
International Business Research; Vol. 7, No. 11; 2014 

ISSN 1913-9004   E-ISSN 1913-9012 

Published by Canadian Center of Science and Education 

139 

 

Forecasting the Gold Returns with Artifical Neural Network      

and Time Series 

Habip Kocak
1
 & Turgut Un

1
 

1
 Faculty of Economics, Department of Econometrics Goztepe, Marmara University, Istanbul, Turkey 

Correspondence: Habip Kocak, Faculty of Economics, Department of Econometrics Goztepe, Marmara 

University, Istanbul, Turkey. E-mail: hkocak@marmara.edu.tr 

 

Received: September 3, 2014       Accepted: September 22, 2014      Online Published: October 25, 2014 

doi:10.5539/ibr.v7n11p139         URL: http://dx.doi.org/10.5539/ibr.v7n11p139 

 

Abstract 

Gold is an important investment tool especially in developing countries. Return-on-gold and prediction thereof is 

a topic which has been attracting the attention of investors and densely studied recently. For this reason different 

methods are being used to predict return-on-gold and effectiveness of these methods are being compared.  

The purpose of this study is to generate a prediction of return-on-gold using artificial neural networks and 

GARCH and its derivatives, which is a conventional time series method, based on the series obtained from the 

return of gold values provided by Turkish Gold Exchange belonging to the February 2014 and June 2014 period.  

As a result of this study, contrary to the expectations and the majority of similar studies, ANN provided less 

successful outcomes compared to GJR GARCH method.  

Keywords: gold, gold prediction methods, GARCH, Artificial Neural Networks 

1. Introduction 

Predicting the future on the basis of past time data is one indispensable tool of financial markets in particular. 

When these markets are examined, no single method stands out as able to precisely model the direction of 

movements due to the multiplicity of variables and the volatility of the elements that form these markets. For this 

reason, financial markets accommodate more risks compared to other fields of investment.  

Time series is more than just providing an economic and statistical model; they consist of a combination of the 

past values of the data to be predicted with the present and past values of the previous random unexpected 

changes. When time series approach is evaluated in terms of cost and benefit, it can be seen that (i) they are 

mostly used in short-term predictions, developing an econometric model of the variable to be predicted is a 

highly time- and energy-consuming task, and (iii) huge amount of data is needed so that an effective time series 

model can be developed (Griffiths et al., 1993, p. 640).  

Modelling of the changing variance in financial time series can be performed with GARCH models. The 

volatility which can be seen especially in high-frequency time series causes the covariance hypothesis to lose its 

validity. It is not possible to explain such models with linear models (Floros, 2008, pp. 31–41). Variances of 

financial time series usually show variance in a time-dependent manner.  

Developed by Engle (1982), ARCH model stands out as the first model which takes into consideration the 

characteristics in the returns of financial assets. Engle found out that when unconditional variance is fixed and 

conditional variance is time-dependent, the taller is a function of the squares of error terms. ARCH model was 

improved in time and paved the way for the development of a so-called ARCH family which accommodate 

different viewpoints and impacts.  

Bollerslev (1986) added ARMA process to the conditional variance structure of ARCH models, as a result of 

which GARCH models can include more past data and a more flexible delay structure.  

Nelson (1991) developed the exponential GARCH (EGARCH) model in order to explain the asymmetric 

volatility structure existing in financial markets which can be observed in series. Asymmetric structure is 

completed with leverage effect in EGARCH model.  

Glosten, Jagannathan and Runkle (1993) displayed another model structure receiving asymmetric effect. In their 

conditional variance model called GJR-GARCH model, conditional variance value shows different reactions to 
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negative or positive changes.  

Artificial neural networks (ANN) are one of the artificial intelligence topics and methods which has been used 

for prediction recently. ANN is preferred for predictions due to its multiple variance and non-parametric 

structure and predisposition for application in non-linear time series. ANNs are especially suitable for solving the 

problems which cannot easily be mathematically modelled; they also have the ability to learn new conditions by 

changing their weights and they can learn with different learning algorithms, which allows for the learning to be 

used in solving similar problems as a result of such learning. A trained ANN can act as a specialist, analyse the 

data that is given and make projections.  

