www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

ID-SOMGA: A Self Organising Migrating Genetic Algorithm-Based
Solution for Intrusion Detection

Olusegun Folorunso
Department of Computer Science, University of Agriculture
Abeokuta, Ogun State, Nigeria

E-mail: folorunsolusegun@yahoo.com

Oluwatobi O. Akande
Department of Computer Science, University of Agriculture
Abeokuta, Ogun State, Nigeria

E-mail: akandetobi@gmail.com

Adewale O. Ogunde
Department of Mathematical Sciences, Redeemer’s University (RUN)
Redemption City, Mowe, Ogun State, Nigeria

E-mail: adewaleogunde@yahoo.com

Olufunke R. Vincent
Department of Computer Science, University of Agriculture
Abeokuta, Ogun State, Nigeria
E-mail: rebecca.vincent@yahoo.com
Abstract

The study examined the detection of attacks against computer networks, which is becoming a harder problem to
solve in the field of Network security. A problem with current intrusion detection systems is that they have many
false positive and false negative events. Most of the existing Intrusion detection systems implemented depend on
rule-based expert systems where new attacks are not detectable. In this study, optimization algorithms were
added to intrusion detection system to make them more efficient. Self Organizing Migrating Genetic Algorithm
(SOMGA) was integrated into intrusion detection system to obtain a more efficient intrusion detection system
called ID-SOMGA. This study provides an equally efficient method to implement an intrusion detection system
that returns very low false positives. Due to the complexities involved in security issues, and the implementation
of the work, selected values of the network log was used to implement the system in order to reduce some of
these complexities. The Self Organizing Migrating Genetic Algorithm — Intrusion Detection System was tested
and values of the result were compared with that of an IDS with Genetic Algorithm Intrusion Detection System.
In terms of detection rates, ID-SOMGA was found to be slower than an IDS with GA, the false positives in
ID-SOMGA was lower than what obtains with genetic algorithm. Both schemes were able to identify new
patterns almost in the same way. The ID-SOMGA system that was developed improved the security of systems
in networked settings allowing for confidentiality, integrity and availability of system resources.

Keywords: Intrusion Detection, Computer Networks, Genetic Algorithms, Computer security
1. Introduction

An Intrusion Detection System (IDS) is a system for detecting intrusions in computer networks and reporting
them accurately to the proper authority. Intrusion Detection Systems are important tools in the overall
implementation of an organization’s information security policy, as they reflect the organization by defining the
rules and practices to provide security, handle intrusions, and recover from damage caused by security breaches
(Bezroukov, 2003).

There are two generally accepted categories of intrusion detection techniques: misuse detection and anomaly

80 ISSN 1913-8989 E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

detection (Wei, 2004). Misuse detection refers to techniques that characterize known methods to penetrate a
system. These penetrations are characterized as a ‘pattern’ or a ‘signature’ that the IDS look for. Anomaly
detection refers to techniques that define and characterize normal or acceptable behaviours of the system (e.g.,
CPU usage, job execution time, system calls). Behaviours that deviate from the expected normal behaviour are
considered intrusions (Bezroukov, 2003; McHugh, 2001).

However, these systems often introduce significant computational overhead. Furthermore, many of them do not
deal properly with so called ‘rare’ classes; the classes that have significantly smaller number of elements than the
rest of the classes. This problem occurs mostly because of the tendency for generalization that most of these
techniques exhibit. Intrusions can be considered rare classes since it is reasonable to assume that the amount of
intrusive traffic is considerably smaller than the amount of normal traffic. Thus, we need a machine learning
technique that is capable of dealing with this issue.

Genetic algorithm (GA) can be used to classify network connections. GA is robust, inherently parallel, and
adaptable. Moreover, due to its inherent parallelism, it offers a possibility to implement the system using
reconfigurable devices without the need of deploying a microprocessor. Here, we further investigate the
hybridization of two algorithms; SOMA and GA into intrusion detection systems. Hence, this study provides an
equally efficient method to implement an intrusion detection system that returns very low false positives.

