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Abstract 
Achieving interactive response times when searching for documents on the web has become a challenge 
especially with the tremendous increase in the size of information available nowadays. Incorporating parallelism 
in search engines is one of the approaches towards achieving this aim. In this paper, we present a model for 
parallel query processing. Then, this model is extended particularly for usage on shared-memory and cluster 
parallel architectures. A special simulator, reflecting the proposed model, was developed allowing parameters 
concerning the data set, queries and architectures to be varied. A total of 32 experiments were conducted and the 
output was studied for the effect of varying different parameters. A number of performance measures such as 
average response time, speedup and efficiency are computed to study the effect of varying the parameters. 
Results show that in terms of average response time, speedup and efficiency, the proposed model for parallel 
query processing on shared-memory architecture outperforms that on cluster-based architecture. 
Keywords: parallel processing, query processing, shared-memory systems 

1. Introduction 
With the dramatic increase in the size of the web, search engines had to scale up to keep up with this growth. In 
1997, the top search engines indexed from 2 million to 200 million web documents. Nowadays, estimates of the 
number of indexed pages has reached at least 15.78  billion pages as reported by Yahoo, Google and Bing in 
Daily estimated size of the World Wide Web (2013). Nevertheless, there has been a vast increase in the number 
of internet users due to the fact that the world wide web has become the primary source of information. Hence, 
the number of queries increased dramatically from an average of about 1500 query/day in 1994 to 20 million 
queries per day in 1997 as reported by Altavista. An even more dramatic increase in the number of queries per 
day occurred thereafter. In 2011, the average number of queries per day reached around 4 billion on Google as 
reported in Google Annual Search Statistics (2013). With the help of the improvement in hardware performance, 
the task of scaling up search engines to handle such vast amount of data and queries has become more attainable. 

There are three main components in any search engine (Brim & Page, 1998); the Web Crawler which 
continuously crawls into the web for new documents, the Indexer which indexes these documents and the 
Searcher which receives queries from users and attempts to find relevant documents. The scope of this work lies 
within the second and the third components. Firstly, we attempt to index the documents in such a way that 
parallelism is exploited in query processing. Secondly, we propose an approach that parallelizes query 
processing using shared-memory and cluster-based architectures. 

2. Related Work 
Various research attempts have focused on the topic of performing query processing efficiently. One such 
attempt was to cluster user queries according to their contents as well as user logs (Wen, Nie, & Zhang, 2001). 
With the huge amount of available data and number of queries, the use of parallel processing has become 
indispensable (Singhal, 2001). Therefore, this area has attracted the interest of many researchers. One of the first 
attempts in this respect was studying parallel query processing on shared-everything parallel systems (Hong & 
Stonebraker, 1991). Konstantopoulos, Mamalis, Pantziou and GavalasHong (2009) proposed parallel algorithms 
for document retrieval of BSP (Bulk Synchronous Processors) and CGM (Coarse-Grained Multiprocessors). 
They, analytically, proposed cost models for query processing on both architectures in terms of computation, 
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communication and memory usage. Frachtenberg (2009) studied coarse-grained and fine-grained parallel 
approaches for web search using indexing to reduce latencies. A study on resource allocation selection and 
scheduling was performed by Epimakhov, Hameurlain, Dillon and Morvan (2011) with the purpose of 
parallelizing queries in heterogeneous grid environments. They performed a performance analysis of static, 
dynamic and hybrid allocation methods as well as incentive-based methods using their own developed simulator. 
A review on interquery and intraquery partitioning schemes was provided by Cambazoglu, Catal, and Aykanat 
(2006). Ding, He, Yan and Suel (2009) used a system based on graphic processing unit (GPUs) for high 
performance query processing by parallelizing specific subtasks such as inverted list compression, list 
intersection and top k scoring. Delbrua, Campinas and Tummarello (2012) devised a high performance indexing 
model for semi-structured information which is applicable on heterogeneous environments, 

PC clusters have been considered as a low cost parallel solution for query processing and text retrieval in general. 
Rungsawang, Laohakanniyom and Lertprasertkune (2001) performed parallel indexing of huge data using PC 
clusters for fast text retrieval using the PVM message passing library. Another attempt (Chung et al., 2001) 
provided a PC cluster parallel system based on partitioning the inverted index file among the cluster nodes’ hard 
disks such that every term in a query is sent to the relevant node. They used a Distributed Shared Memory (DSM) 
programming technique and proved that this technique outperforms a Message Passing Interface (MPI) 
implementation in terms of speedup. Further issues have been considered concerning using PC clusters to 
retrieve information from a huge amount of data. Kang et al. (2004) studied the problems of node failure and 
load imbalance and provided a method based on data duplication to achieve both fault tolerance and load 
balancing. 