The price of gold is one of the important market instruments; both investors and decision makers desire to 

determine its future value. Investing in gold usually aims protection from inflation, political risks and crisis in 

the long term and utilization from price fluctuations in the short term. Its long history and wide acceptance by 

economic units has made the gold and its volatility, which is an indicator of risk in gold, an essential topic. Most 

of the studies provide a safe investment tool for investors in unsteady periods. Different methods are being used 

for predicting the prices of gold which are subject to comparison in order to determine the best performing one.  

The purpose of this study is to examine the impact of ANN on determination of gold prices returns by using a 

time-series analysis method, GARCH models.  

2. Literature Review 

Those people who have to make investment decisions, especially economist and decision-makers, make 

predictions about the future. For this effect much effort is paid on the prediction of economic data such as stock 

market, exchange rate, inflation and gold.  

Prediction methods in time series, which are especially favoured by econometrists, have performed more 

effective predictions by integrating themselves into new techniques by means of developed computer technology.  

Artificial neural networks have been a widely studied method of prediction in the literature recently. Several 

economists have used ANN as a prediction method in time series and obtained successful results (Özkan, 2013; 

Choudhary & Haider, 2013; Elçin et al., 2011; Kryzanowski et al., 1993; Moshiri and Cameron, 2009; 

Fahimifard et al., 2009; Donaldson & Kamstr, 1997; Melike & Özgür, 2012). Some others compared ANN with 

conventional time series prediction method and found successful (Sharda & Patil, 1992; Chakradi & Simhon, 

2007; Baker & Richards, 1999; Ntungo, 1996; Hanofizadeh et al., 2008; Saiful & Yoshiki; 2011), whereas some 

economists found conventional methods more successful (Nitin et al., 2011). Several studies used hybrid 

methods which is a combination of econometric methods and ANN (Mammadagha et al., 2007; Hamzaçebi, 

2008; Termizel et al. 2005; Nitin et al., 2010; Diaz et al., 2008; Zhang, 2003; Hui et al., 2012). 

There are several studies performed on gold prices especially recently. In some studies, ANN stands out in some 

of them due to its supremacy; in some others it appears in comparison with conventional methods (Özdemir et al., 

2013; Chamzini and Yakchali, 2013; Parisi et al., 2008; Shafiee and Topal, 2010; Lineesh et al., 2010; Roy and 

Singh, 2014). 

Tully and Lucey (2007) examined the movements in gold prices with ARCH-GARCH analysis and found out 

that the returns on stock certificates decreased when the price of gold increased.  

Shafiee and Topal (2010) examined 40 years of gold and found a high correlation between gold and oil prices. 

Capie et al. (2005) investigated the relation between weekly gold prices and pound-USD and yen-UD parities for 

33 years and the behaviour of gold as an instrument for avoiding exchange rate risks based on GARCH, 

threshold GARCH and exponential GARCH methods. They concluded that GARCH model was the most 

suitable one which statistically showed that gold provided protection from exchange rate risks.  

Do et al. (2009) examined the relation between volatility of stock markets in some ASEAN countries, namely 

Indonesia, Malaysia, Thailand and Vietnam, and the returns of international gold market with GARCH and GJR 

models. They found out that, with the exception of Vietnam, GJR (1,1) was the most suitable model.  

3. Artifical Neural Networks 

Artificial neural networks (ANNs) are the general term used for computer systems which have working 

principles similar to the neural systems of human body. It involves studies directed at training and teaching of 

computers. They are also computer programs that simulate the neural networks of human brain. ANNs allow for 

reaching better solutions compared to linear methods due to its non-linear structure and probabilistic behaviours.  

