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Abstract 
Incidence of hepatocellular carcinoma (HCC) has increased sharply in the last 10 years, with an especially high 
incidence in Egypt. This study was conducted to evaluate the impact of unbalanced diets on liver tumor through 
investigation of some biochemical mediators/pathways implicated in the pathogenesis of HCC. Male albino mice 
were divided into two major groups: Control group and Hepatocellular carcinoma (HCC) group; each group was 
further divided into four subgroups according to received diet: high fat (HF), low fat (LF), high carbohydrate 
(HC), and low carbohydrate (LC) groups. The results indicated that induction of HCC in mice showed marked 
body weight loss. Liver sections of HCC groups showed malignant giant cells and strong expression of p53. 
HCC mice groups kept on HF and LC diets showed the lowest survival rate, a significant increase in 
glucose-6-phosphate dehydrogenase (G6PDH), aldolase, and citrate synthase activities, a significant increase in 
serum E-cadherin as well as a significant decrease in insulin-like growth factor-1 (IGF-1) compared with LF diet. 
These results suggest that the molecular pathogenesis of HCC in mice correlates reduction of serum IGF-1 and 
elevated serum E-cadherin accompanied by reprogrammed metabolic profile shifted towards increased 
glycolysis and lipogenesis. These pathogenic changes were enhanced by over-consumption of carbohydrates, fats, 
and proteins, whereas dietary fat restriction could have a protective/ameliorative effect against the incidence of 
HCC.  
Keywords: hepatocellular carcinoma, fat-diet, carbohydrate-diet, IGF-1, E-cadherin, G6PDH, citrate synthase, 
aldolase, p53 protein 

1. Introduction 
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of 
cancer-related mortality after lung and stomach cancers. Recent studies revealed increased incidence of HCC in 
Egypt over the last decade (El-Zayadi et al., 2010). Different genes have been implicated in 
hepatocarcinogenesis including genes involved in growth inhibition and apoptosis (e.g. tumor suppressor gene; 
p53), and genes responsible for cell-cell interaction and signal transduction (Coleman, 2003). 

Development of HCC is a multi-stage process. In the molecular aspect, dysregulation of pleiotropic growth 
factors (e.g. insulin-like growth factor type-1, transforming growth factor-beta, and epidermal growth factor), 
adhesive molecules (e.g. epithelial cadherin; E-cadherin), and metabolic pathways represents a central 
pro-tumorigenic principle in human hepatocarcinogenesis (Wu & Zhu, 2011).  

Different genes have been implicated in hepatocarcinogenesis including genes involved in growth inhibition and 
apoptosis (e.g. tumor suppressor gene; p53), and genes responsible for cell-cell interaction and signal 
transduction. Mutations in the p53 tumor suppressor gene are among the most common alterations which play an 
important role in either initiation or progression of HCC (Sharpless & DePinho, 2002). 

Nutrition is thought to have a central role in the development of cancer, it was found that diet low in fruits and 
vegetables and high in red meat was positively associated with risk for malignancies, including prostate, colon, 
and breast cancer (Ferguson, 2010). The great interest during last decade in diet and human cancer derives from 
the large variations in rates of specific cancers among countries; such observations indicate the importance of 
potentially modifiable factors in the cause and prevention of cancer. Evidence from longer-term randomized 
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trials indicates that excessive caloric intake from fat and carbohydrates similarly lead to weight gain leading to 
obesity, insulin resistance, diabetes, and hepatic steatosis which are the most important known risk factors for 
HCC (Key, 2011). HCC is thought to develop through a continuous transition of liver pathologies, which begin 
with steatosis and proceed through hepatitis, fibrosis and cirrhosis, and end with benign liver tumors and HCC 
(Hill-Baskin et al., 2009). 

Dietary nutrients may also cause hepatic injury through pathways that do not involve the development or 
progression of hepatic steatosis. Carbohydrates, proteins, and lipids are all extensively metabolized in the liver 
and it is conceivable that they may influence the progression of chronic liver disease, either positively or 
negatively. In hepatitis B virus transgenic mice, a diet low in animal protein was associated with decreased liver 
injury and decreased incidence of HCC (Ioannou, Morrow, Connole, & Lee, 2009). In the presence of oxidative 
stress, dietary cholesterol may be oxidized in the liver to oxysterols, which can induce cell damage and 
malignant transformation (Ioannou, Morrow, Connole, & Lee, 2009).  

The present study was conducted to investigate the impact of unbalanced diets on liver tumor through 
investigation of some biochemical mediators/pathways implicated in pathogenesis of HCC in mice. 

