
Computer and Information Science; Vol. 6, No. 3; 2013
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

125

Exploiting Parallelism in Query Processing for Web Document Search
Using Shared-Memory and Cluster-Based Architectures

Amal Elsayed Aboutabl1
1 Computer Science Department, Faculty of Computers and Information, Helwan University, Cairo, Egypt

Correspondence: Amal Elsayed Aboutabl, Computer Science Department, Faculty of Computers and Information,
Helwan University, Ain Helwan, Cairo, Egypt. E-mail: aaboutabl@helwan.edu.eg

Received: June 30, 2013 Accepted: July 24, 2013 Online Published: August 1, 2013

doi:10.5539/cis.v6n3p125 URL: http://dx.doi.org/10.5539/cis.v6n3p125

Abstract
Achieving interactive response times when searching for documents on the web has become a challenge
especially with the tremendous increase in the size of information available nowadays. Incorporating parallelism
in search engines is one of the approaches towards achieving this aim. In this paper, we present a model for
parallel query processing. Then, this model is extended particularly for usage on shared-memory and cluster
parallel architectures. A special simulator, reflecting the proposed model, was developed allowing parameters
concerning the data set, queries and architectures to be varied. A total of 32 experiments were conducted and the
output was studied for the effect of varying different parameters. A number of performance measures such as
average response time, speedup and efficiency are computed to study the effect of varying the parameters.
Results show that in terms of average response time, speedup and efficiency, the proposed model for parallel
query processing on shared-memory architecture outperforms that on cluster-based architecture.
Keywords: parallel processing, query processing, shared-memory systems

1. Introduction
With the dramatic increase in the size of the web, search engines had to scale up to keep up with this growth. In
1997, the top search engines indexed from 2 million to 200 million web documents. Nowadays, estimates of the
number of indexed pages has reached at least 15.78 billion pages as reported by Yahoo, Google and Bing in
Daily estimated size of the World Wide Web (2013). Nevertheless, there has been a vast increase in the number
of internet users due to the fact that the world wide web has become the primary source of information. Hence,
the number of queries increased dramatically from an average of about 1500 query/day in 1994 to 20 million
queries per day in 1997 as reported by Altavista. An even more dramatic increase in the number of queries per
day occurred thereafter. In 2011, the average number of queries per day reached around 4 billion on Google as
reported in Google Annual Search Statistics (2013). With the help of the improvement in hardware performance,
the task of scaling up search engines to handle such vast amount of data and queries has become more attainable.

There are three main components in any search engine (Brim & Page, 1998); the Web Crawler which
continuously crawls into the web for new documents, the Indexer which indexes these documents and the
Searcher which receives queries from users and attempts to find relevant documents. The scope of this work lies
within the second and the third components. Firstly, we attempt to index the documents in such a way that
parallelism is exploited in query processing. Secondly, we propose an approach that parallelizes query
processing using shared-memory and cluster-based architectures.

2. Related Work
Various research attempts have focused on the topic of performing query processing efficiently. One such
attempt was to cluster user queries according to their contents as well as user logs (Wen, Nie, & Zhang, 2001).
With the huge amount of available data and number of queries, the use of parallel processing has become
indispensable (Singhal, 2001). Therefore, this area has attracted the interest of many researchers. One of the first
attempts in this respect was studying parallel query processing on shared-everything parallel systems (Hong &
Stonebraker, 1991). Konstantopoulos, Mamalis, Pantziou and GavalasHong (2009) proposed parallel algorithms
for document retrieval of BSP (Bulk Synchronous Processors) and CGM (Coarse-Grained Multiprocessors).
They, analytically, proposed cost models for query processing on both architectures in terms of computation,

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

126

communication and memory usage. Frachtenberg (2009) studied coarse-grained and fine-grained parallel
approaches for web search using indexing to reduce latencies. A study on resource allocation selection and
scheduling was performed by Epimakhov, Hameurlain, Dillon and Morvan (2011) with the purpose of
parallelizing queries in heterogeneous grid environments. They performed a performance analysis of static,
dynamic and hybrid allocation methods as well as incentive-based methods using their own developed simulator.
A review on interquery and intraquery partitioning schemes was provided by Cambazoglu, Catal, and Aykanat
(2006). Ding, He, Yan and Suel (2009) used a system based on graphic processing unit (GPUs) for high
performance query processing by parallelizing specific subtasks such as inverted list compression, list
intersection and top k scoring. Delbrua, Campinas and Tummarello (2012) devised a high performance indexing
model for semi-structured information which is applicable on heterogeneous environments,