ANNs are data-based systems formed by lamellar connection of artificial neural cells; they simulate some 

abilities of human brain such as learning and fast decision-making under various conditions through simplified 
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models in order to solve complex problems.   

The most generic ANN model is seen below. 

 

Figure 1. The most generic Artificial Neural Network model 

 

Inputs (𝑥1, 𝑥2, … , 𝑥𝑚) are the information that entre the cell from other cells or the environment. These are 

determined by the examples that the network is asked to learn. Weights (𝑤1, 𝑤2, … , 𝑤𝑚) are the values that express 

the impact of a process of elements on this process of elementsin the input set or another previous layer. Each 

input is multiplied with the weight values that connect the input to the operation element and combined through 

the sum function, so that the net information that entering the network is found. The net input of the network is 

calculated as follows: 

𝜑𝑖 = ∑ 𝑊𝑖𝑗

𝑚

𝑖=1

𝑋𝑗 

  𝑋𝑖𝜖ℝ𝑛 

𝛩𝑖 = 𝜑𝑖 + 𝜙𝑖 

Where Θ𝑖  shows the total input entering each neuron. 𝜙𝑖 is the threshold value which is a negative or positive 

value imported from the environment. Another factor that determines the behaviour of neural cell is the 

activation (transfer) function, which processes the information entering the artificial neural cell and determines 

the output that will be produced in return for this input. The most widely used transfer functions are threshold, 

sigmoid, hyperbolic tangent etc. functions (Kaastra, 1996, p. 227). The messages that are sent to the exterior, to 

itself or to other cells are called “outputs”. A neural cell can have multiple inputs whereas it can have only one 

output, which can act as the input to several cells. Output values can be expressed in functions as follows 

(Tosunoğlu & Benli, 2012, p. 543); 

𝜉𝑖 = 𝜓𝑖(𝜑𝑖) 

𝜉𝑖 = 𝜓𝑖(𝜑𝑖) = 𝜓𝑖(∑ 𝑊𝑖𝑗 + 𝑋𝑖 + 𝜙𝑖
𝑛
𝑖=1 )     

𝑋𝑖 = (𝑋1, 𝑋2, … , 𝑋𝑛) ∈ ℝ𝑛 

Where; 𝜉𝑖 expresses the output of the system or a single neuron, 𝜙𝑖 is the activation function, 𝜙𝑖 is net inputs 

and 𝜙𝑖 is the threshold value.  

ANNs are densely used for time series analysis in recent years. The exercise of obtaining prediction in time 

series by using artificial neural networks can be summarised in the 7 steps listed below (Benli & Yildiz, 2012, p. 

160): 

Step 1: Preliminary processing of data: first, the data are converted into [0, 1] interval. If logistic activation 

function is to be used where xi is the input (observation) values, the input values are converted into [0, 1] 

interval as follows:  

𝑋𝑖
∗ =

𝑥𝑖−𝑚𝑖𝑛 (𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛 (𝑥𝑖)
                   (3) 

Step 2: Decision is made as to percentage share of the dedication and testing sets in data set. Usually 10% to 20% 
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is used as testing set.  

Step 3: In this step, the number of inputs to be used, number of hidden layers, number of units at hidden layer, 

number of units at output layer, the activation function to be used in these units, learning algorithm and 

parameters and performance criteria thereof are determined and the ANN model which will be used is 

constructed.  

Step 4: Construction of input values: the input values of ANN are delayed time series. While input values are 

formed for 𝑋𝑡, time series, m (the number of units at input layer) number of delayed time series are constructed 

as 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑚. 

Step 5: Calculation of best weight values: the best weight values are found through education set with the 

selected learning algorithm. Using these obtained best weight values, the output values of the constructed ANN 

model are calculated.  

Step 6: Calculation of performance criteria: testing set estimations of ANN are obtained. The inverse of the 

conversion applied in step is implemented to the output values obtained in step 5 and the values obtained in this 

step. The values obtained as a result of this conversion constitute the predictions of education set and testing set, 

respectively. The selected performance criterion is calculated based on the difference between the prediction of 

testing set and the data therein. Two of the most widely used performance criteria in the literature are Mean 

Square Error (MSE) and Mean Absolute Error (MAE) values whose formulas are given below (Zhang, 1998, p. 

