
Computer and Information Science www.ccsenet.org/cis

 106

A Simulation System for Computational Cell Models Based on
Object-Oriented Design Patterns

Kuanquan Wang (Corresponding author)
School of Computer Science and Technology, Harbin Institute of Technology

P.O. box 332, Harbin 150001, China
Tel: 86-451-8641-2871 E-mail: wangkq@hit.edu.cn

Yongfeng Yuan

School of Computer Science and Technology, Harbin Institute of Technology
P.O. box 332, Harbin 150001, China

Tel: 86-451-8641-2871 E-mail: yuanyongfeng@gmail.com

Jie Li
School of Computer Science and Technology, Harbin Institute of Technology

P.O. box 332, Harbin 150001, China
Tel: 86-451-8641-2871 E-mail: lj_ren@126.com

The research is financed by the National Nature Science Foundation of China (No. 60571025 and No. 60872099)
and the National High Technology Project of China (No. 2006AA01Z308).

Abstract
Reconstruction of biophysically detailed computer models for simulating electrical activities of heart cells
provides a powerful tool to systematically investigate the ionic mechanisms underlying the genesis and control
of cardiac rhythms. However, the fact that there is no unified or standard architecture for computational cell
models, which were built by different research groups with specific purposes, obstructed profound applications
of these models. In this study, object-oriented design patterns were employed to redesign and reconstitute the cell
models and provided a more flexible, portable, and expansible infrastructure for modeling computational cell
models. Meanwhile, using the proposed methods, a simulation platform has been developed for electrical
activities of cell models with aims to offer a user-friendly interface to study the electrical activities of cardiac
cells. Both the proposed design methods and the developed system were validated effectively by testing several
typical cell models.
Keywords: Object-oriented method, Design pattern, Computational cell model, Simulation platform
1. Introduction
Advances in cell biology and experimental technology have promoted the understanding of life behaviors of
cells and generated massive amounts of biophysical data. As effective approaches, a great number of
computational cell models based on different animal experimental data have been constructed and employed by
cell biologists, bioengineers and other researchers to help them analyze and explain biological questions
(Crampin, 2004; Noble, 2006). These computational models and related simulation systems have been playing a
very important role in promoting the development of modern biology. However, the fact that there is no unified
architecture or software system for these cell models, which were built by different research groups with various
programming languages, obstructed profound applications of these models. Therefore it is crucial to develop a
unified infrastructure or a user-friendly design approach for these cell models. In this study, object-oriented
design patterns were used to reconstruct the architecture of these models, and to develop a modeling and
simulation platform for computational cell models with aims to provide a user-friendly interface to study the
electrical activities of cells. Some typical cell models have been employed for testing and validating the
simulation system including the Luo-Rudy (LR) model (Luo & Rudy, 1994) for guinea pig ventricular cells, the
Priebe-Beuckelman (PB) model (Priebe & Beuckelmann, 1998) and the ten Tusscher et al. (TNNP) model (ten