2. Materials and Methods 
2.1 Animals and Diets 

Twenty hundred and eighty male albino mice were utilized in this study, 15-30g each. Mice were purchased from 
the animal house of Giza Institute of Ophthalmology, Cairo, Egypt. Mice were weighed and housed in wire 
cages for two weeks under identical environmental conditions for adaptation, and allowed free access to 
balanced laboratory diet and water ad libitum (Gebhardt & Thomas, 2002). Animals were handled according to 
ethics and guidelines of animal approval committee. After acclimatization period, mice were weighed and 
randomly divided into two major groups: Group 1: control group (80 mice) and Group 2: hepatocellular 
carcinoma (HCC) group (200 mice). Each group was further divided according to the received diet into 4 equal 
subgroups: high fat (HF), low fat (LF), high carbohydrate (HC), and low carbohydrate (LC) groups. Mice of both 
groups (1 and 2) were maintained on the assigned diet for 10 weeks whereas HCC induction was started after the 
2nd week in mice of group 2. 

The composition of different diets was illustrated in Tables 1. The caloric equivalent of each diet was calculated 
on the basis that upon oxidation of metabolic fuels, 1.0 g of carbohydrate yields 4 calories, 1.0 g of fat yields 9 
calories and 1.0 g of protein yields 4 calories (Gebhardt & Thomas, 2002). The diets were prepared weekly; the 
ingredients were mixed and formed into dough with water, rolled into pellets and stored at 4 ºC to minimize 
oxidation and rancidity.  

2.2 Induction of HCC 

For induction of hepatocellular carcinoma 200 mg/kg of diethylnitrosamine (DEN) (Sigma-Aldrich Inc. USA) 
was injected i.p. as a single dose (Kushida, Kamendulis, Peat, & Klaunig, 2011). After 14 days the mice were 
subjected to i.p. injection of thioacetamide (TAA) (Sigma-Aldrich Inc. USA) 100 mg/kg twice per week for four 
weeks (Novosyadlyy, Dargel, & Scharf, 2005). Then the mice were left for further two weeks without any 
treatment.  

2.3 Sample Collection 

At the end of experiment (10 weeks), mice were weighed, anaesthetized by ether, and blood was collected by 
cardiac puncture. The survival rate within each group was calculated as number of live animals after 10 
weeks/number of animals at the start of experiment × 100 (Cosetti, Yu, & Schantz, 2008). Blood samples were 
centrifuged for 12 min at 3000 rpm, 4 ºC with cooling centrifuge (Sigma 3K15, Germany). The serum was 
divided into four portions; one portion was used for immediate determination of enzyme activity of 
glucose-6-phosphate dehydrogenase (G6PDH), and other portions were stored at -20 ºC until used for 
biochemical analysis of aldolase activity, IGF-1 and E-cadherin.  
Liver was dissected, washed twice with ice cold saline, dried on clean paper towels, and weighed. Relative liver 
weight was calculated as liver weight (g)/final body weight (g) × 100. Liver was minced quickly and divided 
into two portions. One portion of liver was kept in 10% formalin for histopathological examination and 
immunohistochemical staining of p53. The second portion was kept frozen in liquid nitrogen at -80 ºC till 
determination of citrate synthase activity. 

2.4 Serum Analysis 

Insulin-like growth factor type-1 and E-cadherin were determined by mouse IGF-1 and mouse E-cadherin 
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ELISA kits, respectively, according to manufacturer instructions. The ELISA kits were purchased from Boster 
Biological Technology, Ltd. (China). The enzyme activities of G6PDH (Tian, Pignatare, & Stanton, 1994) and 
aldolase (Pinto, Kaplan, & Van Dreal, 1969) were determined by measurement of the rate of absorbance change 
at 340 nm using kits obtained from Randox Laboratories Ltd Company (England).  
2.5 Determination of Liver Citrate Synthase Activity 

Liver extract was prepared according to Morgunov and Srere (1998). To 50 mg liver, Cellytic MT reagent 
(Sigma-Aldrich Inc. USA) was added in the ratio of 1:20 w/v and protease inhibitor cocktail (Sigma-Aldrich Inc. 
USA) was added in the ratio of 20:1 w/v. The mixture was homogenized under cooling, centrifuged at 15,000 × 
g for 10 min at 4 °C, and the protein containing supernatant was separated and used for determination of citrate 
synthase activity. The reaction mixture contains 100 μL 1.01 mM dithionitro benzoic acid, 25 μL 10% Triton 
X-100, 50 μL 10 mM oxalacetate, 25 μL 12.2 mM acetyl CoA, and 790 μL redistilled water. 20 μL of 
supernatant was added, mixed carefully and incubated for 10 min at 30 °C. The yellow product 
5-thio-2-nitrobenzoic acid was measured spectrophotometrically at 412 nm (Trounce, Kim, Jun, & Wallace, 
1996). The protein content was determined according to Fleury and Eberhard (1951) using kits obtained from 
Biodiagnostics Co. Ltd. (Egypt) and citrate synthase activity was expressed as µmol/min/mg protein.  

