A New Vision Inspection Method for Wood Veneer Classification

Mengxin Li, Chengdong Wu

Abstract


<!-- /* Font Definitions */ @font-face {font-family:??; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:SimSun; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} @font-face {font-family:"Angsana New"; panose-1:2 2 6 3 5 4 5 2 3 4; mso-font-charset:222; mso-generic-font-family:roman; mso-font-format:other; mso-font-pitch:variable; mso-font-signature:16777217 0 0 0 65536 0;} @font-face {font-family:"NJ Chinese Simplified"; mso-font-alt:??; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:fixed; mso-font-signature:1 135135232 16 0 262144 0;} @font-face {font-family:"\@??"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} @font-face {font-family:"\@NJ Chinese Simplified"; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:fixed; mso-font-signature:1 135135232 16 0 262144 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:??; mso-font-kerning:1.0pt;} /* Page Definitions */ @page {mso-page-border-surround-header:no; mso-page-border-surround-footer:no;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} -->

A vision-based inspection method based on rough set theory, fuzzy set and BP algorithm is presented. The rough set method is used to remove redundant features for its data analysis and procession ability. The reduced data is fuzzified to represent the feature data in a more suitable form as input data of a BP network classifier. By the experimental research, the hybrid method shows good classification accuracy and short running time, which are better than the results using BP network and neural network with fuzzy input.


Full Text: PDF DOI: 10.5539/cis.v1n3p129

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.