3. Index Partitioning Schemes 
3.1 Inverted Indices 

Currently, search engines use the inverted index data structure for faster and more efficient query processing 
(Zobel & Moffiat, 2006). Every document to be indexed is associated with a number of terms. These terms may 
be simply words appearing in the document or topics covered by the document if more sophisticated term 
extraction methods are used (Svenonius, 2000). An inverted index consists of a number of inverted lists each of 
which is associated with a term. Each inverted list consists of a number of postings pointing to documents where 
the term appears. In query processing, a query consists of a number of terms and it is required to search the 
inverted index for relevant documents. We use a simple example to clarify the concept of inverted index and 
related partitioning schemes which will be described in the section 3.2. The following is a simple document 
collection which consists of 6 documents where each document is associated with a set of terms. 

 ,  , ,  ,   ,  ,  
 

 
The corresponding inverted index structure L is: , , , ,

 , ,  ,  ,  ,  , ,  
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3.2 Replication and Index Partitioning 

Traditionally, the whole inverted index used to be stored on one machine. Despite the simplicity of this approach, 
it suffers from the drawbacks of having slow response time as well as space limitation. These problems become 
significantly apparent with large volumes of data. 

The two most popular approaches for exploiting parallelism in query processing are replication and index 
partitioning. It is assumed here that there are n index nodes. Using the replication approach, a replica of the 
index is assigned to each of the n nodes. In this case, multiple queries can be processed in parallel but each query 
is processed sequentially. This approach is also called inter-query parallelism. Using the index partitioning 
approach, the index is partitioned into n partitions each of which is assigned to a separate node. Each query is 
processed by multiple nodes in parallel where each node works only on its index partition. This approach is also 
called intra-query parallelism and is known to be latency-oriented as it aims at reducing the average query 
waiting time. On the other hand, inter-query parallelism is known to be throughput-oriented. Partitioning the 
index can be performed in one of two dimensions; can be based on either documents or terms.  

3.3 Document-Based and Term-Based Partitioning 

Based on the example document collection given in section 3.1, document-based and term-based portioning are 
illustrated in Figure 1. In document-based partitioning, each node is responsible for a subset of the document set. 
The index on each node consists of lists of all terms of documents belonging to the corresponding document 
partition. When a new query is to be processed, it is passed to a master (frontend) node which sends the query to 
all the index nodes. Each index node processed the query based on the index partition it has then passes the 
results to the master node. The master node merges all the results passed by the index servers. The main 
advantage of such a scheme is its simplicity (Büttcher, Clarke, & Cormack, 2010). In term-based partitioning, 
each node is responsible for a subset of terms. A node processes a query only if at least one of the terms in the 
query belongs to the node’s terms subset. This scheme is preferred in cases where the index is stored on disks. 
However, performance degrades as the document collection becomes bigger. So, it is not scalable with the size 
of the document collection. Term partitioning also suffers from load imbalance since the load associated with a 
term depends on its frequency in the document collection as well as its frequency in queries. Some hybrid 
term/document partitioning and hybrid document partitioning and replication have been devised. 

 

 
Figure 1. Document-based partitioning and Term-based partitioning 

 
4. Modeling Parallel Query Processing 
In this paper, we exploit parallelism in query processing making use of the inverted list structure on both the 
shared-memory parallel model and parallel clusters. Both architectures are illustrated in Figure 2.  
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4.1 Inverted Index 

An inverted index is a data structure which is commonly used to index large document collections for fast query 
processing. For a document collection D associated with a set of terms T, an inverted index is composed of a set 
of inverted lists L. An inverted list l ∈ L is the inverted list for the term t ∈ T. Every document d ∈ D is 
associated with a number of terms such that d ⊂ T . For our example document collection D d , d , d , d , d , d  and the set of terms T t , t , t , t , t .  