2.6 Histopathology 

Liver sections were prepared (3-5 μm thick) and stained with hematoxylin and eosin (H&E). The sections were 
investigated under light microscope (Leica, Switzerland) using image analysis system under magnification × 400. 
Liver sections were investigated by a pathologist. Hepatocytes were seen with blue nuclei and pink to red 
cytoplasm.  
2.7. Immunohistochemical Detection of P53 Protein 

p53 Protein was detected by immunostaining of liver sections prepared from formalin-fixed, paraffin-embeded 
liver, using an Invitrogen kit (HistostainTM-SP Kit). The kit utilizes the labeled streptavidin-biotin (LAB-SA) 
staining methodology. The slides were investigated with light microscopy (Leica, Switzerland) by a pathologist for 
number of positive cells and color intensity (Jadali et al., 2011). Strongly p53-stained cells (+++) are those 
showing nuclei/cytoplasm with dark brown color and highest number of apoptotic bodies or figures. 
Moderately-p53 stained cells (++) are those showing intermediate golden brown color and modest number of 
apoptotic bodies or figures. Weakly-p53 stained cells (+) are those showing light brown color and least number of 
apoptotic bodies or figures.  
2.8 Statistical Analysis 

Analysis of data was performed with Statistical Package for Social Science (SPSS) version 17. Data are presented 
as mean ± SEM. Comparison between the studied groups was performed with one-way ANOVA (F-testing). 
Non-parametric correlation between variables was evaluated using Spearman's correlation coefficient. P < 0.05 
was considered statistically significant.  
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Table 1. Composition of different diets (Judge et al., 2008; Srinivasan et al., 2008) 

Diet composition (g) 
Balanced 

Diet (BD) 

High Fat 

Diet (HF) 
Low Fat Diet 

(LF) 

High Carbohydrate 
Diet (HC) 

Low Carbohydrate 

Diet (LC) 

Yellow corn 

Casein 

Corn oil 

Cellulose 

Dicalcium phosphate 

Calcium carbonate 

*Vitamins & trace 

minerals 

Sodium chloride 

Sodium bicarbonate 

Antibiotic & antifungal 

Choline chloride 

L-lysine HCl 

DL-methionine 

Total weight (g) 

540 

370 

60 

2 

16 
1 

3 

3 

1 

1 

1 

1 

1 

1000 

540 

270 

160 

2 

16 

1 

3 

3 

1 

1 

1 

1 

1 

1000 

540 

400 

30 

2 

16 

1 

3 

3 

1 

1 

1 

1 

1 

1000 

700 

190 

80 

2 

16 

1 

3 

3 

1 

1 

1 

1 

1 

1000 

170 

750 

50 

2 

16 

1 

3 

3 

1 

1 

1 

1 

1 

1000 

      

Caloric equivalent 

(kcal/g diet) 
4.18 4.7 4.03 4.28 4.13 

% of total energy 

Carbohydrates 

Fat 

Protein 

 

54 

6 

37.2 

 

54 

16 

27.2 

 

54 

3 
40.2 

 

70 

8 
19.2 

 

 

17 

5 
75.2 

*Vitamins and trace minerals were obtained as Premix®; a product of Pharmamix Company, Cairo, Egypt. Other 
components were obtained from El-Gibali Company, Tanta, Egypt. 

 

3. Results 
3.1 Results of Survival Rate, Body Weight, and Relative Liver Weight 

Figure 1 demonstrates that the survival rate decreased markedly in HCC mice compared to their corresponding 
control groups. The survival rate in both control and HCC groups showed nearly the same descending order as 
follows: LF-group > HC-group > LC-group ≥ HF-group.  

As illustrated in Figure 2 LF and LC diets produced a marked body weight loss in control groups in contrast to 
HF and HC diets which produced weight gain. The relative liver weight in HF-HCC group was significantly 
higher than that obtained in each of HF-control, LF-HCC, and HC-HCC groups (Figure 3). 
3.2 Effects of Different Diets and HCC on IGF-1, E-Cadherin 
The induction of hepatocellular carcinoma in mice groups kept on different diets showed a significant decrease 
in serum IGF-1 and a significant increase in serum E-cadherin compared with corresponding control groups 
(Table 2). Within the HCC groups, LF and HC diets produced a significant increase in IGF-1 and significant 
decrease in E-cadherin versus each of HF and LC diets. 

3.3 Effects of Different Diets and HCC on Some Metabolic Enzymes 
The enzyme activities of G6PDH, aldolase, and citrate synthase were enhanced in HCC groups versus their 
corresponding controls (Table 3). HF-HCC showed a significant increase in G6PDH activity compared to each 
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of LF-HCC and HC-HCC groups. LF-HCC showed a significant decrease in aldolase activity as well as citrate 
synthase activity compared to each of HF-HCC and LC-HCC groups (Table 3). Within control groups; 
HF-control group showed a significant decrease in G6PDH, aldolase, and citrate synthase activities compared to 
LF-control group. LC-control group showed a significant decrease in G6PDH and aldolase activities and a 
significant increase in citrate synthase activity compared to HC-control group (Table 3). 