Computer and Information Science Vol. 3, No. 2; May 2010

 107

Tusscher et al., 2004) for human ventricular cells, and the Zhang et al. (Zhang) model (Zhang et al., 2000) for
sinus node cells. As a result, the developed simulation system easily helped both cell biologists and mathematical
modelers to build, validate, analyze and share their models.
The rest of this paper is organized as follows. Section 2 presents three important objected-oriented design
patterns and their applications for cell models. Section 3 develops a framework and simulation system for
computational cell models and analyses features of this system. At last, section 4 gives discussions and
conclusions about the system.
2. Object-oriented design for cell models
In the last 50 years, a number of computational cell models had been constructed and employed to study the
underlying electrophysiological mechanism of cells. These computational models mostly focused on their
consistency with the experimental results, and they were usually expressed by lots of self-defined variables and
many complex mathematical equations, and coded by different programming languages (Fortran, C, C++, Java,
Matlab etc.). This made them very hard to be reused for other studies and extended to larger scale applications or
to support unforeseeable functions. However, these models did share some common features in development,
such as the structure of mathematical equations that was similar to the first identified mathematical cell model
Hodgkin and Huxley model (Hodgkin and Huxley, 1952) and the methods to derive model parameters and their
validation against experimental data. Developing a unified infrastructure for these models is pretty plausible,
interesting and useful. The object-oriented design methods suit this task best. With the object-oriented methods,
all cell models can be abstracted into the following four parts (Figure 1):
Structure: to define the geometric information of a single cell
Concentration: to specify the intra- and extra- cellular ionic concentrations
Ion channel: to describe the kinetics of ion channels
Conductance: to define the maximal conductance of ion channels.
An object-oriented software infrastructure, which is designed to reconstitute mathematical cell models, consists
of three design patterns including Abstract Factory pattern, Decorator pattern and Bridge pattern, as shown in
Figure 2. The detailed illustration is depicted as the following:
2.1 Abstract Factory pattern for constructing uniform infrastructure of cell models
All biological users would expect that the users just need to understand functions of cell models and do not
concern how to compute states, variables and equations of cell models. A cell model can be created as easily as
making various shape cookies with templates and can be implemented anywhere for any applications with the
standard interface. Figure 3 shows the Abstract Factory pattern for creating concrete objects for various cell
models with the standard interface createCell(). Here, the Cell and AbstractCellFactory classes are equivalent to
the AbstractProduct and the AbstractFactory in the Abstract Factory pattern respectively. The LRdCell, PBCell,
TenCell and ZhangCell classes are substantiated subclasses of the Cell class and perform specific details of each
cell model. The LRdCellFactory, PBCellFactory, TenCellFactory and ZhangCellFactory classes are responsible
for implementing the uniform interface createCell() shared by the AbstractCellFactory and materializing cell
instances for relative Cell subclasses respectively. The users can just access general properties of cell models
such as Structure, Concentration and Conductance, but they do not know the details and processes to create and
compute cell model objects It is the merit of using the Abstract Factory pattern that isolates cell models from
their specific applications, maintains two parts independently and -makes it flexible and direct for adding new
cell models into the existing applications through a uniform interface ctreateCell().
2.2 Decorator pattern for complex applications of cell models
Inheritance is a general way to add new functionalities into cell models by creating new classes. When a mass of
path-physiological conditions need to be considered in a simulation study, it will produce unnecessarily a large
number of inherited subclasses that causes the exploded increase of inherited classes, enhances the complexity of
a simulation system and limits the flexibility of cell model development and maintenance. An approach called
Decorator pattern is employed here to solve this problem. The pattern attaches additional responsibilities to an
object dynamically and provides a flexible alternative to subclassing for extending functionality (Gamma et al.,
1994). The key of Decorator pattern maintains a reference of the original cell object and forwards requests to the
object before or after implementing additional functions for simulating path-physiological conditions. Through
the pattern, additional responsibilities were integrated to cell models like playing the toy bricks.
As shown in Figure 4, the designed Decorator pattern has four major elements (Cell, ConcreteCell,

