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Abstract 

Web Access Pattern (WAP), which is the sequence of accesses pursued by users frequently, is a kind of interesting and 

useful knowledge in practice. Sequential Pattern mining is the process of applying data mining techniques to a 

sequential database for the purposes of discovering the correlation relationships that exist among an ordered list of 

events. WAP tree mining is a sequential pattern mining technique for web log access sequences, which first stores the 

original web access sequence database on a prefix tree. WAP-tree algorithm then, mines the frequent sequences from 

the WAP-tree by recursively re-constructing intermediate trees.  

In this paper, we propose efficient sequential pattern techniques called BC-WAP (Binary Coded WAP). The proposed 

algorithm uses Kongu Arts and Science College web logs for sequential pattern mining.  It eliminates recursively 

reconstructing intermediate WAP trees during the mining by assigning the binary codes to each node in the WAP tree.

The results of the experiments show the efficiency of the improved algorithm. 

Keywords: WAP tree, Data mining, Sequential pattern mining, Web log files

1.  Introduction 

Data Mining is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data. With the wide spread use of databases and the explosive growth in their sizes, organization is faced 

with the problem of information overload. The problem of effectively utilizing these massive volumes of data is 

becoming a major problem for all enterprises. Traditionally, we have been using data for querying a reliable databases 

repository via some well-circumscribed application for canned report generating utility. Data mining attempts to source 

out patterns and trends in the data and infers rules from these patterns. With these rules the user will be able to support, 

review and examine decisions in some related business or scientific area. This opens up the possibility of a new way of 

interacting with databases and data warehouses. Sequential mining is the process of applying data mining techniques to 

a sequential database for the purposes of discovering the correlation relationships that exist among an ordered list of 

events which is the objective of this paper. The application of sequential pattern mining are in areas like Medical 

treatment, science & engineering processes, telephone calling patterns. Sequential pattern mining Web usage mining for 

automatic discovery of user access patterns from web servers.  

It is used by education domain, this means detecting the behavior of the students, which pages seen many times and 

which is to improve etc. 
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The rest of this paper is organized as follows. In Section 2, we introduce sequential access pattern mining techniques 

and its related works. The proposed BC-WAP mine algorithm is then presented in Section 3. The experiment results are 

shown in Section 4. Finally, the conclusions of the paper are given in Section 5. 

2.  Sequential Access Pattern Mining 

As an important branch of data mining, sequential pattern mining, which finds high-frequency patterns with respect to 

time or other patterns, was first introduced by (Agrawal R., and Srikant R.(1994)) as follows: given a sequence database 

where each sequence is a list of transactions ordered by transaction time and each transaction consists of a set of items, 

find all sequential patterns with a user specified minimum support, where the support is the number of data sequences 

that contain the pattern. Since the access patterns from web log take on obvious time sequence characteristic, it is 

natural to apply the technology of sequential pattern mining to web mining. According to the downward closure 

property of frequent sequences, to some extent, maximal frequent sequences have already included all frequent 

sequences. The space to store maximum frequent sequences is much lower than to store complete set, and web mining 

applications partly only depend on maximum frequent sequences rather than the complete set of frequent sequences so 

that mining maximum frequent access sequences is of essential practicability. 

Sequential access pattern mining techniques are mainly based on two approaches: Apriori-based mining algorithms and 

WAP tree based mining algorithms.  

2.1 Apriori-based Mining Algorithms 

The AprioriAll (Pei J., Han J., Mortazavi-asl B., and Zhu H.(2000)) algorithm proposed a three-step approach for 

mining sequential patterns. It first finds all frequent itemsets. Then, it transforms the database such that each original 

transaction is replaced by the set of all frequent itemsets contained in the transaction. And finally, it finds the sequential 

patterns. However, this algorithm does not scale well due to the costly transformation step. In (Hafidh Ba-Omar, Iiias 

Petrounias and Fahad Anwar(ICALT 2007)), a generalized sequential pattern mining algorithm known as GSP mining 

algorithm was proposed. Similar to the AprioriAll algorithm, GSP scans the database several times. In the first scan, it 

finds all frequent items and forms a set of frequent sequences of length one. In subsequent scans, it generates candidate 

sequences from a set of frequent sequences obtained from the pervious scan and checks their supports. The process 

terminates when no candidate is found to be frequent. So this algorithm requires multiple scans of database. So now we 

discuss WAP tree based mining algorithm. 

