
www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 3

Experience in Developing a Robot Control Software

Vahid Garousi

Software Quality Engineering Research Group (SoftQual)

Department of Electrical and Computer Engineering, University of Calgary

2500 University Drive NW, Calgary, AB Canada T2N 1N4, Canada

E-mail: vgarousi@ucalgary.ca

Abstract

This article presents an experience report in using the UML-driven development process to develop an
object-oriented control software for a Sony AIBO robot. The entire project was a great learning experience for
all the team members and we found the methodologies we used very effective in helping us design and develop a
high-quality control system. We also feel that other software developers and practitioners, especially those
developing robotic and embedded control software, would benefit from the experience and observations reported
in this article.

Keywords: UML-driven development, State-driven behavior, Robot, Control software

1. Introduction

Intelligent robots have gained widespread use in various industries, e.g., aviation (those built by NASA), military,
and the automobile manufacturing industry.

A robot has many components, mainly including hardware, software and mechanical parts. Developing software
for robots is not a trivial task and people from industry and academia are constantly developing new ways to
analyze, design, develop and test software systems for robots (for example, see the studies in (J.-A.
Fernández-Madrigal, C. Galindoa, J. Gonzáleza, E. Cruz-Martína, and A. Cruz-Martína, 2008) (J. Kramer and M.
Scheutz, 007).

RoboCup (www.robocup.org) is an international robotics competition founded in 1997 and is sponsored by
many large corporations such as Cisco and 3M. The competition’s aim is to develop autonomous soccer robots
with the intention of promoting research and education in the fields of software engineering and artificial
intelligence.

A fourth year design (capstone) project team at the University of Calgary consisting of four Software
Engineering students and a supervisor (the author of this paper) has recently completed a RoboCup development
project. We developed a control software (in C++) for the Sony AIBO robot, one of the popular robots used in
the RoboCup competitions.

Our team used systematic software engineering techniques (such as UML-driven and state-driven development)
to develop this object-oriented control software, and we found those techniques effective and very useful. The
entire project was a great learning experience for all the team members and we believe the final product was a
‘success story’. We feel that other software developers and practitioners, especially those developing robotic
control software, would benefit from our experience as reported in this article. Our project has a website (V.
Garousi, 2010) which contains the entire source code of the control software and also multimedia from our
robots in action.

A brief background on the RoboCup competition is provided in the next section. We then report the techniques
we have used in our robotic control software development project and our experience in using them:

 Development based on an existing robotic programming framework (Section 3)

 UML-driven analysis and design (Section 4)

 State-driven behavior development (Section 5)

 C++ implementation (Section 6)

Related works are discussed in Section 7. Conclusions and lessons learned are finally discussed in Section 8.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

 ISSN 1913-8989 E-ISSN 1913-8997 4

2. ROBOCUP

Sounding ambitious, the official goal of the RoboCup project is: “By mid-21st century, a team of fully
autonomous humanoid robot soccer players shall win the soccer game, complying with the official rule of the
FIFA, against the winner of the most recent World Cup.” (H. Kitano and M. Asada, 2000).

One of the four RoboCup competitions is the RoboCup Soccer. One of the five leagues under the RoboCup
Soccer is the Standard Platform League, formerly called Four-Legged League. From 2000-2007, the standard
platform league used the Sony AIBO robots in the games. From 2007, the league’s rules have changed to use the
humanoid robots called NAO.

Since there is a larger body of knowledge and resource on AIBO robots compared to NAO, our team has decided
to start the project from the AIBO and then to move to the humanoid NAO robots in near future. The Sony
AIBO has been used as an inexpensive platform for robotic and artificial intelligence research by many groups
worldwide, because it integrates a complete computer, vision system, and wireless Wi-Fi networking in a
package less expensive than other conventional research robots.

Two snapshots from our AIBO in action are shown in Figure 1, in which the robot is running the soccer-playing
control software developed by our team. More pictures and videos from our robot in action can be found online
at (V. Garousi, 2010).

3. Development Based on an Existing Robotic Programming Framework

Tekkotsu (D. S. Touretzky and E. J. Tira-Thompson, 2005) (the name means “framework”, literally “iron bones”
in Japanese) is a popular open-source application development framework for robots. It was first developed to
only support the Sony AIBO robot dog, but its latest version (4.0.1) supports a variety of other robotic platforms.

