 present selected (statistically significant) mean performance 
measures of GM, SNCS and REV for 2 500 (50 x 50) and 10 000 (100 x 100) cases. 
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Table 2. Mean performance results of GM, SNCS and REV for 2 500 cases (*)  

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0169201 0.806346 0.929493 
REV 0.0195622 0.758181 0.896157 

SNCS 0.0183839 0.784396 0.919387 

Note: (*) AHP uniformly random framework (nk, na  [8, 12]) with uniformly distributed perturbation factor eij 

 [0.05, 1.95] and technical errors implementation (rounding to geometric scale and forcing PCM reciprocity) 

 

Table 3. Mean performance results of GM, SNCS and REV for 2 500 cases (*) 

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0289979 0.681213 0.763865 
REV 0.0318991 0.633144 0.705974 

SNCS 0.0296353 0.667491 0.753209 

Note: (*) AHP uniformly random framework (nk, na  [8, 12]) with gamma distributed perturbation factor eij  
[0.05, 1.95] and technical errors implementation (rounding to geometric scale and forcing PCM reciprocity) 

 

Table 4. Mean performance results of GM, SNCS and REV for 2 500 cases (*) 

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0161027 0.800270 0.932354 
REV 0.0192493 0.751877 0.897493 

SNCS 0.0175419 0.781048 0.923762 

Npte: (*) AHP uniformly random framework (nk, na  [8, 12]) with uniformly distributed perturbation factor eij 

 [0.05, 1.95] and technical errors implementation (rounding to arbitrary numerical scale with n=50 and forcing 
PCM reciprocity) 

 

Table 5. Mean performance results of GM, SNCS and REV for 2 500 cases (*) 

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0312237 0.596775 0.720996 
REV 0.0370230 0.517215 0.596455 

SNCS 0.0317082 0.579539 0.704673 

Note: (*) AHP uniformly random framework (nk, na  [8, 12]) with gamma distributed perturbation factor eij  
[0.05, 1.95] and technical errors implementation (rounding to arbitrary numerical scale with n=50 and forcing 
PCM reciprocity) 

 

Table 6. Mean performance results of GM, SNCS and REV for 10 000 cases (*) 

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0187484 0.835546 0.930354 

REV 0.0201425 0.808539 0.914050 

SNCS 0.0200100 0.822548 0.925367 

Note: (*) AHP uniformly random framework (nk, na  [8, 12]) with uniformly distributed perturbation factor eij 

 [0.05, 1.95] and technical errors implementation (rounding to Saaty’s numerical scale and forcing PCM 
reciprocity) 
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Table 7. Mean performance results of GM, SNCS and REV for 10 000 cases (*) 

Method 
Performance measures 

MAD SRCC PCC 

GM 0.0309819 0.656190 0.765560 

REV 0.0322768 0.628579 0.741102 

SNCS 0.0312162 0.649620 0.766790 

Note: (*) AHP uniformly random framework (nk, na  [8, 12]) with gamma distributed perturbation factor eij  
[0.05, 1.95] and technical errors implementation (rounding to Saaty’s numerical scale and forcing PCM 
reciprocity) 

 

Noticeably, if we take SRCC as the indicator of OTPV rank preservation and ability to recover it as precisely as 
possible due to certain procedure application within the AHP, we may notice that REV performance is always 
dominated by GM or SNCS. 

4. Discussion 

In our simulations we studied the performance measures for three chosen prioritization procedures within the 
AHP framework for four classes of probability distributions of the perturbation factors: uniform, log-normal, 
truncated normal and gamma. Although, all results were rather similar we selected only these that were 
statistically significant from the perspective of two most popular and competitive procedures i.e. GM and REV. 

We validated them with the application of the same AHP framework that was presented in Saaty & Hu (1998). 
However, as opposite to the single case study described in Saaty & Hu (1998) we simulated many thousands 
various AHP frameworks and observed the performance results of chosen procedures under different PCMs 
perturbation scenarios. We could test in this way the performance differences among chosen procedures treating 
SRCC as the particular procedure performance measure.  

If we denote SRCCGM and SRCCREV as Spearman rank correlation coefficient of geometric mean (GM) and 
Spearman rank correlation coefficient of right eigenvector method (REV), we can test their difference 
significance using “t” statistics given by the following formula: 

21
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n
Rt
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

           (6) 

where R is the difference between particular SRCCs. 

This statistics has a distribution of t–student with n minus 2 degrees of freedom df, where n equals size of the 
sample. We test the hypothesis H0: SRCCGM –SRCCREV=0 versus HA: SRCCGM–SRCCREV>0. In our simulations 
df=2 498 or df=9 998, thus for assumed significance level =0.01 the critical value of t0.01  2.32 in both cases. 
When tested value of t is bigger than its critical level for accepted significance, we reject H0 assuming equality 
of evaluated measures on the favor of alternative hypothesis. In the opposite situation we do not have 
foundations to reject H0. Details concerning difference significance between SRCCGM and SRCCREV for six 
scenarios presented in tables 2–7 provides table 8. 

 

Table 8. Statistics for six scenarios presented in tables 2–7 concerning assumption about equality of SRCCREV 
and SRCCGM 

Scenario R–value t–value Decision about H0 

Tab. No.2 0.048165 2.410 REJECT 

Tab. No.3 0.048069 2.405 REJECT 

Tab. No.4 0.048393 2.422 REJECT 

Tab. No.5 0.079560 3.989 REJECT 

Tab. No.6 0.027007 2.701 REJECT 

Tab. No.7 0.027611 2.762 REJECT 
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Taking into account the statistical hypothesis tests concerning entire simulation framework, we have serious 
foundation to claim that as long as reciprocity of PCMs is imposed (the requirement embedded in the AHP), it is 
not grounded to consider REV as the dominant method among others as it was done in Saaty & Hu (1998). 
Furthermore, as long as reciprocity of PCMs is forced within the AHP framework we find REV as the rule worse 
in its performance in all researched scenarios. Obviously, some differences in presented procedure performance 
were statistically insignificant so we decided to elaborate and discuss in more detail only these results that were 
statistically significant. However, our research clearly prove that REV is not as effective as other chosen 
procedures presented in this article. By the word effective, we mean the process of unique capturing the ratio 
scale rank order inherent in inconsistent pairwise comparison judgments as long as reciprocity of PCMs is forced 
in the AHP. It is clear that results of our research stand in opposition to the theorem presented in Saaty & Hu 
(1998). To recapitulate, REV surely is not the only valid procedure for deriving priority vectors from a reciprocal 
pairwise comparison matrices, what was now validated from the perspective of order preservation concept within 
the entire AHP framework comprising inconsistent matrices.  

This seems very important from the viewpoint of multicriteria decision making in the field of scientific 
management because even if variability in ranks does not occur for individual judgment for different procedures 
applied, it may still occur in the overall ranking of the final alternatives due to the multicriteria process itself. 
Because REV can give less credible rankings than other procedures available for the AHP, it is advised to 
consider them instead, especially under some circumstances of an important and very tight managerial decisions. 
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