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Abstract 
Reconstruction of biophysically detailed computer models for simulating electrical activities of heart cells 
provides a powerful tool to systematically investigate the ionic mechanisms underlying the genesis and control 
of cardiac rhythms. However, the fact that there is no unified or standard architecture for computational cell 
models, which were built by different research groups with specific purposes, obstructed profound applications 
of these models. In this study, object-oriented design patterns were employed to redesign and reconstitute the cell 
models and provided a more flexible, portable, and expansible infrastructure for modeling computational cell 
models. Meanwhile, using the proposed methods, a simulation platform has been developed for electrical 
activities of cell models with aims to offer a user-friendly interface to study the electrical activities of cardiac 
cells. Both the proposed design methods and the developed system were validated effectively by testing several 
typical cell models. 
Keywords: Object-oriented method, Design pattern, Computational cell model, Simulation platform  
1. Introduction 
Advances in cell biology and experimental technology have promoted the understanding of life behaviors of 
cells and generated massive amounts of biophysical data. As effective approaches, a great number of 
computational cell models based on different animal experimental data have been constructed and employed by 
cell biologists, bioengineers and other researchers to help them analyze and explain biological questions 
(Crampin, 2004; Noble, 2006). These computational models and related simulation systems have been playing a 
very important role in promoting the development of modern biology. However, the fact that there is no unified 
architecture or software system for these cell models, which were built by different research groups with various 
programming languages, obstructed profound applications of these models. Therefore it is crucial to develop a 
unified infrastructure or a user-friendly design approach for these cell models. In this study, object-oriented 
design patterns were used to reconstruct the architecture of these models, and to develop a modeling and 
simulation platform for computational cell models with aims to provide a user-friendly interface to study the 
electrical activities of cells. Some typical cell models have been employed for testing and validating the 
simulation system including the Luo-Rudy (LR) model (Luo & Rudy, 1994) for guinea pig ventricular cells, the 
Priebe-Beuckelman (PB) model (Priebe & Beuckelmann, 1998) and the ten Tusscher et al. (TNNP) model (ten 
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Tusscher et al., 2004) for human ventricular cells, and the Zhang et al. (Zhang) model (Zhang et al., 2000) for 
sinus node cells. As a result, the developed simulation system easily helped both cell biologists and mathematical 
modelers to build, validate, analyze and share their models. 
The rest of this paper is organized as follows. Section 2 presents three important objected-oriented design 
patterns and their applications for cell models. Section 3 develops a framework and simulation system for 
computational cell models and analyses features of this system. At last, section 4 gives discussions and 
conclusions about the system. 
2. Object-oriented design for cell models 
In the last 50 years, a number of computational cell models had been constructed and employed to study the 
underlying electrophysiological mechanism of cells. These computational models mostly focused on their 
consistency with the experimental results, and they were usually expressed by lots of self-defined variables and 
many complex mathematical equations, and coded by different programming languages (Fortran, C, C++, Java, 
Matlab etc.). This made them very hard to be reused for other studies and extended to larger scale applications or 
to support unforeseeable functions. However, these models did share some common features in development, 
such as the structure of mathematical equations that was similar to the first identified mathematical cell model 
Hodgkin and Huxley model (Hodgkin and Huxley, 1952) and the methods to derive model parameters and their 
validation against experimental data. Developing a unified infrastructure for these models is pretty plausible, 
interesting and useful. The object-oriented design methods suit this task best. With the object-oriented methods, 
all cell models can be abstracted into the following four parts (Figure 1): 
Structure: to define the geometric information of a single cell 
Concentration: to specify the intra- and extra- cellular ionic concentrations 
Ion channel: to describe the kinetics of ion channels 
Conductance: to define the maximal conductance of ion channels.  
An object-oriented software infrastructure, which is designed to reconstitute mathematical cell models, consists 
of three design patterns including Abstract Factory pattern, Decorator pattern and Bridge pattern, as shown in 
Figure 2. The detailed illustration is depicted as the following: 
2.1 Abstract Factory pattern for constructing uniform infrastructure of cell models 
All biological users would expect that the users just need to understand functions of cell models and do not 
concern how to compute states, variables and equations of cell models. A cell model can be created as easily as 
making various shape cookies with templates and can be implemented anywhere for any applications with the 
standard interface. Figure 3 shows the Abstract Factory pattern for creating concrete objects for various cell 
models with the standard interface createCell(). Here, the Cell and AbstractCellFactory classes are equivalent to 
the AbstractProduct and the AbstractFactory in the Abstract Factory pattern respectively. The LRdCell, PBCell, 
TenCell and ZhangCell classes are substantiated subclasses of the Cell class and perform specific details of each 
cell model. The LRdCellFactory, PBCellFactory, TenCellFactory and ZhangCellFactory classes are responsible 
for implementing the uniform interface createCell() shared by the AbstractCellFactory and materializing cell 
instances for relative Cell subclasses respectively. The users can just access general properties of cell models 
such as Structure, Concentration and Conductance, but they do not know the details and processes to create and 
compute cell model objects It is the merit of using the Abstract Factory pattern that isolates cell models from 
their specific applications, maintains two parts independently and -makes it flexible and direct for adding new 
cell models into the existing applications through a uniform interface ctreateCell(). 
2.2 Decorator pattern for complex applications of cell models 
Inheritance is a general way to add new functionalities into cell models by creating new classes. When a mass of 
path-physiological conditions need to be considered in a simulation study, it will produce unnecessarily a large 
number of inherited subclasses that causes the exploded increase of inherited classes, enhances the complexity of 
a simulation system and limits the flexibility of cell model development and maintenance. An approach called 
Decorator pattern is employed here to solve this problem. The pattern attaches additional responsibilities to an 
object dynamically and provides a flexible alternative to subclassing for extending functionality (Gamma et al., 
1994). The key of Decorator pattern maintains a reference of the original cell object and forwards requests to the 
object before or after implementing additional functions for simulating path-physiological conditions. Through 
the pattern, additional responsibilities were integrated to cell models like playing the toy bricks. 
As shown in Figure 4, the designed Decorator pattern has four major elements (Cell, ConcreteCell, 



