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Abstract  

Gray target decision making is one method of gray systematic theory for solving multiple attribute decision making 
problem. The weight definite method of the index in the present researches on gray target decision making is 
monotonous, it does not accord with the actual conditions; From the point of view of mathematical statistics in 
addition, the true weight coefficient of every index is a random variable, the weight coefficient that different 
assignment method draws is only a sample value of the true weight coefficient, and it has some uncertainty. For this 
reason, a method of determining the linear combination weights based on entropy, using optimization theory and 
Jayne's maximum entropy principle, is presented to deal with the problem of determining the weights in multiple 
attribute decision making. The existing grey target decision making model has been got improved and the example 
demonstrates the validity of this model. 
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1. Forewords 

There are a large number of MADM (Multiple Attribute Decision Making) problems in such activities as the society, 
economy and etc. A lot of domestic and international scholars have already carried on diversified researches and 
discussions to MADM and have made it develop rapidly. The grey target decision making is one of the methods to 
solve MADM problems using the grey systematic theory. An important factor influencing the rationality of MADM 
is the weight of evaluation index. The existing researches of grey target decision making (documents [1, 2]) all treat 
the importance of every index equally, or assign weight to every index with single subjective law. In reality, different 
indexes have different function in different decision, so it dose not accord with actual conditions to treat the 
importance of every index equally or assign weight with single subjective law and it is essential for improvement of 
the already existing grey target decision making model. From the point of view of mathematical statistics in addition, 
the true weighting coefficient of every index is a random variable, the weighting coefficient that different 
assignment method draws is only a sample value of the true weighting coefficient, and it has some uncertainty. For 
this reason, this text proposes one method giving consideration to the synthesis of subjective law and objective law, 
introduces Shannon entropy to describe the uncertainty brought by various kinds of assignment methods at the same 
time, and on this basis has set up the multiple attribute grey target decision making model. The instance analysis 
with this model has stated the rationality of it. 

2. Set up of the grey target decision making model 

Generally a MADM problem has a decision scheme set
1 2{ , , , }nS s s s= L , which is composed by assessed targets or 

drafted schemes; and an index set
1 2{ , , , }mA a a a= L , which is composed by evaluation indexes or attributes. The 

effect sample value of the scheme 
is  to the index 

ja  is ( 1,2, , ; 1, 2, , )ijx i n j m= =L L  and the effect sample matrix 

of the scheme set S  to the index set A  is [ ]ij n mX x
×

= . 

2.1 Index standardization 

Because the magnitude order and dimension of every evaluation index will exist differently in actual appraisal 
problem and the attribute is different, some indexes require that the smaller the better, some indexes require that the 
greater the better, while some indexes demand to fall into a certain interval. So it is necessary to carry on the 
standardized treatment to the appraise matrix before appraising. 

At present the commonly used index types include benefit type, cost type and interval type, etc. It is the better that 
benefit type index value is the greater, the better that cost type index value is the smaller, and the better that interval 
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type index value falls into a certain interval. This text will use the principle of “reward the good and punish the bad” 
to standardize indexes according to reference document (Dai, Zou, Wang, Zhu & Zhou, 2000, pp. 32-36), the basic 
thought is that a positive number from 0 to 1 is assigned to the index when its value is superior to the average level, 
while a negative number from 0 to -1 is assigned to the index when its value is inferior to the average level. 

It is supposed that 
1O , 

2O , 
3O  respectively stands for the suffix sets of benefit type index, cost type index and 

interval type index, so there is the equation 
1 2 3 {1, 2, , }O O O m=U U L , and ( , 1,2,3)i jO O i j i j= ∅ ≠ =I �

. 