Computer and Information Science www.ccsenet.org/cis

 108

CellDecorator and ConcreteDecorator). The Cell class is the same class as mentioned above (see 2.1 section)
and defines an extending interface update (), which needs to be decorated. The ConcreteCell stands for the
subclasses LRdCell, PBCell, TenCell and ZhangCell. The abstract class CellDecorator declares an interface
update () that conforms to the interface update () of the Cell class and maintains a reference to a cell object. The
ConcreteDecorator classes (BlockerDecorator, MedicineDeractor), which are subclasses of the CellDecorator
class, are responsible for adding additional functions to the reference of a Cell object inherited from the parent
class CellDecorator, forwarding requests to the Cell object and performing additional actions before or after
forwarding.
Using the Decorator pattern has at least two major benefits:
1) to increase additional functions to Cell objects dynamically and transparently. The decorated Cell object can
define and perform additional functions dynamically or independently in a new subclass of ConcreteDecorator
for unforeseen extensions through the overriding and forwarding mechanism. The subclass CellDecorator only
changes a Cell object from the outside and the Cell object doesn’t have to know anything about the decorated
objects. Thus, the decorated objects are transparent to the objects that are related to the original Cell object and
no influence on any existing applications.
2) to simulate complex electrical activities of cells by simple composition of multiple decorator classes. Instead
of designing complex inherited Cell subclasses to support all kinds of possible compositions of functions, the
Decorator pattern offers a pay-as-you-go approach to add new specific functions or composite several existing
functions to a Cell model. For example, supposing our aim to simulate the actions of antiarrthymic drugs on a
morbid cell, this can be achieved by nesting two specific decorator objects (BlockerDecorator and
MedicineDecorator objects) step by step to a original Cell object (as shown in Figure 5). To produce a morbid
cell, the BlockerDecorator object reduces the conductance of a certain single ion channel before forwarding
requests to the original cell object, and then the MedicineDecorator object nests medicine interference to treat
the block mentioned at previous step by forwarding requests to the morbid object before calling the morbid
object. Through the nest of different decorator objects, an unlimited number of functions can be allowed to
append the simulation system and - to simulate more complex electrical activities of cells.
2.3 Bridge pattern for flexible implementations of multiple numerical solvers
In general, the computational cell models are made of ordinary differential equations (ODEs) and partial
differential equations (PDEs). There are many numerical methods to solve ODEs and PDEs such as the Euler
method, the Runge-Kutta method (RK2 Method) and the Rush-Larsen method (RL Method) (Rush and Larsen,
1978). These methods are quite different in the sections of time cost and accuracy. In order to avoid repeatedly
coding the numerical solvers for each specific application, it is considered that Bridge pattern which is a
structural pattern used to decouple an abstraction from its implementation so that the two can vary independently
(Gamma et al., 1994). It is suitable to deal with this problem that an abstraction (mathematical equations of
ODEs and PDEs) and many implementations (many numerical solution methods).
The Bridge pattern decouples an abstraction of mathematical formula from their numerical solvers as depicted in
Figure 6. Referring to the relationship of cars and engines, the abstract class Cell is like the car and while the
abstract class AbstractMethod is like the engine and their subclasses of the Cell or AbstractMethod classes are
specific brands for cars or engines. The class AbstractMethod defines a public operation solution() which is like
the uniform interface that the car fires the engine, that is, a car can use various brand engines whilst an engine
can be equipped into different brand cars. The class Cell just declares the description of static mathematical
equations of all cell models and maintains a reference to an instance of a certain subclass of the AbstractMethod,
but do not specify any numerical solver. The class AbstractMethod defines a uniform solution procedure solution
() for all special numerical solution algorithms which are completed by concrete subclasses such as Euler
Method, RK2 Method and RL Method. The reference is like a bridge connecting cell model objects to their
implementation of a certain numerical solution and cell model objects by calling the solution() method in the
reference to choose a specific solver. Except to maintain cell models and their implementations independently,
the Bridge pattern has another advantage that cell models can switch various numerical methods at run-time. The
cell action potential (AP) has different profiles from the Phase 0 to the Phase 4. The profiles of the Phase 0, 1
and 3 are steep, thus needs to use numerical methods with higher computing precision (e.g. the RK2 method).
But the profiles of the Phase 2 and 4 of AP are oppositely steady, it is suitable to use the method with lower
computing precision and less computing time (i.e. the Euler method). Because expression and implementation of
ODEs and PDEs are separated in the pattern, it allows that a cell model to reselect or switch the instance of
numerical solution methods according to different computing precision requirements at run-time. In turn, it can