3.4 Correlation Study  

Table 4 demonstrated that p53 expression showed a significant negative correlation with IGF-1 and a significant 
positive correlation with each of E-cadherin, G6PDH activity, aldolase activity, and citrate synthase activity.  
3.5 Histopathological and Immunohistochemical Results 

Histopathological investigations revealed that liver sections from HF-control group showed some inflammation, 
steatosis, and slight pleomorphism (different nuclear sizes) Figure 4a. On the other hand, LF-control group 
(Figure 4b) showed only slight inflammation. Liver sections of HC-control group (Figure 4c) showed 
cytoplasmic clearance (due to increased glycogen content) and those of LC-control group (Figure 4d) showed 
inflammation and congestion. HF-HCC mice group showed hepatic steatosis and increased number of malignant 
cells (Figure 4e1). Malignant cells are giant and considerably larger than their neighbors, characterized by 
extremely hyperchromatic (darkly stained) and large nuclei. The nuclear-cytoplasmic ratio is increased. The 
chromatin is coarse and clumped (Figure 4e1). HF-HCC group also showed inflammation around the central vein 
(Figure 4e2). Liver sections from LF-HCC mice (Figure 4f) and LC-HCC mice (Figure 4g) showed malignant 
cells. HC-HCC mice group showed malignant cells in the liver but with increased clearance due to increased 
glycogen contents (Figure 4h).  

Liver sections from control groups showed either weak expression (+) of p53 (LF-control, Figure 5a) or 
moderate expression (++) of p53 (HF-control, HC-control, and LC-control, Figures 5b-5d). On the other hand 
Immunohistochemical staining of liver sections from all HCC mice groups showed strong expression (+++) of 
p53 (Figures 5e-5h). 

 

Table 2. Effect of different diets and hepatocellular carcinoma on serum levels of IGF-1 and E-cadherin in mice 
groups 

 Group HF LF HC LC 

Number 

(n) 

Control Group 6 11 10 7 

HCC Group 6 9 7 6 

IGF-1 

(ng/mL) 

Control Group 36.39 ± 0.63 34.35a ± 0.55 34.68 ± 0.42 34.93 ± 0.45 

HCC Group 23.98* ± 0.99 30.58*,b ± 0.36 29.55*,b ± 0.65 24.41*,c,d ± 0.79 

E-cadherin 

(ng/mL) 

Control Group 6.10 ± 0.35 5.69 ± 0.30 5.49 ± 0.34 5.81 ± 0.47 

HCC Group 9.64* ± 0.11 7.08*,b ± 0.43 7.24*,b  ± 0.38 9.19*,c,d ± 0. 37 

Values are mean ± SEM. HCC: hepatocellular carcinoma, HF: high fat diet, LF: low fat diet, HC: high 
carbohydrate diet, LC: low carbohydrate diet, IGF-1: insulin-like growth factor type-1. *: Significant vs 
corresponding control group, a: Significant vs HF-control, b: Significant vs HF-HCC, c: Significant vs LF-HCC, 
d: Significant vs HC-HCC.  
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Table 3. Effect of different diets and hepatocellular carcinoma on some metabolic enzymes 

 Group HF LF HC LC 

Number 

(n) 

Control Group 6 11 10 7 

HCC Group 6 9 7 6 

Serum G6PDH activity

(mU/mL) 

Control Group 3.31 ± 0.60 5.32a ± 0.66 7.13a ± 0.52 3.36b,c ± 0.53 

HCC Group 9.35* ± 0.38 7.28 *,d ± 0.52 7.48d ± 0.52 8.24* ± 0.46 

Serum Aldolase activity

(U/L) 

Control Group 0.39 ± 0.07 0.77a ± 0.04 0.82a ± 0.05 0.36b,c ± 0.05 

HCC Group 1.35* ± 0.08 1.03*,d ± 0.05 1.19*± 0.04 1.24*,f ± 0.06 

Liver CS activity 

(µmol/min/mg protein)

Control Group 0.58 ± 0.09 2.97a ± 0.44 0.86 ± 0.05 3.13b ± 0.22 

HCC Group 6.62* ± 0.65 3.38d ± 0.31 3.71*,d ± 0.15 4.98*,e,f ± 0.16

Values are mean ± SEM. HCC: hepatocellular carcinoma, HF: high fat diet, LF: low fat diet, HC: high 
carbohydrate diet, LC: low carbohydrate diet, CS: citrate synthase. *: Significant vs corresponding control group, 
a: Significant vs HF-control, b: Significant vs HC-control, c: Significant vs LF-control, d: Significant vs 
HF-HCC, e: Significant vs HC-HCC, f: Significant vs LF-HCC. 

