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Abstract 

Electroencephalography (EEG) signals were analyzed in many research applications as a channel of 
communication between humans and computers. EEG signals associated with imagined fists and feet movements 
were filtered and processed using wavelet transform analysis for feature extraction. The proposed work used 
Neural Networks (NNs) as a classifier that enables the classification of imagined movements into either fists or 
feet. Wavelet families such as Daubechies, Symlets, and Coiflets wavelets were used to analyze the extracted 
events and then different feature extraction measures were calculated for three detail levels of the wavelet 
coefficients. Intensive NN training and testing experiments were carried out and different network configurations 
were compared. The optimum classification performance of 89.11% was achieved with a NN classifier of 20 
hidden layers while using the Mean Absolute Value (MAV) of the Coiflets wavelet coefficients as inputs to NN. 
The proposed system showed a good performance that enables controlling computer applications via imagined 
fists and feet movements. 

Keywords: Discrete Wavelet Transform (DWT), Electroencephalography (EEG), Brain-Computer Interface 
(BCI), machine learning, Neural Networks (NN), feature extraction, data mining 

1. Introduction 

Electroencephalography (EEG) is defined as the process of measuring the electrical voltage fluctuations along 
the scalp as a result of the current flows in brain’s neurons and the brain’s neural activity (Niedermeyer & da 
Silva, 2005). In typical EEG tests the brain’s electrical activity is monitored and recorded using electrodes that 
are fixed on the scalp (Sleight et al., 2009). Brain-Computer Interface (BCI) is a combination of hardware and 
software systems that enables the use of the brain’s neural activity to communicate with others or to control 
machines, artificial limbs, or robots without direct physical movements (Levine et al., 1999; Donoghue, 2002; 
Wolpaw et al., 2002; Vallabhaneni et al., 2005). BCI captures EEG signals in conjunction with a specific user 
activity then uses different signal processing algorithms to translate these records into control commands for 
different machine and computer applications (Graimann et al., 2010). It is proved in (Vidal, 1973) that a user’s 
intent could be effectively represented by signals recorded from brain activity. 

During the last few years, BCI has become an attractive field of research and applications specially in helping 
disabled individuals by providing a new channel of communication with the external environment and offering a 
feasible tool to control artificial limbs (Selim et al., 2008). A variety of BCI applications were described in 
(Grabianowski, 2007). BCI is a highly interdisciplinary research topic that combines medicine, neurology, 
psychology, rehabilitation engineering, Human-Computer Interaction (HCI), signal processing and machine 
learning (Smith et al., 2007). 

It can be noted from the literature that the strength of any BCI application depends on the translation approach 
used to transform EEG signal patterns into machine commands. In (Pfurtscheller et al., 1997), the authors 
recorded EEG signals for three subjects while imagining either right or left hand movement based on a visual 
cue stimulus. They were able to classify EEG signals into right and left hand movements using a neural network 
classifier with an accuracy of 80% and concluded that this accuracy did not improve with increasing number of 
sessions. Sepulveda (2011) used features produced by Motor Imagery (MI) to control a robot arm. Features such 
as the band power in specific frequency bands (alpha: 8-12 Hz and beta: 13-30 Hz) were mapped into right and 
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left limb movements. In addition, they used similar features with MI, which are the Event Related 
Desynchronization and Synchronization (ERD/ERS) comparing the signal’s energy in specific frequency bands 
with respect to the mentally relaxed state. 

It was shown in (Mohamed, 2011; Alomari et al., 2013) that the combination of ERD/ERS and 
Movement-Related Cortical Potentials (MRCP) improves EEG classification as this offers an independent and 
complimentary information. The authors of (Farina et al., 2007) presented an approach for the classification of 
single trial MRCP using a discrete dyadic wavelet transform and Support Vector Machines (SVMs) and they 
provided a promising classification performance. A single trial right/left hand movement classification is 
reported in (Kim et al., 2003). The authors analyzed both executed and imagined hand movement EEG signals 
and created a feature vector consisting of the ERD/ERS patterns of the mu and beta rhythms and the coefficients 
of the autoregressive model. Artificial Neural Networks (ANNs) is applied to two kinds of testing datasets and 
an average recognition rate of 93% is achieved. 

A three-class BCI system was presented in (Wang et al., 2007) for the translation of imagined left/right hands 
and foot movements into commands that operates a wheelchair. This work used many spatial patterns of ERD on 
mu rhythms along the sensory-motor cortex and the resulting classification accuracy for online and offline tests 
was 79.48% and 85.00%, respectively. The authors of (Guger et al., 1999) proposed an EEG-based BCI system 
that controls hand prosthesis of paralyzed people by movement thoughts of left and right hands. They reported 
an accuracy of about 90%. 