2.2 WAP Mining Algorithm 

The WAP-tree is a very effective compressed data structure designed for storing the data obtained from web logs. To 

construct a WAP-tree, we need two scans of the web access sequence database: (1) Scan database once, find all frequent 

individual events; (2) Scan database again, construct the WAP-tree over the sub-sequences with only frequent 

individual events of each sequence, which are also called frequent subsequences, by merging their common prefixes,. 

At the same time, all nodes that contain the same frequent event are linked into an event queue and the Header Table 

with all frequent events is created for this WAP-tree with the head of each event queue registered in it. Then, all the 

nodes labeled with the same event can be visited by following the related event queue, starting from the Header Table. 

The FS-tree (Pei J., Han J., Mortazavi-asl B., and Zhu H.(2000)) extends the WAP-tree structure for incremental and 

interactive mining. The corresponding mining algorithm FS-mine (Frequent Sequence mining) is used to analyze the 

FS-tree to discover frequent sequences.  

J Han puts forward a web access pattern tree structure (WAP-tree) and an algorithm for mining frequent access path 

based on WAP-tree (WAP-mine) in (Zhou B.Y., Hui,S.C. and A.C.M. Fong(2004)). This algorithm and not producing 

candidate frequent patterns. Consequently, WAP-mine algorithm is an order of magnitude faster than Apriori algorithm 

(B Zhou B.Y., Hui,S.C. and A.C.M. Fong(2004)) put forward by Agrawal at earlier stage. Nevertheless, WAP-mine 

needs to produce a mass of conditional WAP-tree, which influences the efficiency of WAP-mine in a certain degree.   

In recent years, some classical algorithms applied to mine maximum patterns include MaxMiner, DethProject, MAFIA 

and GenMax etc. 

3. Prototype – BC-WAP 

The proposed approach is based on WAP-tree, but avoids recursively re-constructing intermediate WAP-trees during 

mining of the original WAP tree for frequent patterns. The modified WAP algorithm is able to quickly determine the 

suffix of any frequent pattern prefix under consideration by comparing the assigned binary position codes of nodes of 

the tree. A tree is a data structure accessed starting at its root node and each node of a tree is either a leaf or an interior

node. A leaf is an item with no child. An interior node has one or more child nodes and is called the parent of its child 

nodes. All children of the same node are siblings. Like WAP-tree mining, every frequent sequence in the database can 

be represented on a branch of a tree. Thus, from the root to any node in the tree defines a frequent sequence. For any 

node labeled e in the WAP-tree, all nodes in the path from root of the tree to this node (itself excluded) form a prefix 
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sequence of e. The count of this node e is called the count of the prefix sequence. Any node in the prefix sequence of e 

is an ancestor of e. On the other hand, the nodes from e (itself excluded) to leaves form the suffix sequences of e. 

Given a WAP-tree with some nodes, the binary code of each node can simply be assigned following the rule that the 

root has null position code, and the leftmost child of the root has a code of 1, but the code of any other node is derived 

by appending 1 to the position code of its parent, if this node is the leftmost child, or appending 10 to the position code 

of the parent if this node is the second leftmost child, the third leftmost child has 100 appended, etc. In general, for the 

nth leftmost child, the position code is obtained by appending the binary number for 2n-1 to the parent’s code. A node 

is an ancestor of another node  if and only if the position code of  with “1” appended to its end, equals the first x 

number of bits in the position code of , where x is the ((number of bits in the position code of ) + 1).  

The tree data structure, similar to WAP-tree, is used to store access sequences in the database, and the corresponding 

counts of frequent events compactly, so that the tedious support counting is avoided during mining. A Binary code is 

assigned to each node in proposed WAP-tree. These codes are used during mining for identifying the position of the 

nodes in the tree. The header table is constructed by linking the nodes in sequential events fashion. Here the linking is 

used to keep track of nodes with the same label for traversing prefix sequences. This mining algorithm is prefix 

sequence search rather than suffix search. 

 The algorithm scans the access sequence database first time to obtain the support of all events in the event set, E. All 

events that have a support greater than or equal to the minimum support are frequent. Each node in a modified tree 

registers three pieces of information: node label, node count and node code, denoted as label: count: position. The root 

of the tree is a special virtual node with an empty label and count 0. Every other node is labeled by an event in the event 

set E. Then it scans the database a second time to obtain the frequent sequences in each transaction. The non-frequent 

events in each sequence are deleted from the sequence. This algorithm also builds a prefix tree data structure by 

inserting the frequent sequence of each transaction in the tree the same way the WAP-tree algorithm would insert them.  