Tekkotsu has been created and is maintained at Carnegie Mellon University. It provides a layer of
object-oriented abstraction above the original Sony OPEN-R robotic software development kit (SDK) that
originally came with AIBO. Tekkotsu offers a variety of features, including an event routing architecture, a
hierarchical state machine formalism for constructing behaviors, and an extensive collection of wireless remote
monitoring and tele-operation tools. The latest version of Tekkotsu (version 4.0.1) is a large code-base consisting
of 81,109 LOC C++ code.

Tekkotsu is by far the most popular development framework for AIBO robots (D. S. Touretzky and E. J.
Tira-Thompson, 2005) and many other RoboCup teams worldwide have used the Tekkotsu framework. We thus
decided to use it to develop customized soccer-playing control behavior for the AIBO in this project.

Tekkotsu is essentially a large library of C++ classes and several support tools. To give an insight on the
feature-set provided by Tekkotsu, the class hierarchies under two of its main classes (ControlBase and
EventListener) are shown in Figure 2 which have been adapted from Tekkotsu’s online documentation
(Tekkotsu Team, 2010).

There are numerous possibilities to develop customized control algorithms for the AIBO by extending subclasses
from any of the classes shown under ControlBase. For example, we have extended the WalkEdit sub-class of
ControlBase to develop specific walking (running) patterns for playing soccer.

The class BehaviorBase which itself is a sub-class of EventListener is the basis from which all ABIO behaviors
should inherit. For complex behaviors, it is recommended to break aspects of the behaviors into independent
“states”, and use a state-machine formalism to control them (we will have an example on this later on). Overall,
the Tekkotsu has an organized object-oriented class hierarchy which simplifies the task of developing specific
control and behavior algorithms.

4. UML-Driven Analysis and Design

Since Tekkotsu has an object-oriented design, it was natural for us to follow a UML-driven development process
for the AIBO’s control software. To help us get started in the UML-driven system analysis and design, we used
Tekkotsu’s rich online documentation system (similar to the popular JavaDocs framework) (Tekkotsu Team,
2010). Furthermore, UML-based and state-driven design is a common practice for development of control and
real-time software (e.g.,(H. Gomaa, 2000)(J. M. Bass, A. R. Brown, M. S. Hajji, D. G. Marriott, P. R. Croll, and
P. J. Fleming, 1994)). There are even many commercial specific-purpose tools in this area, e.g., Matlab Simulink,
IBM Rational Rose Real-Time. In the presence of an object-oriented development framework, it is nearly
impossible to find any other effective approach than UML-based and state-driven behavior design for control
software.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 5

We developed component, class, state and sequence diagrams in the design phase. To provide insights into
AIBO’s control software architecture, a component diagram for the entire AIBO control system is shown in
Figure 3. Tekkotsu interfaces with the AIBO through the Sony OPEN-R SDK. In Tekkotsu, all the events and
information are received by the Controller component from the external AIBO devices (such as its wireless
connection, camera and also buttons on it) and then passed to either of the components: Communication, Vision
or erouter (an object of class type EventRouter).

Based on the system state that the controller is at, the event router object then passes the event to the right state
object (of type StateNode). We have developed 20 soccer-specific states for this system, details of which are
discussed in the following. Each of the states can be programmed to realize soccer-specific individual robot
techniques (e.g., shooting) or team tactics (e.g., passing the ball to other robots). The control state objects create
and issue suitable (soccer) motions for the present situation. The motion commands are sent to the right joints
and actuators on the AIBO through the Tekkotsu’s standard MotionManager component. More details about
Tekkotsu’s internal architecture can be found in its online resource(Tekkotsu Team, 2010).

Our next step was to analyze and design the robot’s complex soccer-playing behavior. We followed Tekkotsu’s
recommendation to break the behavior down in into independent “states”, and developed a state-machine
formalism to control AIBO. The class diagram of the 20 states in our implementation is shown in Figure 4. Each
of the 20 states is made a sub-class of Tekkotsu’s StateNode class which is itself a sub-class of BehaviorBase.