Computer and Information Science Vol. 3, No. 2; May 2010

 109

keep computational precision and meanwhile reduce computing time cost.
3. The developed simulation system for computational cell models
The framework of simulation system consists of six layers as shown in Figure 7. Every layer is briefly illustrated
from bottom to top as below.
(1) Extensible applications layer
The layer is composed of plug-in programs for expanding functions of the simulation system. For example, the
myocardiacal cell modeling language editor (MCML Editor) and Convertor Engine are plug-in programs that
were developed by another project of our group (Wang et al., 2007). The MCML Editor module is a program for
developing and editing cell models with XML language and the Convertor Engine module is responsible for
automatically translating cell models built by MCML Editor into the .class Java file which can be directly
executed in the simulation system. With two plug-in programs, novel cell models can be imported into the
simulation system automatically and conveniently.
(2) Plug-in Layer
The Eclipse rich client platform (RCP) is an open-source platform for building and deploying rich client
applications. The plug-in architecture of RCP provides a highly effective method for developing pluggable and
dynamically extensible systems. With the architecture, all expandable applications (i.e. MCML Editor and
Convertor Engine) can be easily integrated into the main system as plug-in programs.
(3) Simulating and computing layer
The Simulating and Computing Layer includes principle functions of the system. It is made of several important
functional modules Algorithms Supporting, Cell Models Management, Parameters Controlling and Protocols
Controlling. The Algorithms Supporting module offers all numeral solution methods for the simulation. The Cell
Models Management module organizes and views all cell models by a tree structure. The Parameters Controlling
module adds, deletes and updates the properties of cell models under normal or path-physiological conditions.
The last module Protocol Controlling defines stimulating protocols on cell models in order to simulate all kinds
of electrical activities of cells.
(4) Simulation scheduler layer
The Simulation Scheduler Layer is the core of the whole simulation system and is responsible for interacting
with customers, calling logic functional modules, controlling the whole simulation process, and responding the
users’ requests.
(5) Data container layer
The Data Container Layer is responsible for storing, cataloging, searching and organizing all result data. There
are a lot of result data such as membrane voltage, ion currents, ion concentrations and ion channel conductance.
The users can self-define their interested result data to view. The Data Container Layer provides many data
containers as clones of original result data that the customers can reorganize and select their interested data to
investigate and display.
(6) Data expression layer
The Data Expression Layer includes two parts Data Analyzing and Data Plotting. The Data Analyzing
component has some basic statistic functions (i.e. means and standard deviation). The Data Plotting component
takes charge of plotting data depended on the special view self-defined by users, showing the value at the
appointed position, zooming in or out the simulated data and comparing computed data with experimental data.
The simulation system distinguishes itself with the following significant features.
(1) User-friendly interface (UI)
As shown in Figure 8, it provides a user-friendly interface and shows all input and output properties of cell
models such as gated variables, individual ion current, and membrane action potentials. Simulated results can be
exhibited as graphs and tables in the middle of the window. Customers can organize the plotting curves by
themselves based on their interested simulated results, directly get the value of a certain point or the distance
between two appointed positions with cursors and zoom in or out their interested field through mouse to resize
and repaint the graphs.
(2) Virtual patch-clamp experiments
It performs a virtual patch-clamp experimental environment. The patch-clamp is a very important technique to