4.2 Inverted Index Partitioning 

The previous definitions are slightly modified and extended for the purpose of partitioning the inverted index. 
Let N be the set of nodes and L  the set of inverted lists assigned to the node n ∈ N. Each inverted list l ∈ L  
is associated with the term t  and stored on node n . Hence, L l , l , … , l| | . Each inverted list l  
consists of links to a number of documents such that l ⊂ D. 

Using the term-based partitioning approach, the set of terms T is partitioned among the nodes such that each 
term exists on only one node. Therefore, for any two inverted lists l 	and l , j m where 1 j,m |N| 
and 1 i |T|. An inverted list l  consists of links to documents associated with terms assigned to n . Hence, l 	 d : t ∈ d 	, 1 k |D| .  

In document-based partitioning, the set of documents D is disjointly partitioned among the nodes such that all 
links to documents in an inverted list stored on a particular node appear only on this node. Let D  be the set of 
documents assigned to n .	Consequently, D 	 ⋃ l| | 	 and d ∩ d 	 ∅		∀	v  u. It is possible that l ∅ 
if t ∈ d  and d ⊄ D . 

Table 1 shows how this model can be applied on our simple example using both document-based and term-based 
partitioning using 3 nodes. 

 

Table 1. Document-based and term-based index partitioning applied on our simple document collection using 3 
nodes 

Node Document-based Partitioning Term-based Partitioning 

Node 1 L1 = { , , , } 
= {d2} 
= {d1,d2} 
= {d2} 
= {d1} 

L1 = { , } 
= {d2,d4,d6} 
= {d1,d2} 

 

Node 2 L2={ , , , } 
= {d4} 
= {d3} 
= {d4} 
= {d3} 

L2={ , } 
= {d3,d5} 
= {d2,d4} 

 

Node 3 L3={ , , } 
= {d6} 
= {d5} 
= {d5} 

L3={ } 
= {d1,d3,d5} 

 
 

 
4.3 Using the Shared-Memory Model 

Queries are partitioned among nodes in order to exploit parallelism. A query q is represented as a set of terms q ⊂ T. In the shared memory model of N nodes, a query q is processed sequentially by a node n . When a 
query arrives, it is assigned to an available node or waits in the queue if all nodes are busy. The number of 
inverted lists accessed by q is |q| as every term maps to an inverted list. Let D  be the set of documents 
retrieved by q. Then, D ⊂ D such that ∀t ∈ q, t ∈ d 	and d ∈ D  where 1 i |q|, 1 k |D |. 
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4.4 Using Clusters 

Using the parallel cluster model, every query is assigned to an entire cluster. Within a cluster, terms of a query 
are partitioned among the nodes in the cluster. Each node in a cluster receives a subset of the terms of the query 
assigned to the cluster. All nodes in a cluster run in parallel and the documents retrieved by all nodes are 
compiled. This can be viewed as a hybrid approach between inter-query and intra-query parallelism. This 
partitioning approach adopts inter-query parallelism on the level of clusters whereas it adopts intra-query 
parallelism on the level of nodes within a cluster. Let  be the set of clusters and each cluster ∈  where 1 | | consists of a set of nodes. Hence, , , … , | |  where  is the set of nodes assigned 
to cluster . If a query q is assigned to cluster , each node ∈ 	1 | | processes approximately | | | |⁄  terms. A cluster is considered to be available for another query when all nodes finish. 
 

  

Figure 2. Shared-memory and parallel clusters models 

 

5. Simulation 
For the purpose of this work, a specialized simulator was developed. The parameters and their settings are 
explained. Some values are randomly generated in selected ranges that were found adequate. In our simulator, 
we are interested particularly in simulating query processing on shared-memory architecture and cluster-based 
architectures. A performance analysis is conducted when different simulation parameters are varied. Our 
simulator consists of three main components; the queries and inverted index generator, shared-memory 
simulator and cluster simulator. Queries and index data generated from the first component are used as input to 
the two other components. Each of these components will be detailed in a separate subsection. 