In Su et al. (2011), a hybrid BCI control strategy is presented. The authors expanded the control functions of a 
P300 potential based BCI for virtual devices and MI related sensorimotor rhythms to navigate in a virtual 
environment. Imagined left/right hand movements were translated into movement commands in a virtual 
apartment and an extremely high testing accuracy results were reached. 

Homri et al. (2012) applied the Daubechies, Coiflet and Symmlet wavelet families to a dataset of MI to extract 
features and describe right and left hand movement imagery. The authors reported that the use of Linear 
Discriminate Analysis (LDA) and Multilayer Perceptron (MLP) Neural Networks (NNs) provided good 
classification results and that LDA classifier achieved higher classification results of up to 88% for different 
Symmlet wavelets. Tolić and Jović (2013) used the discrete wavelet transform (DWT) to create inputs for a NNs 
classifier and the authors reported a very high classification accuracy of 99.87% for the recognition of some 
mental tasks. 

We proposed a system that could efficiently discriminate between executed left and right fist movements in our 
previous study (Alomari et al., 2013). The current work is an extension for our studies to classify both imagined 
fists and feet movements by analyzing EEG signals recorded during a large number of experiments for 100 
different subjects. Many wavelet families were used to calculate wavelet coefficients and then all the possible 
feature candidates were extracted and used in the training/testing and optimization experiments of a NNs 
classifier. 

2. The PhysioNet EEG Dataset 

In this work, we used the EEG dataset that was created and contributed to PhysioNet (Goldberger et al., 2000) by 
the developers of the BCI2000 (Schalk et al., 2004) instrumentation system. The dataset is publically available 
online at http://www.physionet.org/pn4/eegmmidb. It consists of more than 1500 one or two minutes-duration 
EEG records obtained from 109 healthy subjects. Subjects were asked to execute and imagine different tasks 
while 64 channels of EEG signals were recorded from the electrodes that were fitted along the scalp. 

In the records of the dataset that are related to the current research, each subject performed three experimental 
runs of imagining the movement of both fists or both feet. During each two-minute run, either the top or the 
bottom of a computer screen shows a target. The subject imagines opening and closing either both fists (if the 
target is on top) or both feet (if the target is on the bottom) until the target disappears where he relaxes. This was 
repeated 15 times during each two-minute run. Then the obtained EEG signals were recorded according to the 
international 10-20 system as seen in Figure 1. For this work, we created a subset of three two-minute runs for 
100 subjects for a total of 4500 events (45 imagined events per subject). 
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extract the vectors of features from these details only as shown in Figure 3. 

 

Table 1. Frequency range for the decomposed details and approximation 

Signal Component Frequency Range

cD1 40 – 80 Hz 

cD2 20 – 40 Hz 

cD3 10 – 20 Hz 

cD4 5 – 10 Hz 

cA4 0 – 5 Hz 

 

Phinyomark et al. (2013) provided the mathematical definitions of many amplitude estimators for neurological 
activities. If we assume that the nth sample of a wavelet decomposed detail at level i is Di(n), then we can define 
the following features: 

 Root Mean Square (RMS) 

  (1) 

 Mean Absolute Value (MAV) 

  (2) 

 Integrated EEG (IEEG) 

  (3) 

 Simple Square Integral (SSI) 

  (4) 

 Variance of EEG (VAR) 

  (5) 

 Average Amplitude Change (AAC) 

  (6) 

The Daubechies, Symlets, and Coiflets wavelets were used to analyze the channels C3, C4, and Cz of each EEG 
record. Then, as depicted in Figure 3, the features RMS, MAV, IEEG, SSI, VAR, and AAC were calculated for 
the wavelet coefficients using Equations 1 through 6. This process was repeated for each event in our dataset of 
4500 vectors. At the end of these calculations, 9 RMS features (3 channels  3 details), 9 MAV features, 9 IEEG 
features, 9 SSI features, 9 VAR features, and 9 AAC features were generated for each wavelet. These features 
were numerically represented in a format that is suitable for use with NN algorithms (Qahwaji et al., 2008; 
Al-Omari et al., 2010) as described in the next section. 