2. Literature Review

The concept of intrusion detection dates back to the 1980s, and it has been defined to be the potential possibility
of a deliberate unauthorized attempt to access information, manipulate information, or render a system unreliable
or unusable. Intrusion detection in order to identify attacks on computer systems has been a challenging problem
in the domain of network security for quite some time. Software to detect network intrusions protects a computer
network from unauthorized uses thereby preventing malicious activities. With growing problems in network
security and the need to develop sophisticated and robust solutions, researchers across the world developed
innovative methods to construct an IDS on a training and testing data set, popularly referred to as the KDD Cup
98 data set (Bancovic et. al., 2009).

The Intrusion detection system in a similar way complements the firewall security. Though, firewalls could filter
incoming traffic from the Internet; however, there are ways to circumvent the firewall. There is no single security
measure sufficient to independently protect information systems. Having a layered security architecture greatly
reduces risk to system users. One invaluable layer is comprised of network intrusion detection systems
(Selvakani and Rajesh, 2007).

An Intrusion Detection System has a database of attack signatures. The attack signatures are patterns of different
types of previously detected attacks. If the sensors detect any malicious activity, it matches the malicious packet
against the attack signature database. In case it finds a match, the sensor reports the malicious activity to the
management console. The sensor can take different actions based on how they are configured. For example, the
sensor can reset the TCP connection, modify the access control list on the gateway router or the firewall or send
an email notification to the administrator for appropriate action.

There are broadly two types of Intrusion Detection systems. These are hosts based Intrusion Detection System
and network based Intrusion Detection System. A Host based Intrusion Detection system has only host based
sensors and a network based Intrusion detection system has network-based sensor. Intrusion detection systems
provide the following advantages among other to the security infrastructure of an organization: lower cost of
ownership, easier to deploy, detect network based attacks: retaining evidence, real time detection and quick
responses, and detection of failed attacks.

A field of research in intrusion detection has focused on the ability of the IDS to detect intrusion attempts, using
statistical and algorithm based approaches, and discern between what is merely anomalous (unknown to the
system) and not a risk, and what is potentially harmful to the system and should be prevented. Since precious
time is used in detecting an attack, these systems will need to adopt some autonomous response capability, using
not only risk and response categorization but also a response escalation algorithm, similar to biological and
immune response systems. Most of these systems also spend time learning about the systems they are protecting
and establishing a baseline, before they and are able to function as intended. Since much of this data is available
from system vendors, greater cooperation among vendors will obviate much of the need for this learning process
and improve intrusion detection systems.

2.1 IDS design models

Price has categorized intrusion detection systems, based on their detection models, into the following:

Published by Canadian Center of Science and Education 81

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

* Misuse detection model detects intrusions by looking for activity that corresponds to known intrusion
techniques (signatures) or system vulnerabilities.

* Anomaly detection model detects intrusions by looking for activity that is different from a user's or systems
normal behaviour.

The following observations need to be noted:

* Both anomaly detection and misuse detection will depend on a learning process or the establishment of a
baseline: in the anomaly detection case, logging ‘normal’ activity, in the misuse detection model, logging or
cataloguing intrusion signatures and system vulnerabilities. In both cases, therefore, there will be a period of
time when the intrusion detection system does not have the baseline data it needs to compare the new activity
against, and will therefore be unable to provide information about the attack or respond to the attack.

* The misuse detection model can further be characterized as backward-looking or reactive, relying on
historical data of past attack signatures and system vulnerabilities; the anomaly detection model can be
characterized as forward looking, detecting heretofore unknown system behaviour.

2.2 Intrusion detection model

Any set of actions that attempt to compromise the integrity, confidentiality, or availability of resource is termed
an intrusion. An intruder is the individual or group of individuals who initiates the action in the intrusion.
Intrusion detection systems are based on the belief that an intrusion will be reflected by a change in the normal
patterns of resource usage. As such, intrusion detection systems have been developed to monitor specific types of
activities and announce anomalies in the behaviour observed. The anomalies announced by an intrusion
detection system serve as an indication that an intrusion may be in progress.