 
Table 4. Correlation of p53 with other parameters in control and hepatocellular carcinoma mice groups 
maintained on different diets  

Parameters 
Correlation with p53 

r 

IGF-1 (ng/mL) -0.752* 

E-cadherin (ng/mL) 0.640* 

G6PDH activity (mU/mL) 0.555* 

Aldolase activity (U/L) 0.717* 

Liver citrate synthase activity (µmol/min/mg protein) 0.510* 

Score of p53 according to Jadali et al. (2011), weak expression (+):1, moderate expression (++):2, strong 
expression (+++):3. IGF-1: insulin-like growth factor type-I, r: Spearman's correlation coefficient, *: Significant at 
P < 0.01, n = 62.  

 

 
Figure 1. Survival rate in the studied groups. HCC: hepatocellular carcinoma, HF: high fat diet, LF: low fat diet, 

HC: high carbohydrate diet, LC: low carbohydrate diet 
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Figure 4h. Histopathology of liver section from HC-HCC group revealing tumor cells with pleomorphism, 

cytoplasmic clearance (arrow) and chromatin clumping (CC) (H&E x 400). HC: high carbohydrate diet, HCC: 
hepatocellular carcinoma 

 

 
Figure 5a. Immunostaining of p53 in liver section 
from LF-control group showing very weak (+) p53 

expressing cells (arrow) (LAB-SA x 400). LF: low fat 
diet 

 

 
Figure 5b. Immunostaining of p53 in liver section 

from HF-control group showing moderate 
cytoplasmic (++) p53 expressing cells (arrow) with 

moderate number of apoptotic bodies (AB) (LAB-SA 
x 400). HF: high fat diet 

 

 
Figure 5c. Immunostaining of p53 in liver section 

from HC-control group showing moderate 
cytoplasmic expression (++) of p53 (arrow) with 
areas of clearance (C) (LAB-SA x 400). HC: high 

carbohydrate diet 

 
Figure 5d. Immunostaining of p53 in liver section 

from LC-control group showing moderate 
cytoplasmic expression (++) of p53 (arrow) with 
moderate number of apoptotic bodies (LAB-SA x 

400). LC: low carbohydrate diet 
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Figure 5e. Immunostaining of p53 in liver section 
from HF-HCC group showing strong cytoplasmic 
expression (+++) of p53 (arrow) with large area of 
inflammation (INF) around the central vein (CV) 

(LAB-SA x 400). HF: high fat diet, HCC: 
hepatocellular carcinoma 

 

 
Figure 5f. Immunostaining of p53 in liver section 

from LF-HCC group showing strong expression (+++) 
of p53 (arrow) around the central vein (CV) 

(LAB-SA x 400). LF: low fat diet, HCC: 
hepatocellular carcinoma 

 

 

 
Figure 5g. Immunostaining of p53 in liver section 
from HC-HCC group showing strong cytoplasmic 

expression (+++) of p53 (arrow) around central vein 
(CV) (LAB-SA x 400). HC: high carbohydrate diet, 

HCC: hepatocellular carcinoma 

 

 
Figure 5h. Immunostaining of p53 in liver section 
from LC-HCC group showing strong expression 
(+++) of p53 (arrow) (LAB-SA x 400). LC: low 

carbohydrate diet, HCC: hepatocellular carcinoma 

 

4. Discussion 
Diet and cancer are associated; it has been estimated that 35 percent of cancer deaths may be related to dietary 
factors. Almost all cancers (80% - 90%) are caused by environmental factors, and of these, 30 - 40% of cancers 
are directly linked to the diet (Ferguson, 2010). Although many dietary recommendations have been proposed to 
reduce the risk of cancer, few have significant supporting scientific evidence (Ferguson, 2010). 

Our results indicated that weight gain in HF-control group was significantly greater than in the HC-control group. 
The high energy density of fatty food (9 Kcal/g), compared with low energy density of carbohydrate or protein 
(4 Kcal/g), results in less satiating effect for the fatty food, and thus, promotes passive over-consumption of fatty 
food and subsequent weight gain (Swinburn, Caterson, Seidell, & James, 2004). On the other hand, dietary 
restriction of fat (LF-control group) and carbohydrates (LC-control group) resulted in significant body weight 
loss compared to HF- and HC-control groups. Our findings were in agreement with Swinburn, Caterson, Seidell, 
and James (2004), who reported that consuming high fat and high carbohydrate diet was directly linked to 
increased weight gain and obesity. 

