On Core Competitiveness Evaluation Model of Power Generating Enterprises Based on Knowledge Management

Qin Li
School of Economics and Management, North China Electric Power University, Beijing 102206, China
State Grid Jingyuan Power Generating Ltd. Jingyuan 730030, China
Ping Zhou & Xin Li
School of Economics and Management, North China Electric Power University, Beijing 102206, China
E-mail: zhouping0824@163.com

Fund Project: Foreign Communication and Cooperation Project of China Natural Science Fund (70810024)

Abstract
Based on summing-up current power market environment where power generating enterprises are, this paper elaborates relevant theories to knowledge management and core competitiveness of power generating enterprises. Combining current situation and demand of Chinese power generating enterprises, we construct core competitiveness evaluation index system of power generating enterprises based on knowledge management. Then we use Radar Map and the improved entropy of the Topsis method for reference to establish core competitiveness evaluation model of power generating enterprises. Finally, we systematically elaborate the applicability of core competitiveness rating model of power generating enterprises, and summarize the applicable value and insufficient of the model.

Keywords: Knowledge Management, Power Generating Enterprise, Core Competitiveness

1. Preface
Start with fund-raising power, the diversity of power system has grown up. The reform of power system is being promoted, power market is being established, and a series of power supervision and running rules have been introduced gradually, so power generating enterprises are in a completely new market environment. How to promote core competitiveness in the emerging power market environment is a big question that every power generating enterprise has to face. The purpose of this paper is to combine present situation and demand of Chinese power generating enterprises, in order to construct core competitiveness evaluation index system and model method of power generating enterprises based on knowledge management. Power generating enterprises will find gap through evaluating their and their competitors’ competitiveness and comparing index system, so that they can improve competitiveness accordingly.

2. Content of Knowledge Management and Corporate Core Competitiveness

2.1 Knowledge Management
Knowledge management is a new term in management field, however, for its definition; there has been no unitive conclusion yet. At present, there are dozens of definitions on knowledge management. Two typical definitions are as follows.

Verna Alee thinks: “Knowledge management is a kind of technique helping people to consider the knowledge they have, and help, develop and support them for knowledge communication. And it also helps people to achieve knowledge source and to promote knowledge communication with each other.” Chinese scholars have proposed their own ideas on the content of knowledge management as well. Jiapei Wu claims: “Information management is the base of knowledge management. And knowledge management is the extension and development of information management. It is different from the previous stages of information management, connecting information with information, information with activity, information with person, which applies team intelligence to innovate and gain competitive advantage through information and knowledge share during interactive process of interpersonal communication.”

Knowledge management consists of object, subject, mode of action and tool.
The characteristics of knowledge management are: (1) high cost of effective knowledge management; (2) high attention to talents; (3) game theory; (4) marketability.

2.2 Corporate Core Competitiveness
Corporate core competitiveness could be regarded as knowledge form of how to coordinate using all corporate
For instance, corporate culture could be looked upon as closed knowledge of what to do and how to do it. Corporate core competitiveness is a corporate internal characteristic and unique technique and intelligence accumulated in a long term in a corporation. The effects of corporate core competitiveness on corporate competitive advantages are mainly represented as: (1) improve corporate market competitive potential; (2) construct corporate competitive advantage; (3) maintain corporate long-term competitive advantage.

3. Construction of Core Competitiveness Evaluation Index System of Power Generating Enterprises based on Knowledge Management

Core competitiveness evaluation index system of power generating enterprises based on knowledge management should entirely represents the comprehensive strength and advantage of power generating enterprises, which determines whether power generating enterprises can be provided with a quantitative and operable base. Literature 3 has constructed comparatively entire core competitiveness evaluation index system of power generating enterprises. Basing on this system, we make improvement. Considering current situation and demand of Chinese power generating enterprises, we think core competitiveness evaluation index system of power generating enterprises based on knowledge management should includes four evaluation factors: scale resource strength, system foundation ability, technical management ability and culture knowledge ability. See Table 1.

4. Core Competitiveness Two-Evaluation Model of Power Generating Enterprises based on Knowledge Management

There is an evaluation model called Radar Map, see Literature 2. It is a kind of graphic method, which shows evaluation index of object system with planar graph. In order to guarantee the validity of evaluation, herein we suggest using one more evaluation method- the improved entropy of the Topsis method, to test and supplement Radar Map.