2.3 Self Organising Migrating Genetic Algorithm (SOMA)

Genetic algorithm is a family of computational models based on principles of evolution and natural selection.
These algorithms convert the problem in a specific domain into a model by using a chromosome-like data
structure and evolve the chromosomes using selection, recombination, and mutation operators. The range of the
applications that can make use of genetic algorithm is quite broad (Sinclair et. al, 1999; Whitley, 1994). In
computer security applications, it is mainly used for finding optimal solutions to a specific problem. The process
of a genetic algorithm usually begins with a randomly selected population of chromosomes. These chromosomes
are representations of the problem to be solved. According to the attributes of the problem, different positions of
each chromosome are encoded as bits, characters, or numbers. These positions are sometimes referred to as
genes and are changed randomly within a range during evolution. The set of chromosomes during a stage of
evolution are called a population. An evaluation function is used to calculate the “goodness” of each
chromosome. During evaluation, two basic operators, crossover and mutation, are used to simulate the natural
reproduction and mutation of species. The selection of chromosomes for survival and combination is biased
towards the fittest chromosomes. Figure 1 shows the structure of a simple genetic algorithm. It starts with a
randomly generated population, evolves through selection, recombination (crossover), and mutation. Finally, the
best individual (chromosome) is picked out as the final result once the optimization criterion is met (Pohlheim,
2001).

SOMGA is a hybridization of self organizing migrating algorithm and the simple binary genetic algorithm
(Kusum and Dipti, 2009). SOMA is not a so well known algorithm which surfaced around the year 2000. The
main feature of that motivated incorporating SOMA into GA is the fact that it works with both high and low
population size and has more exploration capabilities. The hybridizing of SOMA with GA is expected to increase
the reliability, efficiency and robustness of the search/optimization algorithm.

3. Methodology

Intrusion detection systems can of their own accord deal with the issue of detecting security breaches but it has
been observed that there issues of false positives, having to have known the attack signatures or nature before
hand has led to the inclusion of a learning algorithm as the self organising migrating genetic algorithm SOMGA.

3.1 Application of Self Organizing Migrating Genetic Algorithm (SOMGA) to Intrusion Detection System—
ID-SOMGA

SOMGA like Genetic algorithms can be used to evolve simple rules for network traffic. These rules can then be
used to differentiate normal network connections from anomalous connections. These anomalous connections
refer to events with probability of intrusions. The rules stored in the rule base are usually in the following form:

if { condition } then { act }

82 ISSN 1913-8989 E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

The condition refers to a match between current network connection and the rules in IDS such as source and
destination, IP addresses and port numbers used in TCP/IP network protocols, duration of the connection,
protocol used, etc., indicating the probability of an intrusion. The act field usually refers to an action defined by
the security policies within an organization, such as reporting an alert to the system administrator, stopping the
connection, logging a message into system audit files, or all of the above. For example, a rule can be defined as:

if {the connection has following information: source IP address 124.12.5.18; destination IP address:
130.18.206.55; destination port number: 21; connection time: 10.1 seconds }

then {stop the connection}

This rule can be explained as follows: if there exists a network connection request with the source IP address
124.12.5.18, destination IP address 130.18.206.55, destination port number 21, and connection time 10.1 seconds,
then stop this connection establishment. This is because the IP address 124.12.5.18 is recognized by the IDS as
one of the blacklisted IP addresses; therefore, any service request initiated from it is rejected.

The final goal of applying SOMGA is to generate rules that match only the anomalous connections. These rules
are tested on historical connections and are used to filter new connections to find suspicious network traffic. In
this implementation, the network traffic used for SOMGA is a pre-classified data set that differentiates normal
network connections from anomalous ones. The data set is manually classified based on experts’ knowledge. It is
used for the fitness evaluation during the execution of SOMGA. By starting SOMGA with only a small set of
randomly generated rules, we can generate a larger data set that contains rules for IDS. These rules are “good
enough” solutions for SOMGA and can be used for filtering new network traffic.

3.2 Data Representation

In order to fully exploit the suspicious level, we need to examine all fields related with a specific network
connection. Considering the KDDCUP °98 dataset, we have about 41 fields that the rules would be based on.
Thus for simplicity, we only consider some obvious attributes for each connection. The definition of rules (for
TCP/IP protocols) is shown in Table 1. The corresponding rule for the “Example Value” attribute in Table 1
could be translated as:

if {the connection has following information: source IP address 209.11.7?.7?; destination IP
address: 130.18.176+2.27; source port number: 42335; destination port number: 80;
connection time: 482 seconds, the connection is stopped by the originator; the protocol used is
TCP; the originator sent 7320 bytes of data, and the responder sent 38891 bytes of data }