As designed in Tekkotsu, a BehaviorBase object can receive events by adding itself to the list of listeners for the
desired event stream. This list is maintained by the event router, erouter. Once the behavior is registered as a
listener, its processEvent() method will be called when an event arrives.

The 20 states were designed and iteratively revised after extensive review of real soccer game techniques and
tactics, and also by reviewing the official RoboCup rules(RoboCup Technical Committee, 2008). The big picture
of the soccer-playing behavior is presented next by putting all these 20 states in a state-diagram-based behavior.

5. State-Driven Behavior

The behavior of most control systems is developed in a state-driven manner. The Tekkotsu framework as well as
the official RoboCup rules (RoboCup Technical Committee, 2008) also strongly recommend state-driven
behavior for AIBO robots. The UML state diagram of our control system is presented in Figure 5. The official
RoboCup rules (RoboCup Technical Committee, 2008) require AIBOs’ control software to have six minimum
states: Initial, Ready, Set, KickOff (Playing), Penalized and Finished, which are shown in blue color in the state
diagram. For brevity, the common postfix StateNode for all the states has not been shown in this diagram, e.g.,
SearchForBallStateNode.

As per the official RoboCup rules(RoboCup Technical Committee, 2008), when AIBO is in InitialStateNode, it
should follow the Robocup rules: it should stand up, and turn on the light on front/back head button. AIBO will
transition from this state to ReadyStateNode on back button press or the corresponding wireless message. In
ReadyStateNode, AIBO looks for field markings and moves to a startup position. Once the KickOff (playing)
event is received from the official referee system (through a wireless message), AIBO can start its customized
game playing behavior. This is essentially where different RoboCup teams incorporate different creative game
decision-making algorithms.

The 14 other states (shown in green color in Figure 5) were designed by our team to model soccer-playing
control. A master state is SearchForBall, when AIBO pans and tilts its head in all directions looking for the ball.
The state would transition to TrackStateNode once an orange area of considerable size and circle shape is
detected.

While in TrackStateNode, AIBO tracks and approaches the ball. It also centers the ball within its feet. If the ball
is moving towards the AIBO at a fast speed, it would exits to Sprawl in which it spreads its body out quickly to
try to stop the forward movement of the ball. The moving of the ball towards the AIBO is detected by a vision
controller module in which the following condition is checked:
currentOrangeColorArea-previousOrangeColorArea > a given threshold (e.g., 30%). Note that, as per
Tekkotsu’s process architecture, this module is called 30 times a second.

In the tracking state, if the AIBO finds himself getting too close to another AIBO, the Reverse state becomes
active and it backs away from the other AIBO to prevent getting a penalty. If there is a safe chance to roll the
ball away from another AIBO (without leading to a penalty), the AIBO attempts to do so by activating the
StealBall state (a suitable vision-based algorithm for this decision has been implemented).

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

 ISSN 1913-8989 E-ISSN 1913-8997 6

In the trap state, AIBO reaches out and grabs the ball with his paws in front of him. Once the ball possession is
done (by trapping it), it is time to search for the goal (net) by moving to the SearchForNet state. Once the
opponent team’s net is found, the AIBO positions itself behind the ball.

After proper positioning, the robot enters a decision making process in which it decides to either shoot the ball
itself (note that three types of kicking), or pass the ball to a teammate AIBO if the other AIBO has a better
position in terms of possibility to score (e.g., is closer to the net). If the net is straight in the front of the AIBO,
chest kick is done. If there is an angle between net’s position and AIBO’s standing direction, left or right kick is
done.

In any of the states, if the AIBO falls down (detected by reading the status of an onboard gyroscope), the Getup
state becomes active and the control software sends the proper movement sequence to the actuators and joints to
stand up the AIBO.

The control software also listens to the messages (events) received from the Wi-Fi wireless connection onboard
of the AIBO and if a ‘penalty’ or (game) ‘finished’ message is sent by the official Robocup referee system (has a
standard format), the AIBO will go to the corresponding state.

Once a behavior (state) is registered as an event listener in Tekkotsu, its processEvent() method will be called
when an event arrives. Since the implementation details of each state are quite sophisticated, we first developed
UML sequence diagrams for processEvent() method of each state in our UML-driven development process. For
example, the sequence diagram for processEvent()for SearchForBall state is shown in Figure 6.