Computer and Information Science                                             www.ccsenet.org/cis 

 108

CellDecorator and ConcreteDecorator). The Cell class is the same class as mentioned above (see 2.1 section) 
and defines an extending interface update (), which needs to be decorated. The ConcreteCell stands for the 
subclasses LRdCell, PBCell, TenCell and ZhangCell. The abstract class CellDecorator declares an interface 
update () that conforms to the interface update () of the Cell class and maintains a reference to a cell object. The 
ConcreteDecorator classes (BlockerDecorator, MedicineDeractor), which are subclasses of the CellDecorator 
class, are responsible for adding additional functions to the reference of a Cell object inherited from the parent 
class CellDecorator, forwarding requests to the Cell object and performing additional actions before or after 
forwarding.  
Using the Decorator pattern has at least two major benefits:  
1) to increase additional functions to Cell objects dynamically and transparently. The decorated Cell object can 
define and perform additional functions dynamically or independently in a new subclass of ConcreteDecorator 
for unforeseen extensions through the overriding and forwarding mechanism. The subclass CellDecorator only 
changes a Cell object from the outside and the Cell object doesn’t have to know anything about the decorated 
objects. Thus, the decorated objects are transparent to the objects that are related to the original Cell object and 
no influence on any existing applications. 
2) to simulate complex electrical activities of cells by simple composition of multiple decorator classes. Instead 
of designing complex inherited Cell subclasses to support all kinds of possible compositions of functions, the 
Decorator pattern offers a pay-as-you-go approach to add new specific functions or composite several existing 
functions to a Cell model. For example, supposing our aim to simulate the actions of antiarrthymic drugs on a 
morbid cell, this can be achieved by nesting two specific decorator objects (BlockerDecorator and 
MedicineDecorator objects) step by step to a original Cell object (as shown in Figure 5). To produce a morbid 
cell, the BlockerDecorator object reduces the conductance of a certain single ion channel before forwarding 
requests to the original cell object, and then the MedicineDecorator object nests medicine interference to treat 
the block mentioned at previous step by forwarding requests to the morbid object before calling the morbid 
object. Through the nest of different decorator objects, an unlimited number of functions can be allowed to 
append the simulation system and - to simulate more complex electrical activities of cells. 
2.3 Bridge pattern for flexible implementations of multiple numerical solvers 
In general, the computational cell models are made of ordinary differential equations (ODEs) and partial 
differential equations (PDEs). There are many numerical methods to solve ODEs and PDEs such as the Euler 
method, the Runge-Kutta method (RK2 Method) and the Rush-Larsen method (RL Method) (Rush and Larsen, 
1978). These methods are quite different in the sections of time cost and accuracy. In order to avoid repeatedly 
coding the numerical solvers for each specific application, it is considered that Bridge pattern which is a 
structural pattern used to decouple an abstraction from its implementation so that the two can vary independently 
(Gamma et al., 1994). It is suitable to deal with this problem that an abstraction (mathematical equations of 
ODEs and PDEs) and many implementations (many numerical solution methods).  
The Bridge pattern decouples an abstraction of mathematical formula from their numerical solvers as depicted in 
Figure 6. Referring to the relationship of cars and engines, the abstract class Cell is like the car and while the 
abstract class AbstractMethod is like the engine and their subclasses of the Cell or AbstractMethod classes are 
specific brands for cars or engines. The class AbstractMethod defines a public operation solution() which is like 
the uniform interface that the car fires the engine, that is, a car can use various brand engines whilst an engine 
can be equipped into different brand cars. The class Cell just declares the description of static mathematical 
equations of all cell models and maintains a reference to an instance of a certain subclass of the AbstractMethod, 
but do not specify any numerical solver. The class AbstractMethod defines a uniform solution procedure solution 
() for all special numerical solution algorithms which are completed by concrete subclasses such as Euler 
Method, RK2 Method and RL Method. The reference is like a bridge connecting cell model objects to their 
implementation of a certain numerical solution and cell model objects by calling the solution() method in the 
reference to choose a specific solver. Except to maintain cell models and their implementations independently, 