5.1 Queries and Inverted Index Generator 

Before running the simulation experiments, the following two steps are performed to generate query and index 
files which are the main inputs to the simulation experiments. Simulation parameters that are input to both 
generators are: 

-Total number of queries (Qtotal) 

-Maximum number of terms /query (QMaxterms) 

-Total number of terms in the index (Interms) 

-Maximum number of documents / term (TMaxDoc) 

-Total number of documents (Dtotal) 

-Maximum Query Arrival time (QMaxArr) 

These are considered to be the primary simulation parameters. Some of the parameters’ values are used as they 
are and some are used as maximum values for data to be generated as detailed in the following subsections. 

5.1.1 Generating Queries 

A list of queries is generated based on the total number of queries Qtotal and the maximum number of terms/query 
Qmaxterms. Each query entry consists of: 

Query ID (QID) 

P0 P1 PN

Shared Memory 

Interconnection Network 

.......................... 

Shared Memory

P0

IN

P1 P2 P3

Interconnection Network 

Shared Memory

P0 

IN 

P1 P2 P3

Cluster C0
 Cluster CN

......... 
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Query arrival time (QArr): a random number from 0 to maximum arrival time (QMaxArr). For the purpose of 
varying the average query inter-arrival time among different simulation experiments, the value of QMaxArr is 
varied to be one of 4 values as indicated in Tables 2, 3 and 4. 

Number of terms in query (Qnterms): a random number from 1 to Qmaxterms. 

Query terms list: a list of Qnterms term ID’s. A term ID is a numeric value from 1 to the total number of terms in 
the index (Interms).  

5.1.2 Generating Inverted Index 

A list of index entries is generated based on the total number of terms in the index Interms. An index entry holds 
data about one of the Interms terms in the index file. Each index entry consists of: 

Term ID (TID) 

Number of documents related to the term (Tndoc): a random number from 1 to TMaxDoc. 

Term documents list: a list of Tndoc document ID’s. A document ID is a numeric value from 1 to total number of 
documents Dtotal. 

5.2 Query Processing on Shared-Memory Simulator 

Queries are arranged in a queue according to their arrival time. At the beginning of each simulation time step, it 
is checked if there any waiting queries. Idle processors are cleared and marked as available. If there are waiting 
queries, an idle processor is sought for each query. When a query is assigned to a processor, that processor 
handles all terms in the query in sequence. All query terms are searched for in the inverted index to retrieve 
relevant document IDs. Document IDs are compiled and redundancies are removed. 

5.3 Query Processing on Clusters Simulator 

At the beginning of each simulation step, clusters which have become idle are cleared and marked as available. 
A cluster is considered available if all processors within the cluster have finished processing. When a waiting 
query is assigned to an available cluster, all processors in the cluster are dedicated to the query till the whole 
query is processed. Query terms are distributed among cluster processors and each processor searches for the 
document IDs relevant to the term being processed. At end, all retrieved document IDs are compiled and 
redundancies are removed. 

6. Parameters and Experiments 
In our simulation experiments, we use a synthetic data set that is generated by the Queries and Inverted Index 
Generators described earlier. The total number of queries (Qtotal) input to our simulator is 1000 queries with a 
maximum number of keywords (terms) per query (QMaxterms) taken as 5. The actual number of keywords per 
query generated by the queries generator is a random integer from 1 to QMaxterms

 inclusive. Each query has an 
identifier QID which lies between 0 and Qtotal. The inverted index consists of a list of entries each of which is 
associated with a keyword (term). The size of the generated inverted index (Interms) or the total number of terms is 
300 terms. The document set is assumed to consist of Dtotal = 10000 documents. Each document in the document 
set is associated with a number of terms which is a random integer between 1 and TMaxDoc inclusive where 
TMaxDoc=15. A query’s arrival time QArr is a randomly generated integer between 0 and QMaxArr inclusive. QMaxArr 

is varied in 4 values (20, 30, 60 an 100) to simulate different query inter-arrival times. 

A total of 32 simulation experiments are run using a single processor, shared-memory architecture and cluster –
based architecture. The 4 sets of parameters (varying QMaxArr) are used in the simulation experiments for all 
architectures. In the shared-memory experiments, the number of processors is varied (4, 8, 16 and 32). In 
cluster-based experiments, the number of processors within a cluster is fixed to 4 in all experiments whereas the 
number of clusters is varied (2, 4 and 8). 