Order 
1

1
, ( 1,2, , )

n

j ij
i

z x j m
n

=

= =∑ L , if 
jA  is benefit type index, there is the formula (1):  

11

, ( 1,2, , )
max(max{ } , min{ })

ij j
ij

ij j j ij
i ni n

x z
r j m

x z z x
≤ ≤≤ ≤

−

= =

− −

L
                  (1) 

If 
jA  is cost type index, there is the formula (2): 

11

, ( 1,2, , )
max(max{ } , min{ })

j ij
ij

ij j j ij
i ni n

z x
r j m

x z z x
≤ ≤≤ ≤

−

= =

− −

L                � (2) 

And if 
jA  is interval type index, for example, 

jA  belongs to the interval of [ , ]C D , there is the formula (3): 

1

1

2( )
1 ,

min{ }

2( )
1 ,

min{ }

1,                  

ij
ij

ij
i n

ij
ij ij

iji n

ij

C x
x C

C x

x D
r x C

x D

C x D

≤ ≤

≤ ≤

−⎧
− <⎪

−⎪
⎪ −⎪

= − >⎨
−⎪

⎪
≤ ≤⎪

⎪⎩

  ( 1,2, , )j m= L                     (3) 

The above transform is called the “reward the good and punish the bad” transform operator, and it can transform the 

effect sample matrix ( ) ( )ijX t x=  into the decision making matrix [ ]ij n mR r
×

=
. It can be concluded that all the 

elements of the matrix R  have no dimension and they all accord with the “reward the good and punish the bad” 

criterion, and that the value of every element belongs to the interval of [-1,1], ( 1, 2, , ; 1, 2, , )i n j m= =L L . The 

vector 
1 2( , , , )( 1,2, , )i i i imr r r r i n= =L L  is called the effect vector of the scheme is . 

2.2 The multiple attribute grey target decision making model 

(1) Definition 1: Supposed that     

*

1
max{ }j ij

i n
r r

≤ ≤

= , ( 1,2, , )j m= L                       � (4) 

Call the follow vector as the optimum effect vector for the multiple attribute grey target decision making, which is 
also called the “bull's-eye”. 

   * * *
1 2( , , , )mr r r r= L                             (5) 

(2) Supposed that the vector of weight drawn through the method of linear combination weights assigning which is 
adopted by this text is * * * *

1 2( , , , )mW w w w= L . 

Definition 2: Call the follow formula as the multidimensional ellipsoid grey target regarding r  as the “bull's-eye”. 

( ) * * 2 * * 2 * * 2 2
1 2 1 1 1 2 2 2{( , , , ) ( ) ( ) ( ) }m

i i im i i m im mR r r r w r r w r r w r r R= − + − + + − =L L

(3) Definition 3: Supposed that ( )
1 2( , , , ) m

i i i imr r r r R= ∈L , and call the variable id  as the “bull's-eye distance” of the 
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effect vector ir . The size of the “bull's-eye distance” has reflected the quality with the effect vector. The smaller the 

“bull's-eye distance” is, the more excellent the decision scheme is; On the contrary, the greater the “bull's-eye 

distance” is, the worse the decision scheme is. 

* * 2 * * 2 * * 2
1 1 1 2 2 2( ) ( ) ( )i i i i m im md r r w r r w r r w r r= − = − + − + −L                (6) 

2.3 The linear combination assigning weights based on entropy 

(1) Supposed that the appraising person gets several kinds of weight vectors for the evaluation index, such as 1W , … , 
lW , using kinds of subjective and objective assigning weights methods. For example, one of the weight vector is 

1 2( , , , )k k k k T
mW w w w= L , it meets the equation 

1

1
m

k
j

j

w
=

=∑ , 0k
jw ≥ , ( 1,2, , )k l= L . 

Make the vector * * * *
1 2( , , , )T

mW w w w= L  as the linear combination weight vector of the above several weight 

vectors such as 1W ,…, kW . The formula (7) is about the linear combination weight vector. 