The processEvent()method is triggered by Tekkotsu’s controller thread. An event object of type EventBase is
passed in. The EventBase class forms the basis of communication between modules/behaviors in the Tekkotsu
framework, and details about it can be found in the Tekkotsu documentation(Tekkotsu Team, 2010).

The event processing behavior of SearchForBall state involves the collaboration of the state object with three
objects of class types: (1) MMAccessor, (2) EventRouter, and (3) VisionObjectEvent.

MMAccessor is the class in Tekkotsu which allows issuing motion and joint movement commands, e.g.,
stopping the AIBO, walking, kicking, etc. For example running the C++ statement
MMAccessor<HeadPointerMC>(headpointer_id)->setWeight(0); will cause the AIBO’s head to be reset by
turning its angle to the initial up-right position. Class EventRouter handles distribution of events as well as
management of state changes and timers. Class VisionObjectEvent extends EventBase to also include vision and
visual information (e.g., colors).

The event processing behavior of SearchForBall starts with checking if the back button is pressed (which means
hard freeze). This is actually done in the beginning of all states. Then, the global check for game finish event is
conducted. Then, the event’s properties are checked to see if it has been sent by another AIBO broadcasting that
it has the ball and in that case, this particular AIBO will stop moving around and let the other one proceed.

The next condition is to check if the event is raised due to orange color been noticed in the latest image captured
from the field. To get the ratio of the orange color area to the total image area (in pixels), a method called
getArea() is called from the event object. If the area percentage is larger than a predefined threshold, the AIBO
will consider that to be the actual ball and moves to the ‘Track’ state. In the calibrations we conducted, we found
the threshold value of 7% a good choice for the above ratio. We observed cases that an orange-area percentage
such as 3% could lead to false positives (detecting colors on other objects as orange which had resulted from too
much light for example).

If the amount of the orange color is not considerable, the AIBO will keep looking around, which is
systematically defined by looking left-wards, right-ward, up and down in sequence.

6. C++ Implementation

Since Tekkotsu is developed in C++, we developed the control software in C++ as well. Organized
object-oriented structure of the Tekkotsu framework and its example tutorials made our development,
maintenance and defect fixation tasks less challenging. A big proportion of our project was empirical calibration
of different control settings (e.g., the orange color proportion as discussed above) which was a great experience.

As to the size of the code we developed, our team wrote 3,917 C++ LOC (all available as open-source online(V.
Garousi, 2010)). Out of those, 2,454 LOC were specific for the state-driven behavior (implementing the 20
states). LOC breakdown for each of the 20 state classes is shown in Figure 7. Obviously, some of the states were
more complex or had many steps to be done and thus had more LOC than others, e.g., the ReadyState had to
initialize a lot of (control) parameters for the robot.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 7

The remaining of our code was mostly for integration of (gluing) our customized behavior within the Tekkotsu
framework, implementation of specific vision logic, such as detecting the orange-color ball, and blue-color goals
(nets). As a measure of code complexity, the McCabe cyclomatic complexity (the cumulative number of control
flows) of all the methods in the 20 state classes is 246.

As a source code example, partial listing of the method processEvent()for SearchForBall state is shown in
Figure 8. The cout messages (seen in this code listing) are sent wirelessly to a remote computer as log data and
were very helpful in debugging and tracing what the AIBO was actually doing.

7. Related Works

While a few existing works such as (G. Fortino, W. Russo, and E. Zimeo, 2004)(J. Murray, 2003) have proposed
statecharts-based and UML development processes for mobile agents (including the AIBO), no existing work
has reported the entire state-based development process for AIBO robots including the very-essential
development aspects and also experiences on the topic. The lesson we learned in this context was that
state-driven behavior development greatly simplified the control algorithm’s development by helping us focus
each behavior in its corresponding state.

This experience report also relates to the work of Kim et al. (M. Kim, S. Kim, S. Park, M.-T. Choi, M. Kim, and
H. Goma, 2006) in which the authors applied the UML-based COMET design methodology (Concurrent Object
Modeling and Architectural Design) to develop the control software of an intelligent service robot for the elderly,
called T-Rot. Our works differs from that work in that we reported the implementation aspects of our system as
well and that we focus on another type of robots (AIBO).