the Bridge pattern has another advantage that cell models can switch various numerical methods at run-time. The 
cell action potential (AP) has different profiles from the Phase 0 to the Phase 4. The profiles of the Phase 0, 1 
and 3 are steep, thus needs to use numerical methods with higher computing precision (e.g. the RK2 method). 
But the profiles of the Phase 2 and 4 of AP are oppositely steady, it is suitable to use the method with lower 
computing precision and less computing time (i.e. the Euler method). Because expression and implementation of 
ODEs and PDEs are separated in the pattern, it allows that a cell model to reselect or switch the instance of 
numerical solution methods according to different computing precision requirements at run-time. In turn, it can 
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keep computational precision and meanwhile reduce computing time cost. 
3. The developed simulation system for computational cell models  
The framework of simulation system consists of six layers as shown in Figure 7. Every layer is briefly illustrated 
from bottom to top as below. 
(1) Extensible applications layer  
The layer is composed of plug-in programs for expanding functions of the simulation system. For example, the 
myocardiacal cell modeling language editor (MCML Editor) and Convertor Engine are plug-in programs that 
were developed by another project of our group (Wang et al., 2007). The MCML Editor module is a program for 
developing and editing cell models with XML language and the Convertor Engine module is responsible for 
automatically translating cell models built by MCML Editor into the .class Java file which can be directly 
executed in the simulation system. With two plug-in programs, novel cell models can be imported into the 
simulation system automatically and conveniently. 
(2) Plug-in Layer 
The Eclipse rich client platform (RCP) is an open-source platform for building and deploying rich client 
applications. The plug-in architecture of RCP provides a highly effective method for developing pluggable and 
dynamically extensible systems. With the architecture, all expandable applications (i.e. MCML Editor and 
Convertor Engine) can be easily integrated into the main system as plug-in programs. 
(3) Simulating and computing layer  
The Simulating and Computing Layer includes principle functions of the system. It is made of several important 
functional modules Algorithms Supporting, Cell Models Management, Parameters Controlling and Protocols 
Controlling. The Algorithms Supporting module offers all numeral solution methods for the simulation. The Cell 
Models Management module organizes and views all cell models by a tree structure. The Parameters Controlling 
module adds, deletes and updates the properties of cell models under normal or path-physiological conditions. 
The last module Protocol Controlling defines stimulating protocols on cell models in order to simulate all kinds 
of electrical activities of cells. 
(4) Simulation scheduler layer 
The Simulation Scheduler Layer is the core of the whole simulation system and is responsible for interacting 
with customers, calling logic functional modules, controlling the whole simulation process, and responding the 
users’ requests. 
(5) Data container layer 
The Data Container Layer is responsible for storing, cataloging, searching and organizing all result data. There 
are a lot of result data such as membrane voltage, ion currents, ion concentrations and ion channel conductance. 
The users can self-define their interested result data to view. The Data Container Layer provides many data 
containers as clones of original result data that the customers can reorganize and select their interested data to 
investigate and display.  
(6) Data expression layer 
The Data Expression Layer includes two parts Data Analyzing and Data Plotting. The Data Analyzing 
component has some basic statistic functions (i.e. means and standard deviation). The Data Plotting component 
takes charge of plotting data depended on the special view self-defined by users, showing the value at the 
appointed position, zooming in or out the simulated data and comparing computed data with experimental data. 
The simulation system distinguishes itself with the following significant features.  
(1) User-friendly interface (UI) 
As shown in Figure 8, it provides a user-friendly interface and shows all input and output properties of cell 
models such as gated variables, individual ion current, and membrane action potentials. Simulated results can be 
exhibited as graphs and tables in the middle of the window. Customers can organize the plotting curves by 
themselves based on their interested simulated results, directly get the value of a certain point or the distance 
between two appointed positions with cursors and zoom in or out their interested field through mouse to resize 
and repaint the graphs.  
(2) Virtual patch-clamp experiments 