*

1

l
k

k
k

W x W
=

=∑                                  (7) 

In the above formula, the variable kx  stands for the linear combination coefficient, and it accords with the equation  

1

1
l

k
k

x
=

=∑ , 0kx ≥                                (8) 

Order the vector 
1 2( , , , )T

lx x x x= L  stands for the linear combination coefficient vector, and it can be easily 

verified that the weight vector drawn from the formula (7) accords with the equation 

      *

1 1 1

1
m m l

k
j k j

j j k

w x w
= = =

= =∑ ∑∑                             (9) 

(2) From the point of view of mathematical statistics, in the realistic system, the true weight coefficient of every 
evaluation index is a random variable, and the true weight vector that they form is a random vector. The weight 
vector kW  can be viewed as a sample of the true weight vector, and the linear combination coefficient kx  can be 
viewed as the probability of the true weight vector taking the sample value. So the linear combination coefficient 
vector x  has some uncertainty and this uncertainty can be shown by the Shannon entropy: 

1

ln
l

k k
k

H x x
=

= −∑ � �        � � � �      � �  (10) 

(3) The purpose of solving for the linear combination vector is just to confirm the suitable combination coefficient 
vector x . So on one hand it should make the weighting “bull's-eye distances” between all schemes and the ideal 
scheme minimum, which means the two follow formulas should be tenable. 

Min 2 * 2

1 1 1 1

( )
n n m l

k
i k j j ij

i i j k

d x w r r
= = = =

= −∑ ∑∑∑                      (11) 

s.t.  
1

1
l

k
k

x
=

=∑ , 0kx ≥                             (12) 

And on the other hand, it should try its best to dispel the uncertainty with the combination coefficient vector x . 
According to Jayne’s greatest entropy principle, the comprehensive weight coefficient for index should make the 
Shannon entropy unable to fetch great, it means that the two follow formulas should be tenable. 
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Max  
1

ln
l

k k
k

H x x
=

= −∑                             (13) 

s.t.  
1

1
l

k
k

x
=

=∑ , 0kx ≥                              (14) 

So solving for the linear combination weight vector is a problem of multiple attributes optimization. In order to 
solve this problem, this text constructs the follow single attribute optimization problem (SP): 

Min * 2

1 1 1 1

( ) (1 ) ln
n m l l

k
k j j ij k k

i j k k

x w r r x xµ µ

= = = =

− + −∑∑∑ ∑                   (15) 

s.t.  
1

1
l

k
k

x
=

=∑ , 0kx ≥                             (16) 

In the formula (15), the positive parameter 0 1µ< <  expresses the balance coefficient between two attributes, and it 
can be provided in advance according to the practical problem. It can be proved that this single attribute 
optimization problem (SP) has the only result and the result is as follows: 

1 2, , , lpp p
x

p p p

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

L � � �          � � � � � � �  (17) 

In the formula (17), the results of vector p  and vector  
kp  are as follows: 

1

l

k
k

p p
=

=∑ , * 2

1 1

exp{ [1 ( ) /(1 )]}
n m

k
k j j ij

i j

p w r rµ µ

= =

= − + − −∑∑ , ( 1, 2, , )k l= L

(4) Use the formula (7) to solve for the linear combination weight vector *W . 

2.4 The multiple attribute grey target decision making algorithm 

In sum, it can get the multiple attribute grey target decision making algorithm as follows: 

(1) Construct the effect sample matrix [ ]ij n mX x
×

=
 according to the multiple attribute decision making problem; 

(2) Use formulas (1), (2), (3) to transform the effect sample matrix X into the decision making matrix [ ]ij n mR r
×

= ; 

(3) Solve for the optimum effect vector r  according to the formula (4) by the decision making matrix R ; 

(4) Solve for the linear combination coefficient vector x  according to the formula (17); 

(5) Solve for the linear combination weight vector *W  according to the formula (7); 

(6) Solve for the “bull's-eye distance” 
id  of the effect vector ir , and arrange 

id  according to the order from small 

to large, then can get the optimum sequencing of every scheme. 

3. Demonstrated application 

3.1 Brief account of the application 

In order to develop the new products, five kinds of capital schemes from 1s  to 5s  have been drafted. The effect 

sample value of every scheme is arranged in Table 1, and tries to arrange them in an order. 