51):  

𝑀𝑆𝐸 =
1

𝑇
∑(𝑅𝑡 − 𝑅𝑡

′)2

𝑇

𝑡=1

 

𝑀𝐴𝐸 =
1

𝑇
∑|𝑅𝑡 − 𝑅𝑡

′|2

𝑇

𝑡=1

 

Where, T shows the number of predictions,𝑅𝑡 , shows the real value in t time, and 𝑅𝑡
′  shows the mean value of 

prediction values. The importance of this criterion is that it can dissociate into the variance sums of prediction 

errors. This feature shows that MSE criterion depends on the second moment of joint distribution of realisation 

and predictions only. Nevertheless, it must be noted that it cannot provide full information on the actual 

distribution (Zhang, 1998, p. 51).  

Step 7: Prediction: Finally, the best weight values found in step 5 are used to obtain the prediction values for 

times after testing set, meaning the future, using either iterative prediction method or direct prediction method.  

ANNs accommodate several network structures and models. Artificial neural network consists of the 

interrelation of a series of neural cells in forward-driven and back-propagation connection patterns. Today a 

number of artificial neural networks have been developed for several purposes and for usage in various fields 

(Perceptron, Adaline, MLP, LVQ, Hopfield, Recurrent, SOM, ART etc.) Among these, multiple layer 

forward-driven (Multiple Layer Perceptron-MLP) artificial neural networks are the most widely used; they are 

also the networks that this study employs.  

Back propagation algorithm is an education algorithm which is most widely used for Multiple Layer Perceptron 

networks.  

 

 

Figure 2. The algorithm of multiple layer back propagation Artificial Neural Networks 
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BP (Back Propagation) algorithm is basically realised in two stages. They are (i) the forward stage, where 

activations are propagated from input to the output layer, and (ii) back stage which back propagates in order to 

change the error weights and bias values between the real value observed at output layer and desired nominal 

value. Before the education and test sets inputs and outputs, the feeding work network has to begin education. 

The model used for time series in ANN is as follows (Ozkan, 2011, p. 187):  

𝑦𝑡 = 𝐺(𝑤𝑡; 𝜓) = 𝛽0 + ∑ 𝛽𝑗𝜓(𝛾′𝑤𝑡) + 𝑢𝑡

𝑞

𝑗=1

 

Where; 𝑦𝑡is prediction equation, 𝛽 = (𝛽1, … , 𝛽𝑞)′, 𝛾𝑗 = (𝛾𝑗0, 𝛾𝑗1, … , 𝛾𝑗,𝑘−1, 𝑐𝑗)′ and 𝑗 = 1,2, … , 𝑞 show input 

neuron number; 𝑤𝑡 = (𝑤1𝑡 , 𝑤2𝑡 , … , 𝑤𝑘𝑡 , 1)′ = (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑘, 1)′  𝑢𝑡  show error term and   𝜓(𝛾′𝑤𝑡) 

sigma activation function is  

𝜓(𝛾′𝑤𝑡) =
1

1 + 𝑒−𝑦𝑖𝑤𝑡
 

GARCH models proposed by Engle (1982) and Bollerslev (1986) are successful in detecting the flat-tailed 

structure of the distribution and volatility which changes in time. The following section gives the definitions of 

the models used in the application.  