Computer and Information Science www.ccsenet.org/cis

 110

investigate ion channel properties of cells (Molleman, 2003). The system can simulate the kinetics of ion
currents cross cell membrane under the standard patch protocol and automatically plot the current – voltage
relationship (I-V) curve that represents the electrical properties of ion channels (Fig. 9A). The simulation system
also permits users to freely define their patch-clamp protocol with sine/cosine or stochastic signals and enriches
the experimental means that is hard to perform in real biological environment.
(3) Action potential duration (APD) restitution curve
It is known that the steepness of APD restitution curve plays a critical role in analyzing stability of cell models.
Therefore, there is a built-in algorithm to compute APD restitution curve, as depicted in Figure 9B. Usual
protocols such as the S1-S2 protocol and the dynamic protocol have been programmed in the software to
investigate the relationship between APDs and diastole intervals. In the simulation system, customers operate the
mouse to capture the measured APDs, and then the APD restitution curve can be characterized automatically.
(4) Hypothesized path-physiological study of cells
The underlying path-physiological mechanism of cells is electrical and mechanical dysfunctions of ion channels.
The simulation system can model alternations of ion channels by blocking ion channels thoroughly or partially,
changing intercellular or extracellular ion concentrations and remodeling activation or inactivation kinetics of
ion channels. The customers can do some drug hypothesized experiments regarding the changes of ion channels
under physiological and pathological conditions.
(5) Extensible applications
It provides a useful function of editing or updating cell models by an extensible application program MCML
Editor. Cell biologists and computational modelers do not need write any code and just do some simple
operations by mouses and keyboards to build their cell models through the MCML Editor, as illustrated in Figure
10. There is another extensible application program the Convertor Engine modules, which automatically
translates cell models into executed Java codes.
4. Discussion and conclusions
In this study, the simulation system has been validated effectively by models of different cell types that include
the LR model, the PB model, the TNNP model and the Zhang model. Most of cell models were developed by a
combination of independent ion channels and each ion channel was modeled by some dependent mathematical
components which are very similar to the first mathematical cell model Hodgkin and Huxley model. The cell
models share some common features in the structure of mathematical equations, and the methods to derive
model parameters from experimental data. (in Table 1).Therefore, the simulation system is designed for cell
biologists and mathematical modelers and it is able to construct computational cell models in a user-friendly
manner and validate their models with simulated or experimental data. The simulation system is programmed by
Java and is compatible to operation systems of both Windows series (WindowsXP, Vista and Windows 7) and
Linux series (Redhat and Ubuntu). E-cell (Tomita et al., 1997) and Virtual Cell (Loew & Schaff, 2001;
Slepchenko et al., 2003) are two popular computer software environments for cell modeling and simulating.
Compared with them, our platform supports some characterized functions for analyzing electrical activities of
computational cells such as automatically plotting the I-V curve and semi-automatically drawing the APD
restitution curve. Various cell models can be expressed in a unified pattern, which enables an easy and
convenient way to incorporate new cell models into the system. The system also enables appending of new
functionalities or numerical methods dynamically and unlimitedly, and reselecting or switching numerical
solvers at run-time casually without changing original programs and recompiling. In conclusion, the simulation
system provides a powerful tool to study the electrical activities of cells and the ionic mechanism(s) underlying
the genesis of cardiac action potentials.
References
Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., & Tawhai, M. (2004). Computational
physiology and the Physiome Project. Exp Physiol, 89, pp. 1-26.
Gamma. E., Helm. R., Johnson.R. , Vlissides. J.M. (1994). Design Patterns: Elements of Reusable Object-Orient
Software., (1st ed.). Addison Wesley. (Chapter 3 and 4).
HODGKIN, A.L. & HUXLEY, A.F. (1952). A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol, 117, pp. 500-544.
Loew, L.M. & Schaff, J.C. (2001). The Virtual Cell: a software environment for computational cell biology.
Trends Biotechnol, 19, pp. 401-406.