Recent studies demonstrated that consumption of high-carbohydrate diets showed an increased energy 
expenditure and glucose oxidation. Excess glucose is used to load glycogen stores to saturation and the rest 
converted to fat by de novo lipogenesis. Since glucose is preferentially oxidized, less fat will be oxidized, 
leaving an excess that will be deposited as body fat stores leading to increase in body weight (Manuel-y-Keenoy 
& Perez-Gallardo, 2012). Histopathology of HC-control group support the metabolic profile of this group 
through presence of cytoplasmic clearance which was due to increased glycogen stores. On the other hand 
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increasing proteins at the expense of carbohydrate in LC diet in the present work lead to increased lipolysis and 
subsequent weight reduction. 

Hepatocellular carcinoma was induced in mice in the present work by DEN/TAA and was associated with loss of 
body weight and increase of relative liver weight, which are considered common features of HCC (Bialecki & Di 
Bisceglie, 2005). Indeed, early stage HCC was evidenced by the histopathological results, which indicated 
neoplastic manifestations in livers of all HCC mice groups and were in line with those recorded by Roncalli, 
Terracciano, Di Tommaso, David, and Colombo (2011). 

The induction of HCC mice groups herein was associated with strong expression of mutant form of p53. 
Activated p53 functions as a transcription factor to regulate the expression of many different downstream genes, 
which products are implicated in cell cycle arrest, DNA repair, or apoptosis. The function of p53 is tightly 
controlled by Mouse double minute 2 homolog (MdM2), which is an E3 ubiquitin ligase implicated in the 
inactivation of the tumor suppressor by accelerating its nuclear export to cytoplasm and degradation by the 26S 
proteasome (Michael & Oren, 2002). Therefore, the strong expression of p53 in all HCC subgroups could be 
explained on the basis that the mutant p53 protein expressed in HCC often do not induce MdM2, and is thus able 
to accumulate at very high concentration. This leads to the accumulation of unfolded proteins, which initiates 
transcriptional and translational-signaling pathways known as the unfolded protein response (UPR), leading to 
up-regulation of the expression of p53 (Sharpless & DePinho, 2002). 

Within the control groups, HF-, HC-, and LC-diets induced greater expression of p53 than LF-diet. These results 
could be interpreted by the finding that increased consumption of macronutrients such as fats, carbohydrates, and 
proteins would lead to increased production of free radicals and oxidative stress, which is considered one of the 
causes of mutant p53 protein formation (Sharpless & DePinho, 2002). 

The IGF pathway has highly conserved function in mammals and plays a critical role in energy metabolism and 
cell renewal in response to nutrients. IGF pathway promotes cell proliferation, migration and transformation into 
malignant clone (Wu & Zhu, 2011). 

In the current study serum level of IGF-1 was significantly reduced in all HCC mice subgroups compared to 
their corresponding controls. Our results were in agreement with other reports demonstrating low IGF-1 levels in 
HCC patients (Ibrahim, Attia, Rabea, & El-Gayar, 2013). Reduced IGF-1 could be due to the increased oxidative 
damage in cirrhosis and HCC, leading to increased damage of parenchymal liver cell and decrease in IGF-1 
synthesis (Ibrahim, Attia, Rabea, & El-Gayar, 2013). Another explanation was provided by Mazziotti et al. 
(2002), who proposed that IGF-1 was low in HCC patients because of reduced ability of growth hormone to 
stimulate IGF-1 synthesis due to either a reduction of growth hormone receptors number in the diseased liver or 
a post receptor defect. Low circulating IGF-1 levels in HCC may be also derived from an inhibitory effect by 
some tumor cytokines, like transforming growth factor- beta and platelet-derived growth factor (Mazziotti et al., 
2002). Our data showed that HF- and LC-HCC mice groups reported the lowest levels of IGF-1, indicating that 
HF and LC diets could participate in the progression of HCC, which was supported by the significant negative 
correlation between p53 expression and IGF-1. 
In the present work, HF-control group reported the highest serum level of IGF-1 compared to other control 
groups, moreover, liver sections of HF-and LC-control groups showed inflammation, congestion (LC-control 
group), steatosis, and pleomorphism (HF-control group). Such pathological changes indicate the harmful effect 
of high fat and low carbohydrate diets to the liver as they may precede hepatocarciongesis (Hill-Baskin et al., 
2009). The significant increase in IGF-1 serum level in HF-control group compared with LF-control group was 
in agreement with Holmes, Pollak, Willett, and Hankinson (2002), who documented that the high-fat diet, 
especially saturated fat of animal origin, has a significant positive association with serum IGF-1 level.          
Cancer progression is a multi-step process in which some adhesion molecules play a pivotal role in the 
development of recurrent, invasive, and distant metastasis. E-cadherin is an epithelial cell adhesion molecule that 
helps establish and maintain intercellular connections. Loss of E-cadherin function is a critical factor in the 
initial stages of cancer invasion, and is associated with poor prognosis in a variety of epithelial carcinomas 
including HCC (Conacci-Sorrell et al., 2003).  
Our results showed a significant increase in serum concentration of E-cadherin in all HCC subgroups compared 
to corresponding control groups. It could be suggested that E-cadherin dysfunction in tumor cells was partly 
mediated by the degradative action of proteases secreted from these cells. Soluble E-cadherin with a molecular 
weight of about 80kDa remarkably increased in the circulation and it can reasonably be derived from proteolytic 
digests of the cell-surface E-cadherin (Shen, Hirsch, Sasiela, & Wu, 2008). Our findings were in agreement with 
Soyama et al. (2008), who demonstrated a significant increase in E-cadherin in HCC patients. Moreover, a 
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significant increase in serum E-cadherin was observed in HF- and LC-HCC groups compared to LF- and 
HC-HCC groups, indicating that HF and LC diets could increase the progression of HCC towards malignancy 
more than HC diet due to loss of E-cadherin function. The significant positive correlation between p53 and 
E-cadherin supports our findings that the increased expression of p53 accompanied by increased serum 
E-cadherin level was associated with increased progression of HCC to the worse. 