7. Results and Discussion 
A sample of the simulation output file is shown in Figure 3. A number of performance measures are computed 
and output by the simulation program to show the effect of varying QMaxArr, the parallel architecture used and the 
number of processors (N). 
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Simulation parameters 

Number of shared memory processors 4 

Number of queries= 1000  

 Max.KW per query = 5  

Number of queries = 300 

 Max. docs per KW = 15 

Number of docs=10000 

Max. Arr. time=60.00 

no.of docs in query 0 is 2 no of kw = 1 

no.of unique docs in query 0 is 2 

P0 processing query 0 arr. time= 3 start time=3 endtime=11 querytime=8 

no.of docs in query 1 is 36 no of kw = 3 

no.of unique docs in query 1 is 36 

P1 processing query 1 arr. time= 4 start time=4 endtime=1372 querytime=1368 

no.of docs in query 2 is 12 no of kw = 2 

no.of unique docs in query 2 is 12 

P2 processing query 2 arr. time= 8 start time=8 endtime=176 querytime=168 

no.of docs in query 3 is 29 no of kw = 3 

no.of unique docs in query 3 is 29 

P0 processing query 3 arr. time= 14 start time=14 endtime=913 querytime=899 

no.of docs in query 4 is 12 no of kw = 2 

no.of unique docs in query 4 is 12 

. . . . . 

Summary 

P0 busytime=1275.69 tkws=645 Percent util.=1.00 

P1 busytime=1270.32 tkws=623 Percent util.=1.00 

P2 busytime=1264.38 tkws=650 Percent util.=0.99 

P3 busytime=1276.31 tkws=615 Percent util.=1.00 

Avg. Proc. Util = 1.00 

Avg. Query Response time = 590.08 

Total waiting time for all queries=584997.03 

Avg waiting time = 585.00 

Total no. of kws for all processors=2533 

Arrival time Mean=30.47 Variance=28841.95 SD=16.98 

time taken (makespan)=1276.50 

Figure 3. Part of a log file and simulation output of a simulation experiment 

 
The results of a number of performance measures are shown in Tables 2, 3 and 4 using one processor, 
shared-memory and clusters respectively. The maximum query arrival time QMaxArr is varied to vary the average 
query inter-arrival time while keeping the total number of queries constant as explained before. The average 
query response time decreases with the increase in QMaxArr. Average processor and cluster utilization are 
measured as a fraction between 0 and 1. A cluster is busy from the time the first processor in the cluster starts 
processing till the last processor in the cluster finishes. Consequently, a cluster is considered occupied processing 
queries even though a number of processors within the cluster may be idle. Therefore, average processor 
utilization in case of shared-memory is high while average cluster utilization is relatively low and reaches 0.39. 

 
Table 2. Performance measures for simulation results with N=1 varying the maximum query arrival time 

Performance Measure QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100 

Makespan  5383.50 5228.73 5086.70 4635.52 

Average Query Response Time 2684.77 2641.42 2450.13 2250.75 

Average Query Waiting Time 2679.39 2636.20 2445.04 2246.12 
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Table 3. Performance measures for shared-memory simulation results varying the number of processors N and 
the maximum query arrival time QMaxArr 

Performance Measure N QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100 

Makespan 

4 1347.78 1309.07 1276.50 1166.69 

8 676.86 655.77 641.12 589.31 

16 342.49 330.84 326.30 302.50 

32 174.72 171.63 172.59 159.61 

Average Processor 
Utilization 

4 1.00 1.00 1.00 0.99 

8 0.99 1.00 0.99 0.98 

16 0.98 0.99 0.97 0.96 

32 0.96 0.95 0.92 0.91 

Average Query Response 
Time 

4 664.18 649.52 590.08 524.98 

8 327.35 317.66 280.09 237.46 

16 159.04 151.75 125.47 93.97 

32 74.95 69.01 48.76 23.54 

Average Query Waiting 
Time 

4 658.80 644.29 585.00 520.35 

8 321.96 312.43 275.01 232.83 

16 153.65 146.53 120.38 89.35 

32 69.57 63.78 43.67 18.91 

 
Table 4. Performance measures for clusters simulation results varying the number of clusters C and the 
maximum query arrival time QMaxArr. The number of processors per cluster is kept constant and is equal to 4 

