Supporting Differentiated Service in Cognitive Radio Wireless Mesh Networks

Kiam Cheng How

Abstract


The MAC layer protocols utilizing enhanced distributed channel access (EDCA) in the recently published IEEE 802.11-2007 are able to provide differentiated QoS for different traffic types in wireless networks through varying the Arbitration Inter-Frame Spaces (AIFS) and contention window sizes. However, the performance of high priority traffic can be seriously degraded in the presence of strong noise over the wireless channels. The noise problem is further aggravated in wireless mesh networks when packets traverse multiple-hops from source to destination. The noise problem can be mitigated by distributing network traffic across multiple vacant channels to reduce the node density per transmission channel. Although multiple non-overlapped channels exist in the 2.4GHz and 5GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel at anytime. As a result, these networks cannot fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. In this paper, we propose the Power-Controlled Rate-Adaptive MAC (CPCRA) protocol for single transceiver based Cognitive Radio Networks (CRNs) which combines adaptive modulation and coding with dynamic spectrum access. Simulation results demonstrate that CPCRA can achieve better performance in terms of lower delay and higher throughput.


Full Text: PDF DOI: 10.5539/cis.v3n3p3

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.