1). ARCH Model 

Variance problem occurs in regression analysis which especially use financial data ARCH model determined this 

conditional variance as a function of the squares of error terms in t time (Engle, 1982, p. 1002). In ARCH model, 

it is assumed that the characteristic behaviours of prediction errors depends on regression residuals which will be 

autocorrelated (Gökce, 1998, p. 57). 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

 

𝛼0 > 0 , 𝛼𝑖 ≥ 0 

𝛼1 + ⋯ + 𝛼𝑞 < 1 

2). GARCH Model 

In GARCH model, the size of conditional variances is a linear function of error squares and conditional variance 

terms (Bollerslev, 1986, p. 44). In GARCH (p, q) models the variance of error terms is affected both by its own 

past values and conditional variance values. Less parameters are needed compared to ARCH models. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

𝑞

𝑖=1

 

The model has to meet the following conditions so that a successful variance prediction can be made (Bollersley, 

1987, p. 542): 

𝛼0 > 0   𝛽𝑗 ≥ 0 

∑ 𝛼𝑖

𝑞

𝑖=1

+ ∑ 𝛽𝑗

𝑝

𝑗=1

< 1 

This condition tells that the sum of parameter values belonging to the conditional variance equation is smaller 

than it is important for obtaining the finite variance of the model (Green, 1993, p. 570). 

Financial series usually show such features as excessive oblateness, volatility clustering and leverage effect, their 

prediction for the volatility of gold prices with changing variance models can be incomplete and asymmetric 

conditional variance models can be needed which take into consideration the different impact of negative and 

positive shocks on volatility. For this reason this model was also included in the following section of the study.  

3). EGARCH Model  

EGARCH models are also known as exponential GARCH models. Unlike GARCH models which only take into 

account the size of the input signs, they include the difference of the effects created by negative and positive 
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shocks and were proposed by Nelson (1991). The model allows for good or bad news to create different impacts 

on volatility.  

𝑙𝑜𝑔(𝜎𝑡
2) = 𝛼0 + ∑ 𝛽𝑗  𝑙𝑜𝑔𝜎𝑡−𝑗

2

𝑞

𝑗=1

+ ∑ 𝛼𝑖 (|
𝜀𝑡−𝑖

𝜎𝑡−𝑖

| − 𝐸 (|
𝜀𝑡−𝑖

𝜎𝑡−𝑖

|)) + ∑ 𝛾𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖

𝑝

𝑖=1

𝑝

𝑗=1

 

The positivity in conditional variance was found without the existence of the condition that parameters should 

not be negative (Teravista&Timo, 2009, pp. 34–35) 

4). GJR GARCH Model 

The model with threshold value which considers the different and asymmetric effects of positive and negative 

shocks was proposed by Glosten, Jagannathan and Runkle (1993). An unexpected increase in the series is 

evaluated as good news which affects the conditional variance with i parameter. An unexpected fall, on the 

other hand, is defined as bad news and the conditional variance is affected by i + k parameter (Chen, 2005, 

p.4).  

  𝜎𝑡
2 = 𝛼0 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛾𝑘𝜀𝑡−𝑘

2 𝐼𝑡−𝑘(𝜀𝑡−𝑘 < 0)𝑟
𝑘=1  

𝐼𝑡 = {
     

1,          𝑖𝑓  𝜀𝑡 < 0 
           

      0,        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 
 

On the other hand, leverage effect in GJR GARCH model is quadratic whereas it is exponential in EGARCH 

(Ozden, 2008, p. 325). 

4. Model and Methodology 

4.1 Data 

The fundamental purpose o this study is to decide on the precision method which can be used in predicting gold 

markets. The methods which will be evaluated for this effect are artificial neural networks and time series 

prediction methods. In our study, the daily-frequency, closing prices (USDs / Ounce) between 12.02.2010, when 

Turkish Gold Stock Market became a member of the Federation of Euro-Asian Stock Exchanges (FEAS), and 

30.06.2014.  

In order to display the return of gold, the model used the following return series: 

𝑅 = 𝑙𝑜𝑔 (
𝐺𝑂𝐿𝐷𝑡

𝐺𝑂𝐿𝐷𝑡−1
) *100 

Gold closing prices data and gold return data are given in figures 3 and 4.  