Performance Measure C QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100 

Makespan 

2 775.79 777.31 738.11 722.78 

4 388.66 389.17 369.42 361.97 

8 194.96 194.71 185.72 181.55 

Average Cluster 
Utilization 

2 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 

8 0.99 1.00 0.99 0.99 

Average Processor 
Utilization 

2 0.40 0.40 0.40 0.39 

4 0.40 0.40 0.40 0.40 

8 0.40 0.40 0.40 0.39 

Average Query Response 
Time 

2 379.22 376.45 332.54 308.70 

4 185.03 181.17 151.40 129.43 

8 87.95 83.57 60.94 39.87 

Average Query Waiting 
Time 

2 377.67 374.90 331.06 307.26 

4 183.48 179.62 149.92 127.99 

8 86.40 82.02 59.47 38.42 

 

Speedup is a performance measure that indicates the gain from parallelism. It is measured as a fraction SN=T1/TN 
where T1 is the time taken using one processor and TN is the time taken using N processors. Efficiency is also 
another performance measure that shows how efficiently processors are utilized and is measured as EN=SN/N. 
Table 5 shows that both speedup and efficiency are higher in case of shared-memory than in case of clusters.  
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Table 5. Speedup and Efficiency in shared memory and clusters experiments 

Shared-Memory Experiments Clusters Experiments 

N  Average Speedup Efficiency C  Average Speedup Efficiency 

4 3.9 97.5% 2 6.7 83.8% 

8 7.8 97.5% 4 14.7 91.9% 

16 15.5 96.9% 8 26.8 83.8% 

32 29 90.6%   

 

The effect of changing the parallel architecture on query response time while keeping the total number of 
processors constant has been investigated (Figures 4, 5 and 6). In case of cluster experiments, the number of 
processors per cluster is kept constant and equals to 4). The number of queries which achieve lower response 
time is higher when using shared-memory compared to clusters. 

 

 
Figure 4. Comparison between shared-memory architecture and clusters having the same number of nodes (8 

nodes) showing the number of queries achieving specified ranges of response time 

 

 
Figure 5. Comparison between shared memory architecture and clusters having the same number of nodes (16 

nodes) showing the number of queries achieving specified ranges of response time 
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Figure 6. Comparison between shared memory architecture and clusters having the same number of nodes (32 

nodes) showing the number of queries achieving specified ranges of response time 

 

Histograms of Figures 7 and 8 show further details on query count of queries achieving different response times 
for shared-memory and cluster models respectively. In these histograms, query response time is divided into 
intervals where each column represents the query count in a specific range (between 2 bins). When comparing, 
for example, the second histogram (N=8) in Figure 7 with the first histogram (C=2) in Figure 8, both having 8 
processors and the same bin ranges, it is noted that the number of queries in case of using shared-memory is 
higher than that in case of using clusters in the same bin range. Similarly, other pairs of histograms can be 
compared with the same observation.  

 

 

 
Figure 7. Histograms showing the number of queries having response times in different ranges in shared memory 

simulation. Response time is measured in simulation time steps. N is the number of processors 
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Figure 8. Histograms showing the number of queries having response times in different ranges in clusters 

simulation. Response time is measured in simulation time steps. C is the number of processors where the number 
of processors per cluster is fixed to 4 

 

Figure 8 represents a total view or log for the actual number of queries of every possible response time. The 
execution profile (Figure 10) of a number of experiments shows the effect of changing QMaxArr on the percentage 
of queries processed as simulation time passes (also represented as a percentage of total simulation time). This 
figure represents 4 experiments for C=8 varying QMaxArr and shows that a higher percentage of queries are 
processed earlier as QMaxArr increases. This is due to the fact that with higher values for QMaxArr, average query 
inter-arrival time increases and hence, queries do not have to wait as long as in case of lower QMaxArr.  

 

 
Figure 9. Example simulation experiments showing the number of queries of every possible response time 

 

 

 
Figure 10. Percentage queries processed versus the percentage of simulation time passed when C=8 varying 

maximum arrival time in each graph 
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