Computer and Information Science Vol. 3, No. 2; May 2010

 111

Luo, C.H. & Rudy, Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic
currents and concentration changes. Circ Res, 74, pp. 1071-1096.
Moraru, I.I., Schaff, J.C., Slepchenko, B.M., & Loew, L.M. (2002). The virtual cell: an integrated modeling
environment for experimental and computational cell biology. Ann N Y Acad Sci, 971, pp. 595-596.
Noble, D. (2006). Systems biology and the heart. Biosystems, 83, pp. 75-80.
Priebe, L. & Beuckelmann, D.J. (1998). Simulation study of cellular electric properties in heart failure. Circ Res,
82, pp. 1206-1223.
Rush, S. & Larsen, H. (1978). A practical algorithm for solving dynamic membrane equations. IEEE Trans
Biomed Eng, 25, pp. 389-392.
Slepchenko, B.M., Schaff, J.C., Macara, I., & Loew, L.M. (2003). Quantitative cell biology with the Virtual Cell.
Trends Cell Biol, 13, pp. 570-576.
ten Tusscher, K.H., Noble, D., Noble, P.J., & Panfilov, A.V. (2004). A model for human ventricular tissue. Am J
Physiol Heart Circ Physiol, 286, pp. H1573-89.
Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K.,
Venter, J.C., & Hutchison, C.A. (1997). E-CELL: Software Environment for Whole Cell Simulation. Genome
Inform Ser Workshop Genome Inform, 8, pp. 147-155.
Wang KQ, Yang GS, Yuan YF, Zhang HZ. (2007). MCML: an XML-based Modeling Language for Myocardial
Cell Electrophysiology. Proceedings of the International Conference on Life System Modeling and Simulation,
pp. 392-395.
Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T., & Boyett, M.R. (2000). Mathematical
models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ
Physiol, 279, pp. H397-421.
Molleman A. (2003). Patch clamping: an introductory guide to patch clamp electrophysiology. West Sussex:
John Wiley & Sons Ltd.

Table 1. An example of unified description about several typical cell models with the Object-Oriented method in
the simulation system

Cell model LR model PB model TNNP model Zhang model

Current INa INa INa INa

 [Na]o 135 mMol/L 135 mMol/L 140 mMol/L 140 mMol/L

 [Na]i 15 mMol/L 15 mMol/L variable 8 mMol/L

 ENa 2.1972 2.1972 variable 2.8622

 GNa 16 nS/pF 16 nS/pF 14.838 nS/pF 1.85 nS/pF

 m Yes Yes Yes Yes

 h Yes Yes Yes Yes

 j Yes Yes Yes No

MathML GNa*m3*h*j*(V-ENa) GNa*m3*h*j*(V-ENa) GNa*m3*h*j*(V-ENa)
GNa*m3*h*[Na]o *V*

[(e(V-E
Na

)*F/RT-1)/(eVF/RT-1)]

, Gated current; , Concentration; , Electrical potential; , Conductance; , Gated variable; ,
MathML equation.

Computer and Information Science www.ccsenet.org/cis

 112

Figure 1. Abstract Architecture of Cell Models

Figure 2. The Software Architecture of Cell Models Based on Object-Oriented Design Patterns

Structure

Concentrations

Ion channels

Conductance

INa

ICaL

ICaT

IKr

Ito

IKs

Others

Cell

Volume

GNa

GKr

GCaT

GKs

Others

Gto

Nai

Ki

Cai

Nao

Ko

Cao

Length

Radius

Computer and Information Science Vol. 3, No. 2; May 2010

 113

Figure 3. Creating Concrete Instances for Different Cell Models with the Abstract Factory Pattern

Figure 4. Using the Decorator Pattern to Extend Additional Functions of Cell Objects

BlockerDecorator
ref_cell->update()

MedicineDecorator
ref_cell->update() Cell

Figure 5. Nesting Two Decorator Objects to the Original Cell Object

Figure 6. The Bridge Pattern to Support Multiple Numerical Method Implementations

Computer and Information Science www.ccsenet.org/cis

 114

Data Container

Convert Engine

RCP plug-in Core

MCML Editor

Simulation Scheduler

Protocols

History

Algorithms

Supporting

Data Plotting

Cell Models

Management

Parameters

Displaying

Data Analyzing

Figure 7. The Framework of the Simulation System

Figure 8. A Snapshot of the Simulation System

Computer and Information Science Vol. 3, No. 2; May 2010

 115

a) I-V relationship curve

b) APD restitution curve

Figure 9. Simulated I-V Relationship Curve and APD Restitution Curve for Cell Model Study

Figure 10. A Snapshot of the MCML Editor

