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Abstract 
This paper deals with the finite-time chaos synchronization between two different chaotic systems with uncertain 
parameters by using active control. Based on the finite-time stability theory, a control law is proposed to realize 
finite-time chaos synchronization for the uncertain systems Lorenz and Lü. The controller is simple and robust 
against the uncertainty in system parameters. Numerical results are presented to show the effectiveness of the 
proposed control technique. 
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1. Introduction 
Synchronization of chaotic systems has been a hot topic since the pioneering work of Pecocra and Carroll 
(Pecora LM, Carroll TL. 1990). It can be applied in various fields such as chemical reactors, power converters, 
biological systems, information processing, secure communication(Colet P, Roy R. 1994)(Sugawara T, 
Tachikawa M, Tsukamoto T, Shimisu T. 1994)(Lu JA, Wu XQ, Lü JH. 2002), etc. A wide variety of approaches 
have been employed in the synchronization of chaotic systems which most of them are designed to synchronize 
two identical chaotic systems(Chen S, Lü J. 2002)(Agiza HN, Yassen MT. 2001)(Ho M-C, Hung Y-C. 
2002)(Huang L, Feng R, Wang M. 2004)(Liao T-L. 1998)(Liao T-L, Lin S-H. 1999)(Yassen MT. 2003). The 
synchronization of two different chaotic systems, however, is not straightforward. Difference in the structure of 
the systems makes the synchronization a challenging problem in this case(M.-Ch. Ho, Y.-Ch. Hung, 2002)(H. 
Zhang, W. Huang, Z. Wang, T. Chai, 2006)( M.-T. Yassen, 2005). Some of the proposed approaches in the 
identical case are not applicable here or required different procedure to be designed. This problem becomes more 
difficult when two chaotic systems have some uncertain parameters. 
In the literatures (Shahram Etemadi, Aria Alasty. 2007) used active sliding mode control to synchronize two 
different chaotic systems with uncertain parameters. However, the convergence of the synchronization procedure 
in (Shahram Etemadi, Aria Alasty. 2007) is exponential with infinite settling time. To attain fast convergence 
speed, many effective methods have been introduced and finite-time control is one of them. Finite-time 
synchronization means the optimality in convergence time. Moreover, the finite-time control techniques have 
demonstrated better robustness and disturbance rejection properties(Bhat S, Bernstein D. 1997)(Hua Wang, 
2008).  
In this paper, the goal is to force the two different chaotic systems with uncertain parameters to be synchronized 
in finite time. The method of active control is applied to control the chaos synchronization system. Based on 
finite-time stability theory, a controller is designed to achieve finite-time synchronization. Simulation results 
show that the proposed controller synchronizes the Lorenz and Lü chaotic systems in finite time. 
2. Preliminary definitions and lemmas 
Finite-time synchronization means that the state of the slave system can track the state of the master system after 
a finite-time. The precise definition of finite-time synchronization is given below. 
Definition 1. Consider the following two chaotic systems: 
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Where ,m sx x  are two n− dimensional state vectors. The subscripts ‘m’ and ‘s’ stand for the master and slave 

systems, respectively. :  and :  n n n nf R R h R R→ → are vector-valued functions. If there exists a constant 

0,T > such that lim 0m s
t T
x x
→

− = , and 0,m sx x− = if t T≥ ,then synchronization of the system (1) is 

achieved in a finite-time. 
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Lemma 1. Suppose there exists a continuous function :V D R→  such that the following hold : 

  1. ( )V t  is positive definite. 

  2.There exists real numbers 0c >  and (0,1)α ∈  and an open neighborhood N D⊆  of the origin such 
that  

                             ( ) ( ), \{0}V x cV x x Nη≤ − ∈&                              
(2) 

Then the origin is a finite-time stable equilibrium. 

Lemma 2. when ,  and c 1a b < are all positive numbers, the following inequality holds: 

                  ( ) .c c ca b a b+ ≤ +                                         (3) 

3. Systems description 
Lorenz system is considered a paradigm, since it captures many of the feathers of chaotic 
dynamics. The Lorenz system is described by the following nonlinear equations: 
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                                       (4) 

which has a chaotic attractor when 810, , 28.3a b c= = =  

Chen system is a typical chaos anti-control model, which has a more complicated topological structure than 
Lorenz attractor. The nonlinear differential equations that describe the Chen system are 
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                                 (5) 

which has a chaotic attractor when 35, 3, 28.α β γ= = =  

Lü system is a typical transition system, which connects the Lorenz and Chen attractors and represents the 
transition from one to the other . The Lü system is described by 
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                                         (6) 

which has a chaotic attractor when 36, 3. 20.vρ μ= = =  

In the next sections, we will study the chaos synchronization between the chaotic dynamical systems Lorenz and 
Lü with uncertain parameters. 
4. Finite-time synchronization between Lorenz and Lü systems with parameters uncertainty 
This subsection deals with finite-time synchronization of uncertain Lorenz and Lü systems. It is valuable 
because practical systems are often disturbed by different factors. It is assumed that both the master system and 
the slave system hold uncertainties. Consider the following chaotic system with uncertain parameters: 
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and  
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where , 1, 2,3,4i iΔ = denote the bounded uncertain parameters, i.e. i iδΔ ≤ , We have introduced three 

control functions 1( )u t , 2 ( )u t , 2 ( )u t  in (8). Our goal is to determine the control functions 1( )u t , 2 ( )u t ,

