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Abstract 
Software Architecture Recovery includes the extraction of design patterns. Patterns may be found using many 
techniques such as fielder vectors, using clustering methods, query languages etc. In this chapter, for evaluating design 
patterns clustering methods and the general notion of fielder vector are used. 
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1. Introduction 
A Software system is comprised of modules (B.W. Kernighan, S.Lin, 1970)( R.J. Wilson, J.J. Watkins, Graphs, 1990) 
(which includes procedures, files, functions etc.). In the beginning these modules should be classified into subsystems. 
For this purpose, construct a graph G= (V, E) such that each vertex is consists of the modules and each edge shows the 
relationship between these modules. After that we decide the classifications of the nodes into subsets, there by the 
cohesion between the nodes of class may be maximized and the coupling between the nodes of different classes be 
minimized. 
2. Modules Identification 
We cannot construct a graph, without identifying modules and relations. In this way the first step is to find the modules 
and its relations among them. 
The following ways can be adopted to find modules 
1) The easiest way is to treat each file as a module because the functions in the file are semantically related. 
2) We can consider groups of files as a module. But here the question is which files should be grouped? 
3) We can also consider procedure as a module, as we are following the easier approach i.e. considering each file as a 
module. 
3. Relations 
There will be three types of relations among files. 
f1 Useproc  f2: shows that there is one function in f1 which calls the other function in f2. 
f1 Usevar  f2:shows that there is one function in f1 which uses a variable defined  in  f2. 
f1 Implementby f2:shows that there is one header function in f1 which is   implemented in  f2. 
In this way, we can construct a graph, (B.W. Kernighan, S.Lin, 1970)( R.J. Wilson, J.J. Watkins, Graphs, 1990)  using 
these modules and relations among modules. The next step is to classify these modules into subsystems. So as to divide 
the graph into sub graphs for using the concept of Fiedler vector. First this we have to know what a Fiedler Vector (M. 
Fiedler) is. 
For the input graph G= (V, E) 
1) calculate the Adjacency matrix   
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2) Calculate the Degree matrix 
3) Calculate the Laplacian matrix 

 
The adjacency matrix is   

A (i , j) =1 if ( i, j) € E 
            =0 otherwise  

The degree matrix of the graph is the diagonal matrix of the row sum of the adjacency matrix  
  D= diag (deg (i);  i € V )  

            Deg (i) =∑ j € V  A( i, j) 
The Laplacian matrix L is the difference between diagonal matrix and Adjacency matrix (B. Mohar, 1997) 

 L=D-A            
 L (i,j) = ∑  (i,k)€E  A (i,k)     if i=j 

                 = - A (i,j) if i ≠ j  and (i , j) € E       
                 = 0 otherwise               
Now the matrix available is symmetric. The Eigen vector (1, 1 ….1) T   corresponds to trivial zero, Eigen values. With 
these Eigen values now, we get the Fiedler vector. We have to arrange first these Eigen values in the ascending order. 
The largest Eigen value and the second smallest Eigen value, whose corresponding Eigen vector is referred to as the 
Fiedler vector (M. Fiedler, 1975). 
In this way Fiedler vector is known to us. Now decompose the graph into sub graphs. In this, the path sequence for the 
nodes has to be calculated using a permutation π.  The sequence is that the elements of the edge weight matrix W 
decrease as the path is traversed   if   π (i) < π (j) < π (k) then W (i,j) > W (i,k)  and  W (j,k) > W (i,k)   
Consider a vector x- =( x1, x2,……..x |v|) of continuous variables xi . Calculate the penalty function 
g (x)- =∑ i=1  

|V| ∑j=1
|v| W(i,j)(xi -xj)2. 

The constraints of this function are 
 ∑ i=1  

|V| (xi )2=1 and ∑ i=1  
|V| xi=0.  

4. Decomposing a graph into sub graphs 
 By making use of Fiedler vector concept, the graph has to be divided into sub graphs (R.J. Wilson, J.J. Watkins, 1990). 
The neighbourhood of the node i consist of its center node together with its immediate neighbours connected by edges 
in the graph. 
          Ni 