Once the frequent sequence of the last database transaction is inserted in the tree, the tree is traversed to build the 

frequent header node linkages. All the nodes in the tree with the same label are linked by shared-label linkages into a 

queue. Then, the algorithm recursively mines the tree using prefix conditional sequence search to find all web frequent 

access patterns. Starting with an event, ei on the header list, it finds the next prefix frequent event to be appended to an 

already computed m-sequence frequent subsequence, which confirms an en node in the root set of ei , frequent only if 

the count of all current suffix trees of en is frequent. It continues the search for each next prefix event along the path, 

using subsequent suffix trees of some en (a frequent 1-event in the header table), until there are no more suffix trees to 

search. To mine the tree, the algorithm starts with an empty list of already discovered frequent patterns and the list of 

frequent events in the head linkage table. Then, for each event, ei, in the head table, it follows its linkage to first mine 1- 

sequences, which are recursively extended until the m-sequences are discovered. The algorithm finds the next tree node, 

en; to be appended to the last discovered sequence, by counting the support of en in the current suffix tree of ei (header 

linkage event). Note that ei and en could be the same events. The mining process would start with an ei event and given 

the tree, it first mines the first event in the frequent pattern by obtaining the sum of the counts of the first en nodes in the 

suffix subtrees of the Root. This event is confirmed frequent if this count is greater than or equal to minimum support. 

To find frequent 2-sequences that start with this event, the next suffix trees of ei are mined in turn to possibly obtain 

frequent 2- sequences respectively if support thresholds are met. Frequent 3-sequences are computed using frequent 

2-sequences and the appropriate suffix subtrees. All frequent events in the header list are searched for, in each round of 

mining in each suffix tree set. Once the mining of the suffix subtrees near the leaves of the tree are completed, it 

recursively backtracks to the suffix trees towards the root of the tree until the mining of all suffix trees of all patterns 

starting with all elements in the header link table are completed. 

3.1 The BC-WAP Algorithm 

Input : Access sequence database D(i), min support MS (0< MS  1) 

Output : frequent sequential patterns in D(i). 

Variables : Cn stores total number of events in suffix trees, A stores whether a node is ancestor in queue. 

Method: 

 Step 1 : Construct a initial WAP tree. 

Step 2 :  Assign code to each node 

(i) Root has null position code 

(ii) Left child = 1 

Step 3 : Repeat step-2 in order to find pattern 
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4. Experimental Result

The proposed algorithm is implemented in VB.NET and all experiments were found on Intel Pentium running on 

Microsoft Window XP profession. The web server log file dated on Nov 2007 from KASC (Kongu Arts and Science 

College) web server after preprocessed (Gomathi.C., Moorthi M., Duraiswamy K. (2008),) has been selected for our 

experiments.  This KASC log file size is 100KB. The proposed method was applied on this web log files to prepare 

sequence pattern. The proposed mining algorithm has significant advantages when compared with the original 

WAP-mine algorithm. First, it avoids the costly construction of the initial WAP-trees. Second, the position code 

assigned is more efficient than the method based on the conditional WAP-trees. These special features of the proposed 

algorithm help improve the efficiency of the mining process significantly. The experiments showed that the proposed 

methodology needs less time to find frequent sequence and needs only minimum storage area.  The complete sequence 

pattern with minimum support 31% is shown in Figure 1. 

5. Conclusion 

In this paper, BC-WAP mine tool developed using VB.NET for sequential access pattern from KASC web log files. The 

proposed system eliminates the need to store numerous intermediate WAP trees during mining. Since only the original 

tree is stored, it cuts off huge memory access costs.  This new system assigns binary position code to each node in the 

WAP tree.  

The focus of the framework was utilizing web usage mining with learning styles for pedagogically effective and 

technologically possible personalized e-learning courses. Results suggest that dimensions of learning styles, i.e. 

preferences to learning material, can be modeled using suitable attributes and can be detected using data mining 

techniques. We are currently investigating using the output of the mining tool into personalized learning scenarios, in 

which the learners are assisted by the system based on the patterns and the preferred learning styles. We plan to 

compare our work with others (Zhou B.Y., Hui S.C. and A.C.M. Fong(2004)), which has used other techniques, such as 

the Bayesian model or genetic algorithms. 
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Figure 1. Sequence Pattern with minimum support 31% 