Our experience report complements the existing body of knowledge (e.g., (G. Fortino, W. Russo, and E. Zimeo,
2004)(J. Murray, 2003) (M. Kim, S. Kim, S. Park, M.-T. Choi, M. Kim, and H. Goma, 2006)) by adding the
very-important implementation aspects and serves as another voice of evidence on the usefulness and effectives
of UML-driven development processes for robotic applications. Together with the existing literature, these
works start to build an empirical, gradually-generalizable experience base upon which developers of robotic
systems can rely.

In terms of comparing the contributions and success of our approach to other competing designs and design
methods, we could compare this development project to our past experience in developing control software using
models other than state diagrams (e.g., our previous works in(V. Garousi, 2008)(C. Wiederseiner, S. A. Jolly, V.
Garousi, and M. M. Eskandar, 2010). One clear advantage of state-driven behavior design in this project has
been easier maintenance, better runtime performance, and also verification/validation of the system.

Furthermore, UML-based and state-driven design is a very common practice for development of control and
real-time software and a large body of knowledge/experience (e.g.,(H. Gomaa, 2000)(J. M. Bass, A. R. Brown,
M. S. Hajji, D. G. Marriott, P. R. Croll, and P. J. Fleming, 1994)) exists in this area. There are even many
commercial specific-purpose tools in this area, e.g., Matlab Simulink, IBM Rational Rose Real-Time. Many
commercial projects (e.g., (MathWorks Inc., 2010)(MathWorks Inc., 2010)) have used these practices for
development of real control and distributed systems.

Hengst et al. report in (B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut, 2000) the software development
details of the AIBO soccer robot developed at the University of New South Wales (Australia). That team did not
use the Tekkotsu framework, but were instead interfacing with the Sony’s OPEN-R SDK. The team does not
seem to have used any formal design modeling language or approach in their development, nor have they
provided all of their source code artifacts (except some brief example pieces). Thus, comparing our experience to
theirs is not feasible.

Our open-source development artifacts (UML design models and source code) can benefits other
practitioners/researchers working on AIBO applications. However, the artifacts are being offered ‘as-is’ and no
warranty is offered.

8. Conclusions

We found the UML-driven development approach (especially the usage of state and sequence diagrams) to be
very helpful in the project. It provided a higher-level of abstraction (compared to source code) and enabled early
analysis, verification and also team communication on the control algorithms without getting into code-level
implementation details.

As a future work, we plan to develop automated test suites (in unit, integration and system levels) for the AIBO
control software.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

 ISSN 1913-8989 E-ISSN 1913-8997 8

Acknowledgements

This project was supported by the Discovery Grant no. 341511-07 from the Natural Sciences and Engineering
Research Council of Canada (NSERC), IEEE Canadian Foundation and the Schulich Student Activities Fund.
The system’s source code was developed by 4th year design-project students Erik Clarke, Kevin Dorling,
Matthew Sattlegger and Graham Wells.

References

B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut. (2000). The UNSW United 2000 Sony Legged Robot
Software System, Technical Report, School of Computer Science and Engineering, University of New South
Wales, 2000.

C. Wiederseiner, S. A. Jolly, V. Garousi, and M. M. Eskandar. (2010). An Open-Source Tool for Automated
Generation of Black-box xUnit Test Code and its Industrial Evaluation, Proceedings of the International
Conference on Testing: Academic and Industrial Conference - Practice and Research Techniques, pp. 118-128,
2010.

D. S. Touretzky and E. J. Tira-Thompson. (2005). Tekkotsu: A Framework for AIBO Cognitive Robotics, Proc.
of the American Conference on Artificial Intelligence, 2005.

G. Fortino, W. Russo, and E. Zimeo. (2004). A statecharts-based software development process for mobile
agents, Information and Software Technology, vol. 46, no. 13, pp. 907-921, 2004.

H. Gomaa. (2000). Designing concurrent, distributed, and real-time applications with UML: Addison-Wesley,
2000.

H. Kitano and M. Asada. (2000). The robocup humanoid challenge as the millennium challenge for advanced
robotics, Advanced Robotics, vol. 13, no. 8, pp. 723-737, 2000.