4.1 Radar Map

We establish core competitiveness evaluation model of power generating enterprises based on Radar Map, see Figure 1.

Radar Map can not only vividly, obviously, and accurately express the difference and core competitiveness of investigation enterprises, but also calculate all aspects more specifically. Calculation and grading methods are as follows.

(1) The evaluation model circle is divided into 4 regions, i.e. scale resource strength, system foundation ability, technical management ability and culture knowledge ability, which are distributed on respective index volume. The core competitiveness of each region is calculated as follows.

- Scale resource strength: $X_1=\{X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}; X_{11}=\{X_{111}, X_{112}\}, \ldots$
- System foundation ability: $X_2=\{X_{21}, X_{22}, X_{23}\}; X_{21}=\{X_{211}, X_{212}, X_{213}\}, \ldots$
- Technical management ability: $X_3=\{X_{31}, X_{32}, X_{33}\}; X_{31}=\{X_{311}, X_{312}, X_{313}, X_{314}, X_{315}, X_{316}\}, \ldots$
- Culture knowledge ability: $X_4=\{X_{41}, X_{42}, X_{43}\}; X_{41}=\{X_{411}, X_{412}, X_{413}\}, \ldots$

The score of core competitiveness of whole power generating enterprises is: $X=\{X_1, X_2, X_3, X_4\}$

(2) Specifically speaking, we can use Mathematical integral method to calculate the area of “scale resource strength, system foundation ability, technical management ability and culture knowledge ability”. The formula is:

$$S = \sum \frac{1}{2} r_{i,1} \sin(\theta_{i,1} - \theta_i)$$

The area of each region is composed of several triangles. The two sides of the triangle are $r_i, r_{i,1}$ and the angle between the two sides is $\theta_{i,1} - \theta_i$. The area can be considered as evaluated ability of the above four aspects, so that the difference of four sectors’ area from that of benchmarking enterprise shows out.

(3) Through area integral, we can figure out the value of basic competitiveness region and of core competitiveness region so as to learn real situation of evaluated enterprise compared to benchmarking enterprise by quantitative analysis.

(4) We can calculate whole area of evaluated enterprise, and then compare it with that of benchmarking enterprise.
to see the difference of “core competitiveness”.

4.2 Improved Entropy of the TOPSIS Method

TOPSIS method (distance integration method) is a kind of evaluation method based on space statistics, which determines reference point in a space through transforming statistic data into point of Multi-dimensional coordinates, i.e. ideal value point and negative ideal value point. And then the distance between individual sample point and reference point is figured out for analysis and evaluation. Evaluation steps are as follows.

(1) Assume there are i to-be-evaluated power generating enterprises, and j evaluation index. So original data matrix is $X = x_{ij} \times j$.

(2) Choose the optimal value of each evaluation index X^*_j. If j is positive index, the bigger the better; if j is negative index, then the smaller the better.

(3) Define the proximity of X_{ij} to X^*_j, D_{ij}.

$$\frac{x_{ij}}{D_{ij}}x^*_j = \max \{x_{ij}\} \quad \text{Positive index}$$

$$\frac{x_{ij}}{D_{ij}}x^*_j = \max \{x_{ij}\} \quad \text{Negative index}$$

(4) Normalize D_{ij}.

$$d_0 = D_{ij} / \sum_{i=1}^{m} D_{ij} \quad 0 \leq d_0 \leq 1, \sum_{i=1}^{m} d_0 = 1$$

(5) Normalize $H_j = -\sum_{i=1}^{m} d_0 \ln d_0$ with H_{max} and get entropy value showing the importance of evaluation index.

$$h_j = \frac{H_j}{\ln n}$$

(6) Determine the evaluation weight v_j of evaluation index j with h_j

$$v_j = \frac{1}{n-H^j} \left[1-h_j\right], j = 1,2,...,n$$, herein $H = \sum_{j=1}^{n} h_j$

(7) Determine reference sample, including optimal sample Y^+ and worst sample Y^-. Herein:

Optimal sample

$$Y^+ = \left(y_{1}^+, y_{2}^+, \ldots, y_{n}^+\right), y_{j}^+ = \max \{y_{ij}\}$$

Worst sample

$$Y^- = \left(y_{1}^-, y_{2}^-, \ldots, y_{n}^-\right), y_{j}^- = \min \{y_{ij}\}$$

(8) Figure out comparative proximity between sample point and optimal sample point, C_i

$$C_i = \frac{D_i^-}{D_i^+ + D_i^-}, 0 \leq C_i \leq 1$$

D_i^+ is the distance between sample point and optimal sample point; D_i^- is that between sample point and worst sample point.

$$D_i^+ = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_j^+)^2}, D_i^- = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_j^-)^2}$$

From the formula of C_i we can see, enterprises with bigger C_i is better than those with smaller C_i. Therefore, we can rank the core competitiveness of different enterprises.

