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Abstract 

Decoloration and mineralization of an azo dye, Acid Red 88, were conducted using synthetic-zeolite-based Fe as 
a heterogeneous photo-Fenton catalyst in the presence of ultraviolet (UV) rays and H2O2. Under the optimal 
conditions (pH = 5.5, 17.6 mM H2O2, and 4 W m-2 UVC), 100% decoloration and 90% total organic carbon 
removal of 0.12 mM Acid Red 88 were achieved in 120 min. The effects of initial pH with time, as well as 
oxidation, were studied in a batch reactor. It was found that high decoloration was achieved using a 
heterogeneous Fenton method at pH 7 and lower. The catalyst also had the advantages of low leaching of Fe3+ 
ions and maintenance of a high decoloration in consecutive catalytic treatments. Zeolite-based Fe was 
successfully used repeatedly (up to three consecutive cycles) for decoloration. A high rate of decoloration was 
also achieved in the case of continuous operation, although ≤0.4 mg L-1 of Fe were leached into the treated 
water. 

Keywords: photo-Fenton, synthetic zeolite, dye, heterogeneous catalyst 

1. Introduction 

In the textile industry, dyeing consists of three processes: preparation, dyeing, and finishing. Large quantities of 
dyes and other organic matter are therefore present in effluents from the textile industry, resulting in 
contamination of water. There are currently environmental standards for chemical oxygen demand (COD) and 
biochemical oxygen demand (BOD), but chromaticity is regulated to a lesser degree. However, when color 
remains in the effluent, even if COD and BOD meet the environmental standards, there is still a strong 
impression that the discharge is contaminated. Active-carbon adsorption and biodegradation are usually used as 
the treatments for effluent coloration, but these treatment methods have problems with respect to running costs 
and efficiency (Asgher, Azim, & Bhatti, 2009; Nillson et al., 2006; Sirianuntapiboon, Sadahiro, & Salee, 2007). 

For environmental protection, there are a number of methods (chemical, physical, and biological) for treating 
discolored azo dye effluents from various industries. Biological and physical treatment methods are not 
satisfactory because they simply transfer the pollutants from one phase to another, and the equipment involved in 
these processes is expensive. In recent years, treatments using advanced oxidation processes, i.e., chemical 
methods, have attracted much attention. Advanced oxidation processes such as homogeneous photo-Fenton 
reactions can produce hydroxyl radicals, which are powerful oxidants for organic degradation (Arslan-Alaton, 
2007; Selcuk, 2005; Papadopoulos et al., 2007). 

Although the homogeneous photo-Fenton reaction is very powerful in the degradation of organic compounds, it 
has significant disadvantages such as the need for recovery of the Fe sludge after treatment and the narrow pH 
range in which the reaction proceeds. To overcome these drawbacks, much effort has been made to develop 
heterogeneous catalysts for the reactions; these catalysts contain Fe clusters or Fe oxides (Feng et al., 2005; 
2009; Tekbas, Yatmaz, & Bektas, 2008; Lucas & Peres, 2006). 
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The total organic carbon (TOC) removal rate was calculated as follows: 

TOC removal rate = 100[(TOCi − TOCt)/TOCi]                            (5) 

where TOCi is the initial absorbance of the sample and TOCt is the absorbance at time t. 

2.2 Fe Catalyst 

A 0.02 M ferric solution was prepared by dissolving ferric nitrate in distilled water. Zeolite (5.0 g) was added to 
50 mL of freshly prepared 0.02 M ferric solution, followed by shaking for 6 h at 160 rpm in a water bath at 
60 °C. After shaking, the mixture was filtered using a 0.45-μm membrane filter and dried at 30 °C. The whole 
procedure was repeated four times, and finally Fe3-zeolite was collected as a brown powder 4.3 g). The Fe3+ 
attachment was determined to be 0.60 mmol g−1. 

The XRD patterns of H-zeolite and Fe-zeolite are shown in Figure 5. Diffraction lines for iron oxide are not 
observed in the XRD pattern of Fe-zeolite. This is not unusual as the diffraction lines of iron oxide are expected 
to broaden and be buried in the background noise of the XRD pattern (Chen et al., 2000). 

2.3 Decoloration Experiments 

Fe3+-zeolite (0.298 g) and Acid Red 88 (0.100 g) were added to 1 L of distilled water adjusted to pH 3.0 using 
H2SO4. Then 1 mL of H2O2 was added to the solution, and the liquid was irradiated with UV light (4.0 Wm−2). 
The intensity of the UV lamp is shown in Figure 6. The intensity is strong at 283 nm. Mixing was performed at 
room temperature at 120 rpm. At each sampling, 30 mL of solution were removed and 1 mL of 0.2 M NaOH 
solution was added. The solution was then filtered and the TOC and absorbance were measured using a total 
carbon analyzer (TOC-V, Shimadzu, Japan) and spectrophotometer (V-630Bio, Jasco, Japan), respectively. The 
pH-dependence tests were performed using 0.1 M H2SO4 and 0.1 M NaOH. After decoloration, the Fe-zeolite 
was separated using a 0.45-μm membrane filter and dried at 30 °C for further use. For comparison, a Fenton 
reaction was performed as a control experiment, as follows. Ferric sulfate (0.05 g) and Acid Red 88 (0.100 g) 
were added to 1 L of distilled water, and the pH was adjusted to 3 by adding H2SO4, followed by addition of 1 
mL of 30% H2O2 solution. Mixing was performed at room temperature and 120 rpm. At each sampling, 30 mL 
of solution were removed and 1.0 mL of 0.2 M NaOH solution was added. 

 

 
Figure 5. XRD patterns of H-zeolite and Fe-zeolite  
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Figure 6. UV lamp intensity 
 

2.4 Continuous Decoloration 

Figure 7 shows the experimental setup for conducting continuous decoloration tests; the experimental conditions 
are shown in Table 2. The test was carried out in a transparent glass fluidized-bed reactor of inner diameter (ID) 
2 cm and a Plexiglass tube of length 10 cm, which was fused to a 6-cm ID and 5-cm long tube to form a 150-mL 
reactor body. Approximately 0.8 g of the Fe3+-zeolite were soaked in deionized water to facilitate swelling, and 
then packed into the reactor. The dye solution (0.12 mM Acid Red 88 and 17.6 mM H2O2 at pH 5.5) was fed 
through the bottom of the column at a desired flow rate using an Iwaki PST-100N peristaltic pump. Two small 
UV lamps were placed in parallel at a position 50 mm from the bottom of the wall, giving irradiation of 0.5 W 
m−2. A cross-flow membrane filter was installed so that the Fe3+-zeolite could not flow out. At set time intervals, 
samples were collected using a Biorad Model 2110 Fraction Collector in 8 mL plastic tubes and analyzed for 
absorbance at 514 nm and Fe2+ ions. 

 

 

 

Figure 7. Experimental setup 

 

Table 2. Experimental conditions 

Fe3+-zeolite 400 mg Vol. of reactor 200 mL 

H2O2 17.6 mM Flow rate 55 mLh-1

Acid Red 88 0.12 mM Residence time 3.6 h 

pH 5.5 Intensity of UV 4.0 Wm-2
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