PC clusters have been considered as a low cost parallel solution for query processing and text retrieval in general.
Rungsawang, Laohakanniyom and Lertprasertkune (2001) performed parallel indexing of huge data using PC
clusters for fast text retrieval using the PVM message passing library. Another attempt (Chung et al., 2001)
provided a PC cluster parallel system based on partitioning the inverted index file among the cluster nodes’ hard
disks such that every term in a query is sent to the relevant node. They used a Distributed Shared Memory (DSM)
programming technique and proved that this technique outperforms a Message Passing Interface (MPI)
implementation in terms of speedup. Further issues have been considered concerning using PC clusters to
retrieve information from a huge amount of data. Kang et al. (2004) studied the problems of node failure and
load imbalance and provided a method based on data duplication to achieve both fault tolerance and load
balancing.

3. Index Partitioning Schemes
3.1 Inverted Indices

Currently, search engines use the inverted index data structure for faster and more efficient query processing
(Zobel & Moffiat, 2006). Every document to be indexed is associated with a number of terms. These terms may
be simply words appearing in the document or topics covered by the document if more sophisticated term
extraction methods are used (Svenonius, 2000). An inverted index consists of a number of inverted lists each of
which is associated with a term. Each inverted list consists of a number of postings pointing to documents where
the term appears. In query processing, a query consists of a number of terms and it is required to search the
inverted index for relevant documents. We use a simple example to clarify the concept of inverted index and
related partitioning schemes which will be described in the section 3.2. The following is a simple document
collection which consists of 6 documents where each document is associated with a set of terms.

 , , , , , ,

The corresponding inverted index structure L is: , , , ,

 , , , , , , ,

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

127

3.2 Replication and Index Partitioning

Traditionally, the whole inverted index used to be stored on one machine. Despite the simplicity of this approach,
it suffers from the drawbacks of having slow response time as well as space limitation. These problems become
significantly apparent with large volumes of data.

The two most popular approaches for exploiting parallelism in query processing are replication and index
partitioning. It is assumed here that there are n index nodes. Using the replication approach, a replica of the
index is assigned to each of the n nodes. In this case, multiple queries can be processed in parallel but each query
is processed sequentially. This approach is also called inter-query parallelism. Using the index partitioning
approach, the index is partitioned into n partitions each of which is assigned to a separate node. Each query is
processed by multiple nodes in parallel where each node works only on its index partition. This approach is also
called intra-query parallelism and is known to be latency-oriented as it aims at reducing the average query
waiting time. On the other hand, inter-query parallelism is known to be throughput-oriented. Partitioning the
index can be performed in one of two dimensions; can be based on either documents or terms.

3.3 Document-Based and Term-Based Partitioning

Based on the example document collection given in section 3.1, document-based and term-based portioning are
illustrated in Figure 1. In document-based partitioning, each node is responsible for a subset of the document set.
The index on each node consists of lists of all terms of documents belonging to the corresponding document
partition. When a new query is to be processed, it is passed to a master (frontend) node which sends the query to
all the index nodes. Each index node processed the query based on the index partition it has then passes the
results to the master node. The master node merges all the results passed by the index servers. The main
advantage of such a scheme is its simplicity (Büttcher, Clarke, & Cormack, 2010). In term-based partitioning,
each node is responsible for a subset of terms. A node processes a query only if at least one of the terms in the
query belongs to the node’s terms subset. This scheme is preferred in cases where the index is stored on disks.
However, performance degrades as the document collection becomes bigger. So, it is not scalable with the size
of the document collection. Term partitioning also suffers from load imbalance since the load associated with a
term depends on its frequency in the document collection as well as its frequency in queries. Some hybrid
term/document partitioning and hybrid document partitioning and replication have been devised.