 

Figure 3. Gold closing prices data 
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Figure 4. Gold return data 

 

Descriptive Statistics  

Before discussing the predictions of ARCH class models, a test has to be made in order to see if daily returns on 

financial markets have variable variance structure. Table 1 provides some descriptive statistics which are 

important for determination f the conditional variance model of return variable.  

 

Table 1. Descriptive statistics 

Size 1142 

Mean St.Dev. 

0.000129 0.010839 

Max Min 

0.049795 -0.057174 

Skewness Kurtosis 

-0.558452 6.641762 

JB p value 

690.4298 p=0.00 

ARCH (2) LM LM p value 

38.49221 p=0.00 

 

4.2 Methodology 

In this paper a multi-layered ANN model belonging to gold prices was constructed and back-propagation method 

was determined as learning algorithm first. Back-propagated networks have a structure where output and 

intermediate layer outputs back-propagate to input units. The exit of the neurons at output layer does not only 

depend on the current but also on previous input values. This characteristic is the reason for which 

back-propagation is preferred for usage in prediction models (Makay, 1992, p. 420).  
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Figure 5. Back propagated networks 

 

ANN models to construct also differ depending on the data to be used. Network architecture, the number of 

layers and neurons to be used, activation function, learning algorithm and parameters, and formation of 

education and test sets determine the success of the model. For this reason, previous studies in the literature were 

examined and the model which suits best to the study was constructed.  

Daily gold prices were presented as the input data for modelling of artificial neural networks. However, the data 

were subjected to normalisation process before they were used in the network. Sigma function was employed as 

activation function at intermediate layers. Mean Absolute Error is the most widely used prediction accuracy 

criteria in measuring the performance of education test. Graph 1 provides the mean error squares reached at 

education stage.  

 

 

Figure 6. Education set performance 

 

1,2078.10
-4

 minimum MSE was obtained at 1000 updates of gold education testing performance, which shows 

that the artificial neural networks yielded very favourable results. The performance of the prediction is shown in 

figure 7 below.  
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Figure 7. Gold return prediction values 

 

When the prediction performance of gold price data are compared with the real data after the education 

performed at ANN, it can be seen that they have high performance both at learning stage and at prediction stage. 

Non-linear ARCH models are used in the modelling of conditional variances which do not have normal 

distribution. When table 1 is examined, it can be seen that Gold Return series is not regularly distributed 

according to Jarque Bera (1980) (Bera, 1980, p. 255) test results. The existence of ARCH effect in return series 

was performed for 2 legs with ARCH LM test. ARCH effect is observed in the series.  

4.3 Determination of Proper ARIMA(P,D,Q) Structure 

4.3.1 Gold Return Series Unit Root Test 

In order to research whether the return series has unit root, time series and correlogram graphs were examined 

and it was observed that (i) the series oscillated around a certain mean value, (ii) auto-correlation coeffcients 

(ACF) did not assume very high values and (iii) they decreased rapidly as delay factor increased. These 

preliminary information display that return series is stable. ADF and PP unit root tests were applied in order to 

search integration level with test statistics. Akaike (AIC) and Schwartz (SC) criteria and Lagrange multiplier 

(LM) test statistics were used for decision-making. The results of this test are given in tables 2 and 3.  

 

Table 2. ADF test unit root tests (level data)  

Unit root tests With no constant term and trend With constant term, without trend With constant term and trend 

ADF statistics -31.51394*** -31.50432*** -31.67791*** 

ADF “p” value  0.0000 0.0000 0.0000 

***, **, ** define significance at 1%, 5% and 10% level respectively.  

 

Table 3. PP test unit root tests (level data)  

***, **, * define significance at 1%, 5% and 10% level respectively. 

 

ADF and PP test results display that there are no unit roots at the Gold Return series. The return series is stable.  

4.3.2 Determination of Gold Return Series AR(P) and MA(Q) Levels 

Time series cannot only be defined correctly with an autoregressive (AR) or a moving average (MA) process. 