then {stop the connection}

The rule can be explained as follows: if a network connection with source IP address 209.11.72.?? (209.11.0.0 ~
209.11.255.255), destination IP address 130.18.176.?? (130.18.176.0 ~ 130.18.255.255),source port number
42335, destination port number 80, duration time 482 seconds, ends with state 11 (the connection terminated by
the originator), uses protocol type 2 (TCP), and the originator sends 7320 bytes of data, the responders sends
38891 bytes of data, then this is a suspicious behaviour and can be identified as a potential intrusion. The actual
validity of this rule will be examined by matching the historical data set comprised of connections marked as
either anomalous or normal. If the rule is able to find an anomalous behaviour, a bonus will be given to the
current chromosome. If the rule matches a normal connection, a penalty will be applied to the chromosome.
Clearly no single rule can be used to separate all anomalous connections from normal connections.

The population needs evolving to find the optimal rule set. In the example shown in Table above, some wild
cards (the “*’ character and the ‘?’ character) are used to represent an appropriate range of specific values. It is
useful when representing a network block (a range of IP addresses or port numbers) in a rule. Once the spatial
information is included in the rules, the capability of the IDS can be greatly improved as an intrusion may
initiate from many different locations. The inclusion of the duration time of a network connection in the
chromosome ensures incorporation of temporal information for network connections. The maximum value of
duration time is 99999999 seconds, which is more than a year. This is helpful for identifying intrusions because
complex intrusions may span hours, days, or even months.

The SOMGA algorithm starts with a population that has randomly selected rules. The population can evolve by
using the crossover and mutations operators. Due to the effectiveness of the evaluation function, the succeeding
populations are biased toward rules that match intrusive connections. Ultimately as the algorithm stops, rules are
selected and added into the IDS rule base.

Published by Canadian Center of Science and Education 83

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

3.3 Parameters in SOMGA

There are many parameters to consider for the application of SOMGA. Each of these parameters heavily
influences the effectiveness of the algorithm.

3.3.1 Fitness function

The fitness function is one of the most important parameters in SOMGA. The following steps are used to
calculate the evaluation function. First the overall outcome is calculated based on whether a field of the
connection matches the pre-classified data set, and then multiply the weight of that field. The Matched value is
set to either 1 or 0.

&
Quicorm = ZMcctcfmpE* Welght, w . (1]

=l

The order of weight values in the function is shown in the figure below. These orders are categorized according
to different fields in the connection record as reported by network sniffers. Therefore, all genes representing
destination IP address field have the same weight. The actual values can be finely tuned at execution time. The
basic idea behind this order is the importance of different fields in TCP/IP packets. This scheme is straight
forward and intuitive. Destination IP address is the target of an intrusion while the source IP address is the
originator of the intrusion. These are the most important pieces of information needed to capture an intrusion.
Destination port number indicates to applications that the target system is running (for example, FTP service
usually runs on port 21).

Some IP addresses are more probable targets for intrusions—for example, IP addresses for military domains.
Domain-specific information is less important compared with the source IP addresses. Other parameters like
duration, bytes sent by the originator, bytes sent by the receiver, and state are usually less important than the
above fields but are still useful. The protocol and source port number fields are commonly dispensable and are
used for identifying some specific intrusions. This is shown in figure 2.

The absolute difference between the outcome of the chromosome and the actual suspicious level is then
computed using the following equations. The suspicious level is a threshold that indicates the extent to which
two network connections are considered a “match.” The actual value of suspicious level reflects observations
from historical data.

& = |outcoms — ruspicious_laval

v e (Z)

Once a mismatch happens, the penalty value is computed using the absolute difference. The ranking in the
equation indicates whether or not an intrusion is easy to identify.

& = rankin
penalty = (%) —)

The fitness of a chromosome is computed using the above penalty.

Fltnazs = 1 —penalty(4)

Obviously, the range of the fitness value is between 0 and 1. By the definition of evaluation, both temporal and
spatial information needed for identification of network intrusions have been incorporated.