Cancer cells have nutritional requirements that are different from normal cells. They need to take up, generate 
and use nutrients differently in order to divide and grow rapidly. They accomplish this change by accumulating 
stable mutations in genes that are key regulators of metabolism (Brahimi-Horn, Chiche, & Pouyssegur, 2007). 

The metabolic profile of all HCC subgroups in the present work indicated significant increase in G6PDH activity 
(except HC-HCC), aldolase activity, and citrate synthase activity (except LF-HCC) compared to corresponding 
control groups. Our data were supported by other previous findings; Frederiks et al. (2008) demonstrated that 
chemically induced HCC in rats was characterized by increased G6PDH activity. Sharma, Lakshmi, Chitra, 
Lakshmi, and Pharm (2011) reported an increased aldolase activity in rats with induced HCC. Schlichtholz et al. 
(2005) reported a significant increase in citrate synthase activity in human pancreatic cancer.  

Glycolysis is the most favorable pathway that promotes the invasion and metastasis of tumor cells. Aldolase 
activity in the present study was increased in HCC mice subgroups indicating enhanced rate of glycolysis. 
Cancer cells require to continuously produce ATP and cofactors (NAD+, NADPH) in order to satisfy their need 
for synthesis of great quantities of macromolecules and lipids to proliferate and build new cells. Therefore; these 
cells consume glucose in excessive manner (Icard, Poulain, & Lincet, 2012).  

Enhanced activity of G6PDH in HCC groups can supply NADPH for fatty acid biosynthesis, whereas the 
insignificant increase in G6PDH activity in HC-HCC group compared to HC-control group could be explained 
on the basis that control mice fed HC diet showed enhanced lipogenesis and increased G6PDH activity.  

In addition, increased G6PDH activity in HCC provides reducing power for regeneration of reduced glutathione 
(GSH) and other detoxification processes. Thus, increasing intracellular GSH levels and the activation of the 
redox-sensitive transcription factor; nuclear factor-κB (NF-κB), could play a major role in the proliferation of 
tumor cells, invasion, angiogenesis and metastasis (Lou & Kaplowitz, 2007).  

In cancer cell, citrate synthase activity is elevated, condensing acetyl CoA and oxaloacetate (OAA); thus, citrate 
increases and ketone bodies decrease. Consequently, decreased ketone bodies formation will stop stimulating 
pyruvate carboxylase. Hence, pyruvate is processed by lactate dehydrogenase, increasing the lactate released by 
cancer cell, and NAD+required for glycolysis (Icard, Poulain, & Lincet, 2012). 
In the present study, HF- and LC-HCC groups showed increased activities of G6PDH, aldolase, and citrate 
synthase compared to LF- and HC-HCC groups, meanwhile, LF-HCC group showed the lowest activities of 
G6PDH, aldolase, and citrate synthase compared with other HCC subgroups. These findings could be attributed 
to the fact that HF and LC diets enhance progression of HCC to the worse through increased glycolysis and 
lipogenesis required by cancer cells (Brahimi-Horn, Chiche, & Pouyssegur, 2007). Our histopathological 
findings supported the biochemical data and indicated that excess fat intake contributed to progression of HCC 
in mice by inducing inflammation and steatosis. On the other hand, low fat diet may retard progression of HCC 
in mice by suppressing the activities of G6PDH, aldolase, and citrate synthase.  