2 ( )u t . In order to estimate the control functions, we subtract (7) from (8). We define the error system as the 
differences between the Lorenz system (7) and the controlled Lü system (8). Let us define the state errors as 

                   1 2 1 2 2 1 3 2 1, ,e x x e y y e z z= − = − = −                           (9) 

Use of the definition in (9), the error dynamics can be written as  

       
1 2 1 1 1 1

2 2 1 1 3 1 1 1 3 1 1 3 2 1 1 2

3 3 1 1 2 1 1 2 1 4 2 2 2 3 3

( ) ( )( ) ( )
( )

( ) ( ) ( )

e e e a y x u t
e ve vy x e z e e e cx y y x u t
e e e y e x e e b z z e u t

ρ ρ

μ μ

= − + − − +⎧
⎪ = + − − − − + + Δ −Δ +⎨
⎪ = − + + + − − − Δ −Δ −Δ +⎩

&

&

&

       (10) 

We define the active control functions 1( )u t , 2 ( )u t , and 2 ( )u t  as follows 
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Hence the error system (10) becomes 
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Our aim is to design a controller that can achieve the finite-time synchronization of uncertain Lorenz (7) and Lü 
systems (8). This problem can be converted to design a controller to attain finite-time stable of the error system 
(12). The design procedure consists of two steps as follows. 

Step1: Let 1 2 1 1( )mW e e sign eρ= − − , (0,1)m∈ ,substituting this control input 1W into the first equation of 
(12) yields 

1 1 1 1( )me e e sign eρ= − −&                                    (13) 

Choose a candidate Lyaupunov function 

2
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The derivative of 1V along the trajectory of (13) is 
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From Lemma 1, the system (13) is finite-time stable. That means that is a 1 0T > such that 1 0e =  provided 

that 1.t T≥  

Step 2: When 1t T> , 1 0e = . The last two equation of system (12) become 
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Select 2 2 2 2 1 1 2 2 2 2( ) ( ) ( ) ( )mW t ve e sign e x sign e y sign eγ γ= − − − − , 1 1γ δ≥ , 2 3γ δ≥ ,and 

3 3 3 3 2 3( ) ( ) ( )mW t e sign e z sign eγ= − − ,where 3 2 4γ δ δ≥ + . 

Substitute 2W  and 3W  into the system (14) and consider the following candidate Lyapunov function: 
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The derivative of 2V along the trajectory of (14) is 
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From Lemma 1, it follows that (14) is finite-time stabilized. Thus, the uncertain slave system (8) can synchronize 
the uncertain master system (7) in finite time. 
5. Simulations results 
In this simulation, the 4th order Runge–Kutta algorithm was used to solve the sets of differential equations 
related to the master and slave systems. We select the parameters of Lorenz system as 

10, 8 / 3, 28a b c= = =  and the parameters of Lü system as 36, 20, 3vρ μ= = = . The initial values of 

Lorenz system and Lü system are 1 1 1[ (0)  (0)  (0)] [5  6  9]x y z = , 2 2 2[ (0)  (0)  (0)] [15  17  10]x y z = .  

The initial errors are 1 2 3(0) 10, (0) 11, (0) 1.e e e= = =   

The uncertain parameters of Lorenz system and Lü system are adopted as 1 0.5sin ,tΔ =  2 0.5cos ,tΔ =  
3 0.1,Δ =  4 1 2 3cos , 0.8, 0.5, 2t γ γ γΔ = = = = .The controller parameter m is selected as 1/3 to satisfy 

given condition. The simulation results are given in Fig. 1 for the case that the Lorenz system drives the Lü 
system.Fig.2 shows the errors responses of the uncertain Lorenz and Lü systems. As we expect, the slave system 
synchronizes with the master system and 
the system have strong robustness to the uncertainties. 
6. Conclusion 
In this paper, an effective control method for synchronizing different chaotic systems with uncertain parameters 
has been proposed using active control. Based on the finite-time stability theory, the proposed controller enables 
stabilization of synchronization error dynamics to zeros in finite time. Finite time synchronization between the 
pairs of the Lorenz and Lü systems is achieved. Numerical simulations are also given to validate the 
synchronization approach. 
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