^ = {i} U {u ;( i, u) € E} 
Assign each node measure of significance as the center of the neighbourhood. After assigning, it traverses the path 
defined by the Fiedler vector. Select center nodes on the basis of this measure to traverse the path. Assign weights to 
nodes based on the rank-order in the permutation. The weight assigned to the node is i€ V is wi=Rank (π (i)). After 
assigning weight to each node calculate the score function. The significance of the node will be known after giving 
score to each node. Score can be calculated by using a function  
 Si =C1 (deg (i)+|Ni Λ P|)+C2/ Wi 
Where C1 and C2 are threshold values that were detected heuristically. P is the set of nodes on the perimeter of the graph. 
The first term depends on the degree of the node and its proximity to the perimeter. In this way the nodes will be sorted 
according to their distance from the perimeter. This is proposed as it is better to decompose first from the outermost 
layer. The second term says that the first ranked nodes in the Fiedler vector are visited first. To locate the non 
overlapping neighbourhoods of the graph G, we use the scoring function. We traverse this list until we find a node K 
which is neither in the perimeter and also the calculated score should not exceed of its neighbours. If this condition gets 
satisfied then the node K together with its neighbours represents the first sub graph. This process will be repeated for all 
the nodes that satisfies the condition. Then we have to find out the sub graphs which are overlapping with its 
neighborhood. By doing this step the sub graphs are found. Thus Input the overlapping sub graphs to a clustering 
algorithm. There are two major approaches for subsystem classification. 
 1) Top down approach 
 2) Bottom up approach. 
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In the Top down approach, creation of subsystem includes all modules and then iteratively decomposes the current 
subsystem to create them at lower levels. In the bottom up approach, consider each module as a subsystem and then 
iteratively merge them to create those at higher levels. 
Top down approaches suffer from exponential complexity as in A* algorithm. So, follow the bottom up approach. 

1) For clustering, calculate the similarity between two nodes. 
2) Identify a set of nodes that are pair wise & most similar. After identifying, create a cluster by taking the union 

of the most similar cluster or creation of more than one cluster is also possible by taking the union of some of 
pairs of this set. 

5. Similarity/Dissimilarity measures 
Two nodes are said to be similar if they have either the highest similarity measure or lowest dissimilarity. 
If the component of the system is entirely connected to just other component, that connection should be computed as a 
lower dissimilarity than any other connection that is not complete. It is based on the percentage degree of vertices & 
common neighbours of the two vertices. That is, let p be the dissimilarity matrix and is defined by  
p(i,j)=deg(i)+deg(j)-2*b(i,j)/deg(i)+deg(j)-b(i,j)          
where deg(i)is the degree of the vertex i in the graph and b(i,j) is the number of common neighbour of vertices i and j. 
since  deg(i)+deg(j)-b(i,j) is the number of all vertices connected to exactly one of the i and j. note that if 
deg(i)=deg(j)=b(i,j) then p(i,j)=0 and so i and j are completely similar. Note also if i and j have no common neighbor 
then p(i,j)=1 and so i and j are completely dissimilar. 
After clustering now there is a need to optimize the solution. Then consider the measurement of intra-connectivity and 
inter-connectivity. 
5.1 Intra-connectivity 
It is a measure of connectivity between the two components that are grouped together in the same cluster. The degree of 
intra-connectivity should be high for good sub system partitioning , because many software level features are shared by 
the modules grouped with in a common subsystem. 
              Ai =mi/Ni

2 
Where Ai  is the intra-connectivity measurement 
        Ni is number of components 
        mi  intra-edge dependencies. 
5.2 Inter-connectivity 
It is a measure of connectivity between two distinct clusters. Inter connectivity should be very less. It is denoted by Eij     

                 Eij = mij/2NiNj    if i≠j 
             = 0 if i=j 
i and j are clusters consisting of  Ni Nj components. mij is inter dependency. 
The clusters will be derived. To apply the clustering techniques to software architecture recovery and reengineering, the 
object-attribute data matrix should be converted to object-object data matrix, so that the input reflects the 
interconnectivity of components. The clustering techniques are then used to minimize interconnections among 
components. Here we explain how the clustering technique could be used to support the identification of a pattern.  
There are some client classes that are accessible to some subsystem classes. With the existing software architecture 
recovery assistants, especially file names based approaches; the result may look perfect for the subsystem. In other 
words, the architecture recovered through this type of technique is close to or the same as the modules that are 
partitioned by the designer.  
Certainly, architecture capture is important and valuable. But we are also concerned with the ways to improve the 
architecture rather than simply capture it. Besides, in reality, the directory structures already often reveal the high level 
components of a system. Simply capturing software architecture at a higher level abstraction often has limited benefits. 
We get very different partitions by applying the clustering techniques to this example. In fact, the subsystem does not 
exist anymore, since many subsystem classes are directly accessed by or related to client classes. In other words, the 
clustering technique reveals that some classes in the subsystem are more closely related to client classes, which 
contradicts the design concept. Ideally, the subsystem classes should be grouped together as one unit. Clustering 
techniques could be used in this type of situations to enforce the architect to reason ways to keep the subsystem classes 
in a more cohesive manner. Facade pattern provides common interfaces to subsystem classes and facilitates separation 
of concerns. The subsystem classes in the new pattern-based design are grouped in the same unit according to the 
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clustering method, which is consistent with the original design. In this example, the clustering technique helps the 
adoption of a design pattern to reduce the coupling between the subsystem and the clients. 
6. Conclusion 
With respect to graph matching there is exponential complexity, however we have proven the complexity is linear in 
certain situations not for all the problems. Due to this problem, to decompose the matching problem into subunits 
(smaller graphs). On this subunits investigate suing edit distance method and use the Fiedler matrix for the partition of 
graph. This process may be a hierarchical framework which is suitable for parallel computation.  
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