3.3.2 Generating New Population

Traditional genetic algorithms have been used to identify and converge populations of candidate hypotheses to a
single global optimum. This same attribute can be extended to the SOMGA. For this problem, a set of rules is
needed as a basis for the IDS. As stated earlier, there is no way to clearly identity whether a network connection
is normal or anomalous just using one rule. Multiple rules are needed to identify unrelated anomalies, which
mean that several good rules are more effective than a single best rule (Sinclair et. al., 1999). Another reason for
finding multiple rules is that because there are so many network connection possibilities, a small set of rules will
be far from enough.

Thus, we need to find local maxima (a set of “good-enough” solutions) as opposed to the global maximum (the
best solution). Once the initial population (of chromosomes) is evaluated, the algorithm experiments with new

84 ISSN 1913-8989 E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

generations and iteratively refines the initial outcomes so that those that are most fit are more probable to be
ranked higher as results. The objective is to produce new generation of chromosomes to evaluate.

3.3.3 Crossover

In essence, the crossover operation creates new chromosomes that share optimistic characteristics of the parent
chromosomes while at the same time lowering the negative attributes in a child chromosome (Marakas, 2003).
Figure 3 provides an example of a crossover of chromosomes from the parents to their offspring.

Although this step is typical in most genetic algorithms, in the case of this project’s the crossover operation may
not be beneficial. While a Source or Destination IP may be bound by upper and lower IP settings, a crossover of
the IP octet values would probabilistically not be advantageous. For example, the crossover of the parental
values of 209.103.51.134 and 101.1.25.193 could result in child IP addresses of 209.103.25.193 and
101.1.51.134. However, the probability that this offspring will be potential suspicious Source or Destination [P
addresses is low.

3.3.4 Mutation

This phase randomly alters a gene’s value to create a different one (Marakas, 2003). Figure 4 details how a
gene’s (or allele’s) value is changed thereby creating a new chromosome. Concerning the applicability of this
step with the network intrusion chromosome, as was the case in the crossover step above the probability of
useful outcomes is minimal.

3.3.5 Sorting

The last step in the process of generating a new population is sorting based on already defined criteria. The new
population is arranged in order so as to eliminate repeating chromosomes while fitness of the generated
population is carried out. The sorting for simplicity sake makes use of the calculated fitness value they are
arrange in decreasing order, starting from the best one of the new population.

4. Implementation

The Java Development Kit — jdk 1.6ul2, Netbeans IDE and Java Genetic Algorithm Package (jgap 3.4.4) were
the tools used for implementation. Four java classes were used to implement the intrusion detection system. The
classes are: IDS.java, IPv4Chromosomes.java, IDSFitnessFunction.java, Progress.java. The IDS java class is the
main entry point of the program. It contains several methods of which the first it loads makes a call to the
Progress.java class to load the essentials of the IDS system. The code consists of a function class in the
IDSFitnessFuntion.java class which contains the problem domain and fitness code, a value class that holds the
IPv4 chromosome attributes in the IPv4Cromosomes.java, and the class containing the main method for
configuration and the fitness function call in the IDS.java class.

The fitness function works with the JGAP framework by creating the six genes and then compares them with a
suspicious range of values for those genes. If they match, the outcome or returned value is set to a maximum
amount for the gene. If not, then a lower value is returned. It should be noted that the "suspicious" values as well
as the “weight” values were hard coded for test and demonstration purposes. The UML diagram for the system is
shown in figure 5.

Finally, the JGAP framework takes each gene value and returns "a more optimal” result for the genes. Running
the SOMGA produced the following output (in Figure 10.) from the input of Source IP = 2098411163 (which is
an IPv4 address of 125.19.54.155)| Destination IP = 1828782356 (which is an IPv4 address of 109.1.1.20)|
Destination Port = 8184 | Protocol = 5 | Originator Bytes = 10500 | Responder Bytes = 2500000 (see table 2).

A rule set is created from the computation which is then compared to a set of known intrusive patterns. If there
happens to be one or more match, it is reported as a suspected intrusion and connection from the source IP
address is terminated. Some snapshots of the workings of the system are shown in figures 6 to 9.