But they can be defined with the ARMA (p,q) model which was introduced by Wold (1938) to the literature 

which combines these two structures and is called aggregate autoregressive moving average. In this section the 

suitable ARMA (p,q) structure of the return series was studied within the scope of Box Jenkins approach. In in 

-0.06
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0
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0.04

0.06 Prediction Series 

Unit root tests With no constant term and trend With constant term, without trend With constant term and trend 

PP  statistics -31.5460*** -31.52464*** -31.67791*** 

PP “p”  value 0.0000 0.0000 0.0000 
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line with the stinginess principle, the models that reach ARMA (4,4) level were predicted. The selection among 

models with statistically significant coefficients took into consideration the size of AIC and SC selection criteria, 

high determination coefficient (R
2
), high logarithmic probability function (LL), and low Theil inequality 

coefficient. The results are given in table 4.  

 

Table 4. Determination of suitable ARMA(p,q) structure 

 ARMA (1,1) ARMA (1,3) 

AIC -6.215298 -6.179809 

SC -6.202047 -6.157725 

R2 0.467764 0.450466 

LL 3548.827 3530.581 

TIC 0.984246 0.988582 

  

Statistically significant coefficients for gold return series were obtained from ARMA (1,1) and ARMA(1,3) 

equations. Of these two definitions, ARMA (1,1) model with smaller AIC and SC criteria value, higher R
2 
value 

and lower TIC value was preferred. ARMA (1,1) model will be taken into consideration when modelling the 

conditional variance.  

Engle (1982) ARCH LM test was conducted for 1,2,12 and 32 levels so that ARCH effect could be investigated 

in ARMA (1,1) model. The results are given in table 5.  

 

Table 5. Testing ARMA (1,1) ARCH Effect 

ARMA(1,1) LM Statistic LM Test “p” Value 

ARCH(1) 27.13767*** 0.0000 

ARCH(2) 36.95147*** 0.0000 

ARCH(12) 58.61884*** 0.0000 

ARCH(32) 81.33557*** 0.0000 

***, **, * define significance at 1%, 5% and 10% level respectively. 

 

When table 4 is examined, it can be seen that there is a strong ARCH effect for all levels at ARMA (1,1) 

residuals. The null hypothesis which claims that ARCH effect is non-existent is rejected.  

Determination of GARCH Model 

Predictions were made belonging to the GARCH, GJR GARCH and EGARCH models of which structures were 

detailed before. In order to be able to make the right choice among these models, the statistical significance of 

coefficients, validity of model restriction conditions, AIC and SIC selection criteria, R
2 
value, DW-d statistic, and 

LL value were taken into consideration. The cost-benefit analysis for choosing the right model is usually ignored. 

In these cases, some statistical prediction error measurement techniques are considered (Poon &Granger, 2003, p. 

478). Among symmetric prediction criteria, mean standard error (MSE), mean absolute error (MAE, mean 

percentage absolute error (MAPE) and Theil inequality coefficient (TIC) were used for selection. The low levels 

of these values ensure the selection of relevant model. The results are given in table 6.  

 

Table 6. Predictions of GARCH Models 

 GARCH (1,1) EGARCH (1,1) GJR GARCH (1,1) 

ARIMA EQUATION 

Constant -2.05E-06* -1.94E-06* -2,01E-06* 

AR(1) 0.055156* 0.084676*** 0.085748* 

MA(1) -0.998314*** -0.998369*** -0.998405*** 
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VARIANCE EQUATION 

0 3.22E-06*** -5.540334*** 5.56E-06*** 

1 0.042084*** 0.130899*** 0.030432*** 

  -0.233883*** 0.040618*** 

β 0.929996*** 0.403078*** 0.899323*** 

Observation 1142 1142 1142 

AIC -6.288179 -6.271804 -6.289278 

SC -6.261696 -6.240907 -6.258381 

R2 0.467397 0.467159 0.467421 

DW - d 1.987238 2.048764 1.99308 

LL 3596.550 3588.200 3598.177 

MSE 0.000116706 0.000116726 0.000116704 

MAE 0.007838 0.007823 0,007821 

MAPE 105.4544 105.5056 105.4216 

TIC 0.983686 0.932818 0.932176 

***, **, * define significance at 1%, 5% and 10% level respectively. 

 

When table 6 is examined, it can be seen that the most appropriate GARCH model is GJR GARCH (1,1)  

model. The coefficients of this model are statistically significant and have the lowest AIC criteria value and the 

highest R
2
 and LL values. As the case in all models, autocorrelation does not exist. GJR GARCH model has 

lower values in prediction criteria.  