J.-A. Fernández-Madrigal, C. Galindoa, J. Gonzáleza, E. Cruz-Martína, and A. Cruz-Martína. (2008). A software
engineering approach for the development of heterogeneous robotic applications, Robotics and
Computer-Integrated Manufacturing, vol. 24, no. 1, pp. 150-166, 2008.

J. Kramer and M. Scheutz. (2007). Development environments for autonomous mobile robots: A survey,
Autonomous Robots, vol. 22, no. 2, pp. 101-132, 2007.

J. M. Bass, A. R. Brown, M. S. Hajji, D. G. Marriott, P. R. Croll, and P. J. Fleming. (1994). Automating the
development of distributed control software, IEEE Journal on Parallel & Distributed Technology: Systems &
Applications, vol. 2, no. 4, pp. 9-19, 1994.

J. Murray. (2003). Specifying Agent Behaviors with UML Statecharts and StatEdit, Conference on Robot Soccer
World Cup pp. 145-156, 2003.

MathWorks Inc. (2010). ABB Accelerates Application Control Software Development for a Power Electronic
Controller, [Online] available: http://www.mathworks.com/products/simulink/userstories.html, Last accessed:
Nov. 2010.

MathWorks Inc. (2010). MathWorks Tools Help Toyota Design for the Future, [Online] available:
http://www.mathworks.com/products/simulink/userstories.html, Last accessed: Nov. 2010.

M. Kim, S. Kim, S. Park, M.-T. Choi, M. Kim, and H. Goma. (2006). UML-based service robot software
development: a case study, International Conference on Software Engineering - Far east experience papers, pp.
534-543, 2006.

RoboCup Technical Committee. (2008). RoboCup Four-Legged League Rule Book-2008 rules, [Online]
available: http://www.tzi.de/spl/pub/Website/Downloads/AiboRules2008.pdf, 2008.

Tekkotsu Team. (2010). Tekkotsu Architectural Overview, [Online] available:
http://www.tekkotsu.org/ArchitecturalOverview.html, Last accessed: May 2010.

Tekkotsu Team. (2010). Tekkotsu Reference Documentation, http://www.tekkotsu.org/dox, Last accessed: May
2010.

V. Garousi. (2008). Traffic-aware Stress Testing of Distributed Real-Time Systems Based on UML Models
using Genetic Algorithms, Elsevier Journal of Systems and Software (JSS), Special Issue on Model-based
Software Testing, vol. 81, no. 2, pp. 161-185, 2008.

V. Garousi. (2010). UofC Robocup Team Website, http://www.softqual.ucalgary.ca/projects/robocup/, Last
accessed: May 2010.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 9

AIBO is ready to shoot

Shooting the ball with chest

(the head is intentionally moved out of the way)

Figure 1. Two snapshots from our AIBO in action (full video is available online(V. Garousi, 2010))

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

 ISSN 1913-8989 E-ISSN 1913-8997 10

Figure 2. Class hierarchies under two main classes in Tekkotsu: ControlBase and EventListener (adapted

from(Tekkotsu Team, 2010))

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 11

Wireless

Vision

Tekkotsu

Buttons on AIBO

erouter: Event
Router

StateNode

BehaviorBase

GetupStateNode

InitialStateNode

...StateNode

dispatches to

...

玜bstract�
MotionCommand

MotionManager

Communication

MotionSequenceMCSoccerMotionis sent to

Joints and
actuators

control signals create

Developed or
customized in our

project

Camera

Controller

Sony OPEN-R SDK

Interface

Figure 3. High-level component diagram for the entire AIBO control system

玣rom Tekkotsu�
StateNode

玣rom Tekkotsu�
BehaviorBase

GetupStateNode

ChestKickStateNode

InitialStateNode

TrackStateNode

TrapStateNode

FinishedStateNode

PassBallStateNode

SearchForBallStateNode

StealBallStateNode

SearchForNetStateNode

StareAtNetStateNode

SprawlStateNode

SetStateNode

ReverseStateNode

ReadyStateNode

PositionStateNode

RightKickStateNode

PenalizedStateNode

LeftKickStateNode

KickOffStateNode

Figure 4. Control states defined as sub-classes of Tekkotsu’s StateNode class

ChestKick

Set

LeftKick

RightKick

Penalized

Position

KickOffReady

Reverse

Getup

Trap

SearchForBall

SearchForNet

StealBall

StareAtNetSprawl

Track PassBall

Initial

Finished

onFinish

ready set playing

ballFound

fallDown

penalized

finished

playing
onFinish

anotherAIBOHasIt

Official RoboCup states

States designed by us

Figure 5. Soccer-playing state-diagram

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

 ISSN 1913-8989 E-ISSN 1913-8997 12

:SearchBallNode

SearchForBallStateNode::processEvent(const Tekkotsu::EventBase &event)