It performs a virtual patch-clamp experimental environment. The patch-clamp is a very important technique to 
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investigate ion channel properties of cells (Molleman, 2003). The system can simulate the kinetics of ion 
currents cross cell membrane under the standard patch protocol and automatically plot the current – voltage 
relationship (I-V) curve that represents the electrical properties of ion channels (Fig. 9A). The simulation system 
also permits users to freely define their patch-clamp protocol with sine/cosine or stochastic signals and enriches 
the experimental means that is hard to perform in real biological environment.  
(3) Action potential duration (APD) restitution curve 
It is known that the steepness of APD restitution curve plays a critical role in analyzing stability of cell models. 
Therefore, there is a built-in algorithm to compute APD restitution curve, as depicted in Figure 9B. Usual 
protocols such as the S1-S2 protocol and the dynamic protocol have been programmed in the software to 
investigate the relationship between APDs and diastole intervals. In the simulation system, customers operate the 
mouse to capture the measured APDs, and then the APD restitution curve can be characterized automatically.  
(4) Hypothesized path-physiological study of cells 
The underlying path-physiological mechanism of cells is electrical and mechanical dysfunctions of ion channels. 
The simulation system can model alternations of ion channels by blocking ion channels thoroughly or partially, 
changing intercellular or extracellular ion concentrations and remodeling activation or inactivation kinetics of 
ion channels. The customers can do some drug hypothesized experiments regarding the changes of ion channels 
under physiological and pathological conditions.  
(5) Extensible applications 
It provides a useful function of editing or updating cell models by an extensible application program MCML 
Editor. Cell biologists and computational modelers do not need write any code and just do some simple 
operations by mouses and keyboards to build their cell models through the MCML Editor, as illustrated in Figure 
10. There is another extensible application program the Convertor Engine modules, which automatically 
translates cell models into executed Java codes. 
4. Discussion and conclusions 
In this study, the simulation system has been validated effectively by models of different cell types that include 
the LR model, the PB model, the TNNP model and the Zhang model. Most of cell models were developed by a 
combination of independent ion channels and each ion channel was modeled by some dependent mathematical 
components which are very similar to the first mathematical cell model Hodgkin and Huxley model. The cell 
models share some common features in the structure of mathematical equations, and the methods to derive 
model parameters from experimental data. (in Table 1).Therefore, the simulation system is designed for cell 
biologists and mathematical modelers and it is able to construct computational cell models in a user-friendly 
manner and validate their models with simulated or experimental data. The simulation system is programmed by 
Java and is compatible to operation systems of both Windows series (WindowsXP, Vista and Windows 7) and 
Linux series (Redhat and Ubuntu). E-cell (Tomita et al., 1997) and Virtual Cell (Loew & Schaff, 2001; 
Slepchenko et al., 2003) are two popular computer software environments for cell modeling and simulating. 
Compared with them, our platform supports some characterized functions for analyzing electrical activities of 
computational cells such as automatically plotting the I-V curve and semi-automatically drawing the APD 
restitution curve. Various cell models can be expressed in a unified pattern, which enables an easy and 
convenient way to incorporate new cell models into the system. The system also enables appending of new 
functionalities or numerical methods dynamically and unlimitedly, and reselecting or switching numerical 
solvers at run-time casually without changing original programs and recompiling. In conclusion, the simulation 
system provides a powerful tool to study the electrical activities of cells and the ionic mechanism(s) underlying 
the genesis of cardiac action potentials. 
References 
Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., & Tawhai, M. (2004). Computational 
physiology and the Physiome Project. Exp Physiol, 89, pp. 1-26. 
Gamma. E., Helm. R., Johnson.R. , Vlissides. J.M. (1994). Design Patterns: Elements of Reusable Object-Orient 
Software., (1st ed.). Addison Wesley. (Chapter 3 and 4). 
HODGKIN, A.L. & HUXLEY, A.F. (1952). A quantitative description of membrane current and its application to 
conduction and excitation in nerve. J Physiol, 117, pp. 500-544. 
Loew, L.M. & Schaff, J.C. (2001). The Virtual Cell: a software environment for computational cell biology. 
Trends Biotechnol, 19, pp. 401-406. 