Following the selection of the best GARCH model, ARCH LM test statistic was used on GJR GARCH residuals 

in order to test whether ARCH effect in the model continued. Autocorrelation test is based on Q test values. The 

results are given in table 7.  

 

Table 7. ARCH LM and Q statistical test for GJR GARCH model 

GJR GARCH (1,1) LM statistic LM Test “p” value Q test statistic Q Test “p” value 

Lags (1) 0.300618 0.5836 0.0008 0.977 

Lags (2) 0.443860 0.8010 1.3644 0.506 

Lags (12) 3.482825 0.9911 8.1216 0.776 

Lags (32) 10.3800 0.9999 34.049 0.369 

 

An examination of table 7 reveals that ARCH effect on GJR GARCH (1,1) residuals disappeared and that 

autocorrelation does not exist in residuals.  

The measurement of the risk of gold as a financial instrument can be performed with volatility analysis. 

Volatility can be defined as momentary changes and movements in the prices of financial assets. In addition to 

the knowledge of future prices, it is essential that the investor can foresee the risk as well. In this sense 

modelling of the volatility feature and using it in prediction is highly important. The basic question in volatility 

literature is whether financial return volatility is predictable and, if it is, which model should be used to make the 

best prediction. In order to be able to answer this question this study was conducted to choose the best model 

which determines the volatility of gold prices in Turkey. The closing prices (USD/ounce) for 12.02.2010 - 

30.06.2014 period were used for this purpose. Return series conversion was applied to the data.  

A variety of GARCH models, which can be classified as conditional volatility models, were evaluated in order to 

obtain the best prediction. The study concluded that the most successful model in explaining the volatility of 

gold prices is GJR GARCH model. In this model the difference in the impact created by bad news and good 

news on gold return conditional variance can be observed. The model considers that positive and negative shocks 
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are not symmetrical. It has been found out that the news impact on gold return in Turkey is asymmetrical. The 

coefficient which displays the leverage effect is not zero. The good news is unexpected rise in the series. In the 

case of a bad news, the model responses with 0.07096 parameter. The positive coefficient obtained in GJR 

GARCH model displays the existence of leverage effect, which shows that the negative news will be more 

effective than positive news on volatility.  

 

 

Figure 8. GJR GARCH (1,1) results 

 

Table 8. ANN and GJR GARCH (1,1) Prediction performance values 

 ANN GJR GARCH (1,1) 

MSE 0.000120781 0.000116704 

MAE 0.00796 0,007821 

 

Based on both prediction models, it can be evaluated that GJR GARCH model is a more effective prediction 

model for both MSE and MAE values.  

5. Conclusion 

For centuries, gold has been an indispensable instrument in financial system. Central banks demand gold as 

reserves, speculators demand it to determine their strategy, industries as input and individuals and investors for 

saving. The facts that it has been in the market for a very long time and that it has been accepted by economic 

units made gold and its return an essential issue.  

Researchers have utilized a variety of prediction methods for predicting gold return. Conventional prediction 

methods take the lead. However, artificial neural networks have been put into use as an effective method 

recently.  

In this paper, a conventional prediction model, GARCH and its derivatives and ANN were examined for gold 

return data of February 2010 and June 2014 period in Turkish Gold Stock Market. This study concluded that, 

contrary to the expectations and in disagreement with several studies in the literature. GJR GARCH model made 

a slightly more successful prediction compared to ANN.  
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