4.1 Evaluation of the System

The IDS developed was evaluated on three specific criteria which are very important issues with intrusion
detection systems. They are: Speed, Accuracy, Adaptability, Size of data. It was observed that the comparisons
between an ordinary intrusion detection system, and intrusion detection system with genetic algorithm and the
ID-SOMGA gave results that further confirmed that the inclusion of learning algorithms in the intrusion
detection helps in the automation of the system to a high level. For a larger part of the test, the outcomes of the
systems that had the optimization algorithms was better than that of the ordinary system with both IDS with GA
and IDS with SOMGA have similar figure. It was however observed that the system with SOMGA could operate
better on low population sizes as well as high population sizes while the GA system performed best when it have

Published by Canadian Center of Science and Education 85

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

a high population size to work on.

A comparison was made between ordinary IDS, one with GA and the system developed. The results obtained
from the test are given in the tables 3, 4, 5, and 6. It is pertinent to note that there are certain issues that should
be considered while testing and evaluating intrusion detection system. They include: Coverage of know attacks,
Probability of false alarms, Probability of detection, Ability to detect attacks not known before, False alarm rate,
Ease of use, Ease of maintenance. The experimental set up is shown in table 3. To consider the detection rate, we
experiment using Genetic algorithm and SOMGA as against time. The result is shown in table 4.

Detection rate is the time taken to scan through and discover certain the first intrusive pattern. SOMGA spent
more time in the computation and this can be explained away by the extra overhead incurred through the
addition of a sorting process. Figure 10 shows the plot of the detection rate as against time. Though, it was
expected that the detection rate would increase with time but after the second time set, but decrease of the
detection rates were observed.

As observed from the chart shown above, it was found out that the operations with GA seems to be faster than
when operation were carried out using SOMGA. The time lag for SOMGA is explained off by the fact that the
sorting of the new newly generated population adds an overhead. This is observed in figure 10. Table 5 shows
the false alarm rate against the performance of GA and SOMGA.

From the results, the false alarm rate given by the intrusion detection system that has genetic algorithm is much
more than that of the newly tested system. It was also observed that subsequent values while testing the
application for false alarms were reducing. This actually explains the fact that the system was learning the new
intrusive patterns. The next experiment conducted on the system was the ability to identify attack. This was done
by using some trials time T, to get new intrusive patterns. The result is shown in table 6. It is a very good feature
for the IDS to be able to identify new intrusive patterns. With the introduction of new intrusive patterns, both
systems performed equally. They had similar results in the identification process. Table 7 gives a summary of the
comparison of the system using both GA and SOMGA.

5. Conclusions and Future Works

With the proliferation of computer networks, intrusions and security threats are inevitable most especially in
competitive environments and hence the need to develop more sophisticated ways of improving security is an
ongoing and a rather challenging task. In achieving this, the development of a system such as ID-SOMGA that
would improve performance is a step in the right direction. As with any security product designed to protect
information systems and the data they process, there are limitations. If the intrusion detection system lacks rules
clever enough to detect traffic of interest, the system will neither send alerts nor drop packets appropriately. Thus,
keeping signatures updated and maintaining other rules intended to find exactly what you want is an ongoing
endeavor. The study focused on the procedure for incorporating a new algorithm SOMGA into an intrusion
detection system as a way of getting considerable improvement over using basic genetic algorithms. The Self
Organizing Migrating Genetic Algorithm — Intrusion Detection System was tested and values of the result were
compared with that of an IDS with Genetic Algorithm Intrusion Detection System. In terms of detection rates,
ID-SOMGA was found to be slower than an IDS with GA, the false positives in ID-SOMGA was lower than
what obtains with genetic algorithm. Both schemes were able to identify new patterns almost in the same way.
The ID-SOMGA system that was developed improved the security of systems in networked settings allowing for
confidentiality, integrity and availability of system resources. As a future work, other learning algorithms
suitable for optimization could also be looked into as a way of achieving a secured environment for distributed
computing. As there would always be the need to share resources, the issue of intrusion is unavoidable and as
such the security of such systems becomes an important issue.

References

Bankovic Zorana, José M. Moya, Alvaro Araujo, Slobodan Bojanic and Octavio Nieto-Taladriz. (2006).
Improving Network Security Using Genetic Algorithm Approach”, Computers & Electrical Engineering, Vol.33,
Issue 5-6, pp. 438-451.