[backButtonPressed == true]

[event == Finished]

[event == AnotherAIBOHasTheBall]

[else]

[event == OrangeColorNoticed]

alt

changeState(Penalty)

erouter:EventRouter

changeState(Finished)

[area > 7% of total image area]alt

changeState(StareAtNet)

(VisionObjectEvent) event

area=getArea()

MMAccessor

stopAIBO()
resetAllJoints()

stopAIBO()
resetAllJoints()

stopAIBO()
resetAllJoints()

changeState(Track)

lookAround()
ref

Figure 6. Sequence diagram for method processEvent()of SearchForBall state

0 100 200 300 400

ChestKickStateNode.h
FinishedStateNode.h

GetupStateNode.h
InitialStateNode.h
KickoffStateNode.h
LeftKickStateNode.h

PassStateNode.h
PenalizedStateNode.h
PositionStateNode.h
ReadyStateNode.h

ReverseStateNode.h
RightKickStateNode.h

SearchBallNode.h
SearchForNet...h
SetStateNode.h

SprawlStateNode.h
StareAtNetNode.h

StealBallStateNode.h
TrackStateNode.h
TrapStateNode.h

LOC

Figure 7. LOC measures of the 20 state-control classes

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

Published by Canadian Center of Science and Education 13

virtual void processEvent(const EventBase &event) {
...
if((event.getGeneratorID() == EventBase::finishedEGID &&
 event.getTypeID() == EventBase::statusETID)) {
 cout << "Game Over." << endl;
 MMAccessor<WalkMC>(walker_id)->setTargetVelocity(0,0,0);
 MMAccessor<HeadPointerMC>(headpointer_id)->setWeight(0);
 erouter->postEvent(EventBase::soccerEGID, SoccerNS::GoFinished, EventBase::statusETID, 0);
 return;
}
if((event.getGeneratorID() == EventBase::otherAIBOHasBallEGID &&
 event.getTypeID() == EventBase::statusETID)) {
 cout << "Another AIBO has the ball. I will freeze (stare at the net)." << endl;
 MMAccessor<WalkMC>(walker_id)->setTargetVelocity(0,0,0);
 MMAccessor<HeadPointerMC>(headpointer_id)->setWeight(0);
 buttonPressed = false;
 searchControl=0;
 startTime=0;
 headTime=0;
 erouter->postEvent(EventBase::soccerEGID, SoccerNS::GoStare, EventBase::statusETID, 0);
 return;
}
bool seenBall = false;
if(event.getTypeID()==EventBase::statusETID &&
 event.getSourceID() == SoccerNS::rc_orangeBallSID) {

 const VisionObjectEvent *ve = dynamic_cast<const VisionObjectEvent*>(&event);
 if(ve->getArea() > 0.07) // 0.07 is the empirically-calibrated value
 {
 cout << "AIBO sees the ball. Switching to track." << endl;
 searchControl = 0;
 seenBall = true;
 MAccessor<WalkMC>(walker_id)->setTargetVelocity(0,0,0);
 MMAccessor<HeadPointerMC>(headpointer_id)->setWeight(0);
 erouter->postEvent(EventBase::soccerEGID,SoccerNS::GoTrack,EventBase::statusETID, 0);
 }
 else
 cout << "Ball seen, but only has area of " << ve->getArea() << endl;
}
if (seenBall == false) // start searching in different directions, first lower left
{
 if(get_time() - headTime > 1000)
 {
 switch(searchControl)
 {
 case 0:
 cout << "Looking Lower Left" << endl;
 searchControl++;
 MMAccessor<HeadPointerMC>(headpointer_id)->setWeight(1);
 MMAccessor<HeadPointerMC>(headpointer_id)->lookInDirection(1,1,-1);
 headTime = get_time();
 break;
 ...

Figure 8. Example partial code listing