The metabolic profile of control groups differs from HCC groups. The results of HF-control group in the present 
work showed a significant decrease in G6PDH and citrate synthase activities compared to LF-control group 
which were consistent with the work of Gad, Ehssan, Ghiet, and Wahman (2010) and Gupte, Bomhoff, Swerdlow, 
and Geiger (2009), respectively. Excessive fat in the diet will lead to increased plasma concentrations of 
triglycerides and free fatty acids. The increased free fatty acids allows for increased uptake into hepatocytes, and 
increased triglycerides storage, leading to steatosis (Bradbury, 2006). Liver steatosis was evidenced in the 
present work in liver sections from HF-control group. According to Bonnard et al. (2008), the decrease in citrate 
synthase activity in HF fed mice could reflect initiation of mitochondrial dysfunction. It was suggested that an 
increase in fatty acid oxidation that is not matched by increased flux through downstream mitochondrial 
pathways results in an accumulation of incomplete fatty acid oxidation byproducts and reactive oxygen species 
(ROS), which increase damage of liver cells leading to progression of steatosis to fibrosis, cirrhosis, and finally 
may lead to HCC (Gupte, Bomhoff, Swerdlow, & Geiger, 2009). 

Excessive dietary fat intake is known to decrease hepatic lipogenesis and glycolysis switching the energy 
production towards fatty acid oxidation (Dentin et al., 2005). As the provider of NADPH for fatty acid 
biosynthesis, G6PDH is one of the lipogenic enzymes; a high-fat diet inhibits G6PDH. The inhibition of G6PDH 
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gene expression is induced by the presence of polyunsaturated fatty acid in the high-fat diet (Tao et al., 2002).  

Liver sections from HF-control group revealed also inflammation and increased apopototic index. Accumulation 
of inflammatory cells plays a critical role in promoting obesity-related disorders, such as fatty liver disease, and 
is associated with release of pro-inflammatory cytokines that induce natural killer T cell apoptosis (Deng et al., 
2009). Pleomorphism observed in liver sections from HF-control group is a sign of presence of pre-neoplastic 
cells, which indicate the possible transformation of steatosis toward malignancy (Roncalli, Terracciano, Di 
Tommaso, David, & Colombo, 2011). 

Earlier studies showed that low-fat diet has beneficial effects on human health. Increased activity of aldolase in 
LF-control group evidenced in the present study could be explained on the basis that low-fat diet improves 
glucose tolerance through decreasing insulin resistance and increase glucose uptake by cells, leading to increased 
glycolysis and decreased plasma glucose levels (Hill-Baskin et al., 2009).  

Our work indicated also that LC-control mice showed significant decrease in G6PDH and aldolase activities, but 
a significant increase in citrate synthase activity compared with HC-control group. Our results were in line with 
Manuel-y-Keenoy and Perez-Gallardo (2012) and Civitarese, Smith, and Ravussin (2007). 

Ishii, Iizuka, Miller, and Uyeda (2004) reported that consumption of high-carbohydrate diets leads to increased 
mRNA expression, primarily through increased gene transcription for enzymes in the glycolytic and lipogenic 
pathways involved in converting glucose to fatty acids. Included among these enzymes is liver pyruvate kinase, 
acetyl-CoA carboxylase, and G6PDH (Salati & Amir-Ahmady, 2001). On the other hand the decreased activity 
of citrate synthase in HC-control group may reflect downregulation in the transcription genes of mitochondrial 
enzymes as a consequence of fat/carbohydrate overfeeding (Civitarese, Smith, & Ravussin, 2007). 

Stepien and his colleagues (2011) revealed a decreased mRNA encoding glycolysis and lipogenesis enzymes in 
rats fed low-carbohydrate high protein diet. These results are in agreement with our findings of decreased 
G6PDH and aldolase activities and increased citrate synthase activity in LC-control group. Pogozelski, Arpaia, 
and Priore (2005) suggested that increased proteins at the expense of carbohydrate in diet leads to decreased 
glycolysis, which is compensated by an increase in fat breakdown to satisfy body needs of energy via formation 
of ketone bodies from fatty acids. Amino acids formed from protein catabolism together with fatty acids were 
utilized in gluconeogenesis. Thus decreased carbohydrates in diet have a glucose sparing effect via increased 
lipolysis and gluconeogenesis. It was also suggested that weight reduction resulted from consuming 
low-carbohydrate high protein diet was associated with elevated expression of transcription genes of 
mitochondrial enzymes and subsequent improvement of mitochondrial functions (Civitarese, Smith, and Ravussin, 
2007). 

Liver sections from LC-control group showed inflammation and high apoptotic index which may indicate 
chronic inflammatory liver disease caused by metabolic stress on liver due to excess protein in diet as recorded 
by Manninen (2004). It was also found that high protein consumption and excessive oxidation of amino acids 
lead to increased production of free radicals and consequently release of inflammatory cells which induce 
apoptosis (Gu, Shi, & Le, 2008). 

5. Conclusion 
Consumption of excess fat or less carbohydrates induced biochemical and pathological changes that could 
worsen the condition in cases of HCC. Food intake imbalance may not be by-itself a cancer causing agent, but 
may be a risk factor that impedes the liver cells and fosters the occurrence of HCC. Dietary restriction of fat was 
beneficial in improving the metabolic profile and mitochondrial function and reducing the availability of 
pathogenic mediators contributing to HCC.  
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