Bezroukov, Nikolai. (2003). “Intrusion Detection (General Issues).” Softpanorama: Open Source Software
Educational Society. Nikolai Bezroukov. URL: http://www.softpanorama.org/Security/intrusion_detection.shtml.

Kusum Deep and Dipti. (2009). Reliability Optimization of Complex Systems through C-SOMGA, Journal of
Information and Computing Science Vol. 4, No. 3, pp. 163-172

Marakas, GM. (2003). Modern Data Warehousing, Mining, and Visualization: Core Concepts. Upper Saddle
River, NJ: Pearson Education.

86 ISSN 1913-8989 E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

McHugh, John. (2001). “Intrusion and Intrusion Detection.” Technical Report. CERT Coordination Center,
Software Engineering Institute, Carnegie Mellon University.

Pohlheim, H. (2001). Genetic and Evolutionary Algorithms: Principles, Methods and Algorithms. Genetic and
Evolutionary Algorithm Toolbox. Retrieved 10-11- 2009 from: http://www.geatbx.com/docu/algindex.html.

Selvakani S. and Rajesh R.S. (2007). Genetic Algorithm for framing rules for Intrusion Detection, International
Journal of Computer Science and Network Security, VOL.7 No.11, November 2007.

Sinclair, C. et al. (1999). An Application of Machine Learning to Network Intrusion Detection. Retrieved
10-11-2009 from: http://www.acsac.org/1999/papers/fri-b-1030-sinclair.pdf.

Wei Li. (2004). Using Genetic Algorithm for network intrusion detection (2004) In Proceedings of the United
States Department of Energy Cyber Security Group 2004 Training Conference at
http://www.security.cse.msstate.edu/docs/Publication

Whitley D. (1994). “A Genetic Algorithm Tutorial.” Statistics and Computing 4: 65-85.

Table 1. Data Representation Table (from Bankovic, 2006)

Attributes Range of values Example Values Description
A subnet with IP address
Source IP Address 0.0.0.0 ~255.255.255.255 | 209.11.22.7? 209.11.0.0 to

209.11.255.255

A subnet with IP address
Destination IP Address 0.0.0.0 ~255.255.255.255 | 130.18.176.?? 130.18.176.0 to
130.18.255.255

Source port number of the

Source Port Number 0~65535 42335 -
connection
Destination port number,
Destination Port Number | 0~65535 00080 indicates this is a http
service
. Duration of connection is
Duration 0~99999999 00000482 430
The connection is
State 1~20 11 terminated by the
originator, for internal use
Protocol 1~9) The pfoto.col for this
connection is tcp
Ngn}ber of byte sent by 0~9999999999 0000007320 The originator sent 7320
originator bytes of data
Number of bytes sent by 0~9999999999 000038891 The responder sent 38891
Responder bytes of data

Table 2. Table showing details of a network connection

Source IP 125.19.54.155
Destination IP 109.1.11.20
Destination Port 8184

Protocol 5

Originator Bytes 10500
Responder Byte 2500000

Published by Canadian Center of Science and Education 87

www.ccsenet.org/cis

Computer and Information Science

Vol. 3, No. 4; November 2010

Table 3. Experimental setup

Network records 50
Intrusions 8
Time In seconds
New intrusive patterns 10
Table 4. Attack detection rate table
Time Using GA Using SOMGA
T, 0.40006 0.60061
T, 0.67098 0.73800
T, 0.52004 0.55002
Ty 0.53036 0.62954
Ts 0.67846 0.76540
Table 5. False alarm rate table
Alarms Using GA Using SOMGA
A, 0.35 0.31
A, 0.305 0.30
A, 0.32 0.29
A, 0.31 0..29
As 0.30 0.285
Table 6. New attack identification table
Trials Using GA Using SOMGA
T, 0.8 0.7
T, 0.8 0.9
Ts 0.9 0.9
Average 0.83 0.83
Table 7. Evaluation Summary
IDS with GA IDS with SOMGA
Detection rate Better Good
False alarms rate Good Better
Ability to identify attacks Good Good
Adaptability/learning Good Good

88

ISSN 1913-8989

E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Generate Random o Fitness funtion Optimization

poulation criteria mat?
b b
Start !
Sort population by .
criteria Selection
Iy
Generate
New
population y
Mutation] Crossover