3.2 The model calculation 

Among the indexes, the Expect NPV and Risk Profit are benefit type indexes while the Capital Cost and Risk Loss 
are cost type indexes. We utilize the method of this text to solve for the sequencing of the capital schemes, and the 
concrete steps are as follows: 

(1) Set up the effect sample matrix according to data of table 1; 

5.20 5.20 4.73 0.473

10.08 6.70 5.71 1.599

5.25 4.20 3.82 0473

9.72 5.25 5.54 1.313

6.60 3.75 3.30 0.803

X

         ⎡ ⎤
⎢ ⎥        ⎢ ⎥
⎢ ⎥=          
⎢ ⎥

         ⎢ ⎥
⎢ ⎥         ⎣ ⎦
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(2) Transform the effect sample matrix into the decision making matrix according to formula (1) and formula (2); 

0.8007 0.1071 0.0833 0.6886

1 1 0.8257 1

0.7823 0.4881 0.6060 0.6886

0.8671 0.1369 0.6969 0.5711

0.2841 0.7559 1 0.1937

R

         ⎡ ⎤
⎢ ⎥   −                          −⎢ ⎥
⎢ ⎥=    −    −    
⎢ ⎥
−          −⎢ ⎥

⎢ ⎥   −       −          ⎣ ⎦

(3) Get the optimum effect vector according to the formula (4); 

(0.8007,1,0.8257,0.6886)r =

(4) Supposed that the appraising person gets three kinds of weight vectors for the evaluation index using different 
kinds of subjective and objective assigning weights methods, they are as follows: 

1 (0.10,0.30,0.15,0.45)W =

2 (0.20,0.30,0.30,0.40)W =

3 (0.45, 0.15,0.10, 0.30)W =

Make the balance coefficient 0.8µ =  and calculate the combination coefficient vector according to formula (17); 

(0.6665, 0.0039,0.3296)x =

(5) Solve for the linear combination weight vector according to formula (7); 
* (0.216, 0.251,0.134,0.399)W =

(6) Solve for the “bull's-eye distance” 
id  of every scheme; 

1 0.5234d = , 
2 1.3558d = , 3 0.9114d = , 

4 1.1930d = , 
5 1.1730d =

(7) Arrange id  according to the order from small to large, then can get the optimum sequencing of every scheme. 

1d  > 
3d  > 

5d  > 
4d  > 

2d

3.3 The result analysis 

Table 2 shows the comparison of assessment results of different assigning weights methods. Seeing from table 2, the 

different methods all get the result of 1s  > 3s , so it can be thought that scheme 1 is optimum and scheme 2 takes 

second place. The assessment results of the other three schemes are not the same, so it can't well offer reference for 
making policy though single one assigning weights method. The linear combination assigning weights method 
adopted by this text can synthesize characteristics of various kinds of methods so better as to offer basis for making 
policy.   
4. Conclusion 

The choice of the weight coefficient of the evaluation index is the critical event while appraising multiple attributes 
system. Using optimization theory and Jayne's maximum entropy principle a method of linear combination weights 
assigning based on entropy is presented to deal with the problem of assigning weights in multiple attributes decision 
making, it considers not only the synthesis of subjective assigning weights method and objective method but also the 
uncertainty of different methods, and the existing grey target decision making model has been got improved. At last 
the demonstrated application shows the rationality and significance of this method. 
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Table 1. Effect sample value of every sample Unit: ten thousands of RMB 

Target

Scheme
Capital Cost Expect NPV Risk Profit  Risk Loss

1s  5.2 5.2 4.73 0.473 

2s  10.08 6.7 5.71 1.599 

3s  5.25 4.2 3.82 0.473 

4s  9.72 5.25 5.54 1.313 

5s  6.6 3.75 3.3 0.803 

Table 2. Assessment results of different assigning weights methods 

Weight Vector 

Scheme 
1W 2W

3W *W

1s  0.56732 0.63603 0.41798 0.283289 

2s  1.26782 1.33755 1.52136 1.151147 

3s  0.98581 1.13107 0.73300 0.501505 

4s  1.10372 1.191431 1.35689 1.156536 

5s  1.24973 1.44092 0.99467 0.936148 

Result of Optimum 

Sequence 
1s > 3s

> 4s
> 5s

> 2s 1s > 3s
> 4s

> 2s
> 5s 1s > 3s

> 5s
> 4s

> 2s 1s > 3s
> 5s

> 2s
> 4s