5. Neural Networks Experiments 

Neural networks learning algorithms were used in (Pfurtscheller et al., 1997; Homri et al., 2012; Kharat & Dudul, 
2012; Tolić & Jović, 2013) and provided good classification performance. A detailed description of NN can be 
found in (Qahwaji et al., 2008). The MATLAB NN toolbox was used for all the training and testing experiments. 
The training experiments were handled with the aid of the back-propagation learning algorithm (Fahlmann & 
Lebiere, 1989). 
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Table 3. Best Average Accuracy (Avg Acc) results achieved using different Daubechies functions with different 
features and a variable number of Hidden Layers (HL) for the NN classifier 

Features MAV RMS AAC IEEG SSI VAR

Daubechies 
wavelet HL Avg 

Acc HL Avg 
Acc HL Avg 

Acc HL Avg 
Acc HL Avg 

Acc HL Avg 
Acc

Db2 17 0.8403 12 0.8203 20 0.8028 19 0.8003 15 0.8478 19 0.8028

Db4 11 0.8378 18 0.8053 18 0.7628 20 0.8478 8 0.7278 17 0.7528

Db6 17 0.7678 17 0.7178 11 0.7578 15 0.7503 15 0.8328 10 0.7153

Db8 8 0.8103 20 0.7753 17 0.7353 17 0.8678 14 0.7353 20 0.7978

Db10 12 0.7853 11 0.8078 14 0.8228 16 0.8353 12 0.6803 9 0.6903

Db12 17 0.7678 8 0.7228 18 0.7653 19 0.7578 18 0.7203 18 0.7128

Db14 20 0.7503 13 0.7728 13 0.7678 12 0.8303 17 0.7128 18 0.7353

Db16 16 0.8178 13 0.7453 19 0.7753 14 0.7178 18 0.7128 12 0.7153

Db18 16 0.8028 16 0.7303 20 0.7203 18 0.7328 10 0.7303 20 0.7278

Db20 14 0.7803 15 0.8153 15 0.7478 12 0.7703 17 0.6978 17 0.8003

 

Table 4. Best Average Accuracy (Avg Acc) results achieved using different Symlets functions with different 
features and a variable number of Hidden Layers (HL) for the NN classifier 

Features MAV RMS AAC IEEG SSI VAR

Symlets 
wavelet HL Avg 

Acc HL Avg 
Acc HL Avg 

Acc HL Avg 
Acc HL Avg 

Acc HL Avg 
Acc

Sym2 16 0.8451 14 0.8378 17 0.8549 17 0.8256 20 0.7620 14 0.8744

Sym4 20 0.7522 14 0.7644 16 0.7816 18 0.7669 14 0.6789 19 0.7278

Sym6 14 0.7596 13 0.7840 14 0.8036 9 0.7889 18 0.6764 19 0.6838

Sym8 15 0.6984 17 0.7009 15 0.7473 16 0.7596 10 0.6936 19 0.7107

Sym10 13 0.7180 8 0.7009 16 0.8500 15 0.7473 16 0.6911 20 0.6984

Sym12 19 0.7718 14 0.7473 20 0.7424 18 0.7156 11 0.7449 13 0.6838

Sym14 18 0.8084 11 0.7449 19 0.7889 20 0.7840 19 0.7180 18 0.6960

Sym16 19 0.7327 14 0.7498 16 0.7816 18 0.7596 17 0.6667 20 0.6740

Sym18 14 0.7327 18 0.8231 11 0.8182 20 0.7547 16 0.7204 19 0.7204

Sym20 19 0.7376 16 0.7522 19 0.8427 19 0.7669 15 0.7204 15 0.6862

   

By comparing the results, it was found that the optimum classification accuracy that can be achieved using our 
system is 89.11%. This performance was achieved by inputting the MAV feature of a Coif4 wavelet into a neural 
network of 20 hidden layers. This result is consistent with the conclusions reported in (Phinyomark et al., 2013) 
where it was shown that both MAV and RMS were accurate inputs for recognition and classification systems. 

If we compare the highest accuracies in all tables, we can note that the Symlets wavelet outperforms the other 
wavelet families in most cases. The VAR feature for the Sym2 wavelet provided an accuracy of 87.44% using a 
NN of 14 hidden layers. In addition, the AAC feature for the same wavelet provided a 85.49% performance 
using a NN of 17 hidden layers. 

On the other hand, it can be concluded from all tables that the MAV feature provides the best overall 
performance using any wavelet family. It is associated with the performances of 89.11%, 84.03%, and 84.51 
while applying the Coiflets, Daubechies, and Symlets, respectively. The next best feature is the VAR then the 
IEEG. It can be mentioned here that The IEEG feature for the Db8 wavelet provided an accuracy of 86.78% 
using a NN of 17 hidden layers. 
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6. Conclusions 

This work describes a classification system that can classify imagined EEG signals into fists and feet movements. 
Symlets, Daubechies, Coiflets wavelet families were compared for their abilities to decompose EEG signals and 
extract features that can be used as inputs to neural networks. Extensive experiments were carried out and the 
neural networks were optimized. The optimum classification performance of 89.11% was achieved with a NN 
classifier of 20 hidden layers while using the mean absolute value of the Coiflets wavelet coefficients as inputs 
to NN. It is believed that this work is one of the best to achieve such classification performance while working 
on imagined fists and feet activities. Real-time applications of this work can be implemented in the near future. 
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