Computer and Information Science                                          Vol. 3, No. 2; May 2010 

 111

Luo, C.H. & Rudy, Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic 
currents and concentration changes. Circ Res, 74, pp. 1071-1096. 
Moraru, I.I., Schaff, J.C., Slepchenko, B.M., & Loew, L.M. (2002). The virtual cell: an integrated modeling 
environment for experimental and computational cell biology. Ann N Y Acad Sci, 971, pp. 595-596.  
Noble, D. (2006). Systems biology and the heart. Biosystems, 83, pp. 75-80. 
Priebe, L. & Beuckelmann, D.J. (1998). Simulation study of cellular electric properties in heart failure. Circ Res, 
82, pp. 1206-1223.  
Rush, S. & Larsen, H. (1978). A practical algorithm for solving dynamic membrane equations. IEEE Trans 
Biomed Eng, 25, pp. 389-392.  
Slepchenko, B.M., Schaff, J.C., Macara, I., & Loew, L.M. (2003). Quantitative cell biology with the Virtual Cell. 
Trends Cell Biol, 13, pp. 570-576.  
ten Tusscher, K.H., Noble, D., Noble, P.J., & Panfilov, A.V. (2004). A model for human ventricular tissue. Am J 
Physiol Heart Circ Physiol, 286, pp. H1573-89.  
Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., 
Venter, J.C., & Hutchison, C.A. (1997). E-CELL: Software Environment for Whole Cell Simulation. Genome 
Inform Ser Workshop Genome Inform, 8, pp. 147-155.  
Wang KQ, Yang GS, Yuan YF, Zhang HZ. (2007). MCML: an XML-based Modeling Language for Myocardial 
Cell Electrophysiology. Proceedings of the International Conference on Life System Modeling and Simulation, 
pp. 392-395.  
Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T., & Boyett, M.R. (2000). Mathematical 
models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ 
Physiol, 279, pp. H397-421. 
Molleman A. (2003). Patch clamping: an introductory guide to patch clamp electrophysiology. West Sussex: 
John Wiley & Sons Ltd. 
 
Table 1. An example of unified description about several typical cell models with the Object-Oriented method in 
the simulation system 

Cell model LR model PB model TNNP model Zhang model 

Current INa INa INa INa 

 [Na]o 135 mMol/L 135 mMol/L 140 mMol/L 140 mMol/L 

 [Na]i 15 mMol/L 15 mMol/L variable 8 mMol/L 

 ENa 2.1972 2.1972 variable 2.8622 

 GNa 16 nS/pF 16 nS/pF 14.838 nS/pF 1.85 nS/pF 

 m Yes Yes Yes Yes 

 h Yes Yes Yes Yes 

 j Yes Yes Yes No 

MathML GNa*m3*h*j*(V-ENa) GNa*m3*h*j*(V-ENa) GNa*m3*h*j*(V-ENa) 
GNa*m3*h*[Na]o *V* 

[(e(V-E
Na

)*F/RT-1)/(eVF/RT-1)] 

, Gated current; , Concentration; , Electrical potential; , Conductance; , Gated variable; , 
MathML equation.  
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Figure 1. Abstract Architecture of Cell Models 

 

 

 
 

Figure 2. The Software Architecture of Cell Models Based on Object-Oriented Design Patterns 
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Figure 3. Creating Concrete Instances for Different Cell Models with the Abstract Factory Pattern 

 
 

 
Figure 4. Using the Decorator Pattern to Extend Additional Functions of Cell Objects 
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Figure 5. Nesting Two Decorator Objects to the Original Cell Object 

 

 
Figure 6. The Bridge Pattern to Support Multiple Numerical Method Implementations 
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Figure 7. The Framework of the Simulation System 
 

 
Figure 8. A Snapshot of the Simulation System 
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a) I-V relationship curve 

 
b) APD restitution curve 

Figure 9. Simulated I-V Relationship Curve and APD Restitution Curve for Cell Model Study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. A Snapshot of the MCML Editor 