Figure 1. A model diagram for SOMGA

Craestinaticon 1IF Address

Source |IP Addres

Crestination FPort RMamibeaer

Duratiom

Bytes sent by O rigimnator

EByvtes sent by Responder

State

Lo
P rotocol

Source Port RMNumibeaer

Figure 2. Weight order for network audit log (Adapted from Polheim, 2001)

Published by Canadian Center of Science and Education

89

www.ccsenet.org/cis

Computer and Information Science

Vol. 3, No. 4; November 2010

Father
Mother
Crossover kﬁspr"”g
Point
chid 1 I
Chid 2 I
Figure 3. Crossover diagram
‘ 1|1|0| 1‘0| 1 |Befor-aMutstion
| 1| 1| o] o] o] 1 | Afcer Mutation
Figure 4. Mutation
-
DS java
checklDSChromosome();
maing); e
UniqueChromaosome();
equall); IDSFitnessFunction.java
getClass();
eveluate();
getlPvdAddress();
sourcalP String; gelSelectedResull();
targetlP String; getAddressFromint();
v targetPort int; getFitnessYalue();
' pmtg::’é;r"t'; . gelLastComputeFitness();
sen int;
IPv4Chromasomes java respandarByte int;
getSourcelP(); 1 IChrt:musometa_auhiact}
getTargetlP(); \ |F'Addlr§5s int;
getPort(); a_position int;
getSenderByte(); Inthv—iA.ddras?. int;
getResponderByte(); IPAddress String;
setSourcelP(); _
setTargetlP{);
satPaort();
setRespondarByte();
setSanderBytal);
sourcalP String;
targetlP String:
port int;
protocol int
senderByte int;
responderByte int;
-

90

Figure 5. UML Class Diagram

ISSN 1913-8989 E-ISSN 1913-8997

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

| 4| ID-SOMGA | 5

Loading ID-S0OMGA...

Figure 6. ID-SOMGA Starting up

: Qutput - IDS (run)

» This produced the following rule set:

@ if {the connection has following information:
i source IP address: 1Z5.43_25.104;
%’% destination IP address: 115%_8_115_23Z2;

destination port number: 4515;

the protocol used is DHNS;

the originator sent more than 234307 bytes of data;
gnd the responder sent more than 85258bytes of data }

then {log the intrusion and stop the connection}
e e e e e e e e ol e ol e e ol e ol ol e ol e e ol e ol ol e ol e e ol e e ol e ol ol e ol e e e e e e

Figure 7. Set of Rules

O Jarganeer - NetBeans IDE 6.7.1 lﬂ‘gu

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

5 & B @ [conseosrtoner] T D B G [search cui+D) |
: Qutput N

» Debugger Consales: | IDS (run) & |
E rumn: "
H

7 Navigatar

Displaying Chromosome 1 Input
Total eveluticn time: 3134 ms
This best sclution has a fitness value of Z538.0

5 Fil=s

This produced the following rule set:
if [the connection has following information:
source IF address: 125.46.64.11&;
destination IP address: 113.111.204.111;
destination port number: 51055;

] services

the protocol used is HITF;

the originator sent more than 251562 bytes of data;

and the responder sent more than 361430bytes of data }
then {log the intrusion and stop the connection}

|5| Projects

m

Displaying Chromosome Z Input
Totzl evolution time: 736l ms
This best solution has a fitness value of 98.0
It contained the following output:
Source IP: 125.71.12.164
Target IP: 115.142.78.108
Dort: #0555
Protocol: SORP
Sent Bytes: l&g55l
Response Bytes: 330271

Displaying Chromosome 3 Input

DS (run) < B @ 21% |ns

Figure 8. IDS checks through network log records

Published by Canadian Center of Science and Education 91

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Caution! ﬁ
& Intrusion suspected!

Connection from 10.32.114.11 terminated.

OK

Figure 9. A report of an Intrusion

False Positive Alarm with Detection Time

0.4
0.35 *
0.3 1 :M
0.25
0.2 -
0.15

0.1 1
0.05

—e— IDS with GA
—=— DS with SOMGA

Detection Time (sec.)

A1 A2 A3 A4 A5

False Alarm

Figure 10. False Positives Alarms

92 ISSN 1913-8989 E-ISSN 1913-8997