5. Conclusion

Through evaluating core competitiveness of power generating enterprises, we can not only see corporate real situation systematically, but also find out some weakness. The core competitiveness evaluation index system of
power generating enterprises based on knowledge management proposed by this paper is closed to practice and also
guarantee the accuracy. Furthermore, we established a two-model, Radar Map and the improved entropy of the
Topsis method, which provides power generating enterprises with ideas for promoting core competitiveness.
Moreover, a few questions in this paper haven’t been deepened, such as empirical research on core competitiveness
of power generating enterprises. At the same time, the big influential factors on the competitiveness of power
generating enterprises are changing continuously with big future uncertainty; therefore, the research on system is
only at present, which depends on further research to get improved.

References
Northeast Forestry University.
China Electric Power University (Social Science)*. (1).
Zhang, Chao, Chen, Chao. (2004). How to Determine the Core Competitiveness of Enterprises. *Technical and
economic*.

Table 1. Core Competitiveness Evaluation Index System of Power Generating Enterprises

<table>
<thead>
<tr>
<th>Index level</th>
<th>Index level 1</th>
<th>Index level 2</th>
<th>Index level 3</th>
</tr>
</thead>
</table>
| Core | | Power
<p>| | | competitiveness X11 | Total installed capacity X111 |
| | | Power Structure X112 | Power Structure X112 |
| | | Performance index X12 | ROE X121 |
| | Scale resource strength X1 | | Asset-liability ratioX122 |
| | | Technical economy index X13 | Fixed costs X123 |
| | | Installed capacity per kilowatt X134 | Total assets turnover X124 |
| | Environmental impact X14 | Investment rate of desulfurization equipment X141 | Standard coal consumption rate of electricity X135 |
| | Information Construction X15 | Environmental technology projects X142 | Power consumption of integrated water X137 |
| | System foundation ability X2 | Dust, waste water, sulfur dioxide, nitrogen oxides, noise emissions X143 | Fuel /coal X138 |
| Index | Development of business planning X21 | Computer networks and management information system X151 | Computer networks and management information system X151 |
| | The implementation of the task or index X212 | Accuracy of smooth and timely information system X152 | Accuracy of smooth and timely information system X152 |
| | Analysis of economic activity X213 | Computer network security protection measures X153 | Computer network security protection measures X153 |
| | Integrity of corporate standards and system X221 | Development of business planning X231 | Development of business planning X231 |
| | Continuous improvement system X222 | “Three emphasis and one importance”decision-making system X231 | “Three emphasis and one importance”decision-making system X231 |
| | Economic responsibility audit and monitor the rectification X232 | Economic responsibility audit and monitor the rectification X232 | Economic responsibility audit and monitor the rectification X232 |</p>
<table>
<thead>
<tr>
<th>Index level</th>
<th>Index level 1</th>
<th>Index level 2</th>
<th>Index level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td>Production management X31</td>
<td>Equipment Maintenance Management X311</td>
</tr>
<tr>
<td></td>
<td>Technical management ability X3</td>
<td>Scheduling Management X312</td>
<td>Technical supervision and management X313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Economic Operation Analysis X314</td>
<td>Equipment Identity Management X315</td>
</tr>
<tr>
<td></td>
<td>Human Resource Management X32</td>
<td>Delegate management of production operation X316</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organization X321</td>
<td>Staff training system X322</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Employee Performance Evaluation System X323</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File Management X33</td>
<td>Standardization, standardization, modernization of file management X331</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special inspection on completed records X332</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Corporate Culture X41</td>
<td>Adaptive Corporate Culture X411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corporate Strategy X42</td>
<td>Corporate value X412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning Innovation X43</td>
<td>Corporate social image X413</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business philosophy X421</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business targeting X422</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Learning ability X431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ability to collect and process information X432</td>
<td></td>
</tr>
<tr>
<td>Generating Enterprises</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity degree of innovation system X433</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific and technological innovations X434</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Radar Map on Simulating Core Competitiveness of Power Generating Enterprises