Figure 1. Document-based partitioning and Term-based partitioning

4. Modeling Parallel Query Processing
In this paper, we exploit parallelism in query processing making use of the inverted list structure on both the
shared-memory parallel model and parallel clusters. Both architectures are illustrated in Figure 2.

 X X

X X

 X X

 X X

X X X

d1 d2 d6d5d4d3

t1

t3

t2

t4

t5

Te
rm

s

Documents

X X

X X

 X X

X X

X X X

d1 d2 d6d5d4d3

t1

t3

t2

t4

t5

Te
rm

s

Documents

Node 1 Node 2 Node 3

N
ode 2

N
ode 3

N
ode 1

(a) Document partitioning (b) Term partitioning

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

128

4.1 Inverted Index

An inverted index is a data structure which is commonly used to index large document collections for fast query
processing. For a document collection D associated with a set of terms T, an inverted index is composed of a set
of inverted lists L. An inverted list l ∈ L is the inverted list for the term t ∈ T. Every document d ∈ D is
associated with a number of terms such that d ⊂ T . For our example document collection D d , d , d , d , d , d and the set of terms T t , t , t , t , t .

4.2 Inverted Index Partitioning

The previous definitions are slightly modified and extended for the purpose of partitioning the inverted index.
Let N be the set of nodes and L the set of inverted lists assigned to the node n ∈ N. Each inverted list l ∈ L
is associated with the term t and stored on node n . Hence, L l , l , … , l| | . Each inverted list l
consists of links to a number of documents such that l ⊂ D.

Using the term-based partitioning approach, the set of terms T is partitioned among the nodes such that each
term exists on only one node. Therefore, for any two inverted lists l 	and l , j m where 1 j,m |N|
and 1 i |T|. An inverted list l consists of links to documents associated with terms assigned to n . Hence, l 	 d : t ∈ d 	, 1 k |D| .

In document-based partitioning, the set of documents D is disjointly partitioned among the nodes such that all
links to documents in an inverted list stored on a particular node appear only on this node. Let D be the set of
documents assigned to n .	Consequently, D 	 ⋃ l| | 	 and d ∩ d 	 ∅		∀	v u. It is possible that l ∅
if t ∈ d and d ⊄ D .

Table 1 shows how this model can be applied on our simple example using both document-based and term-based
partitioning using 3 nodes.

Table 1. Document-based and term-based index partitioning applied on our simple document collection using 3
nodes

Node Document-based Partitioning Term-based Partitioning

Node 1 L1 = { , , , }
= {d2}
= {d1,d2}
= {d2}
= {d1}

L1 = { , }
= {d2,d4,d6}
= {d1,d2}

Node 2 L2={ , , , }
= {d4}
= {d3}
= {d4}
= {d3}

L2={ , }
= {d3,d5}
= {d2,d4}

Node 3 L3={ , , }
= {d6}
= {d5}
= {d5}

L3={ }
= {d1,d3,d5}

4.3 Using the Shared-Memory Model

Queries are partitioned among nodes in order to exploit parallelism. A query q is represented as a set of terms q ⊂ T. In the shared memory model of N nodes, a query q is processed sequentially by a node n . When a
query arrives, it is assigned to an available node or waits in the queue if all nodes are busy. The number of
inverted lists accessed by q is |q| as every term maps to an inverted list. Let D be the set of documents
retrieved by q. Then, D ⊂ D such that ∀t ∈ q, t ∈ d 	and d ∈ D where 1 i |q|, 1 k |D |.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

129

4.4 Using Clusters

Using the parallel cluster model, every query is assigned to an entire cluster. Within a cluster, terms of a query
are partitioned among the nodes in the cluster. Each node in a cluster receives a subset of the terms of the query
assigned to the cluster. All nodes in a cluster run in parallel and the documents retrieved by all nodes are
compiled. This can be viewed as a hybrid approach between inter-query and intra-query parallelism. This
partitioning approach adopts inter-query parallelism on the level of clusters whereas it adopts intra-query
parallelism on the level of nodes within a cluster. Let be the set of clusters and each cluster ∈ where 1 | | consists of a set of nodes. Hence, , , … , | | where is the set of nodes assigned
to cluster . If a query q is assigned to cluster , each node ∈ 	1 | | processes approximately | | | |⁄ terms. A cluster is considered to be available for another query when all nodes finish.

Figure 2. Shared-memory and parallel clusters models

5. Simulation
For the purpose of this work, a specialized simulator was developed. The parameters and their settings are
explained. Some values are randomly generated in selected ranges that were found adequate. In our simulator,
we are interested particularly in simulating query processing on shared-memory architecture and cluster-based
architectures. A performance analysis is conducted when different simulation parameters are varied. Our
simulator consists of three main components; the queries and inverted index generator, shared-memory
simulator and cluster simulator. Queries and index data generated from the first component are used as input to
the two other components. Each of these components will be detailed in a separate subsection.

5.1 Queries and Inverted Index Generator

Before running the simulation experiments, the following two steps are performed to generate query and index
files which are the main inputs to the simulation experiments. Simulation parameters that are input to both
generators are:

-Total number of queries (Qtotal)

-Maximum number of terms /query (QMaxterms)

-Total number of terms in the index (Interms)

-Maximum number of documents / term (TMaxDoc)

-Total number of documents (Dtotal)

-Maximum Query Arrival time (QMaxArr)

These are considered to be the primary simulation parameters. Some of the parameters’ values are used as they
are and some are used as maximum values for data to be generated as detailed in the following subsections.

5.1.1 Generating Queries

A list of queries is generated based on the total number of queries Qtotal and the maximum number of terms/query
Qmaxterms. Each query entry consists of:

Query ID (QID)

P0 P1 PN

Shared Memory

Interconnection Network

..........................

Shared Memory

P0

IN

P1 P2 P3

Interconnection Network

Shared Memory

P0

IN

P1 P2 P3

Cluster C0
 Cluster CN

.........

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

130

Query arrival time (QArr): a random number from 0 to maximum arrival time (QMaxArr). For the purpose of
varying the average query inter-arrival time among different simulation experiments, the value of QMaxArr is
varied to be one of 4 values as indicated in Tables 2, 3 and 4.

Number of terms in query (Qnterms): a random number from 1 to Qmaxterms.

Query terms list: a list of Qnterms term ID’s. A term ID is a numeric value from 1 to the total number of terms in
the index (Interms).

5.1.2 Generating Inverted Index

A list of index entries is generated based on the total number of terms in the index Interms. An index entry holds
data about one of the Interms terms in the index file. Each index entry consists of:

Term ID (TID)

Number of documents related to the term (Tndoc): a random number from 1 to TMaxDoc.

Term documents list: a list of Tndoc document ID’s. A document ID is a numeric value from 1 to total number of
documents Dtotal.

5.2 Query Processing on Shared-Memory Simulator

Queries are arranged in a queue according to their arrival time. At the beginning of each simulation time step, it
is checked if there any waiting queries. Idle processors are cleared and marked as available. If there are waiting
queries, an idle processor is sought for each query. When a query is assigned to a processor, that processor
handles all terms in the query in sequence. All query terms are searched for in the inverted index to retrieve
relevant document IDs. Document IDs are compiled and redundancies are removed.

5.3 Query Processing on Clusters Simulator

At the beginning of each simulation step, clusters which have become idle are cleared and marked as available.
A cluster is considered available if all processors within the cluster have finished processing. When a waiting
query is assigned to an available cluster, all processors in the cluster are dedicated to the query till the whole
query is processed. Query terms are distributed among cluster processors and each processor searches for the
document IDs relevant to the term being processed. At end, all retrieved document IDs are compiled and
redundancies are removed.

6. Parameters and Experiments
In our simulation experiments, we use a synthetic data set that is generated by the Queries and Inverted Index
Generators described earlier. The total number of queries (Qtotal) input to our simulator is 1000 queries with a
maximum number of keywords (terms) per query (QMaxterms) taken as 5. The actual number of keywords per
query generated by the queries generator is a random integer from 1 to QMaxterms

 inclusive. Each query has an
identifier QID which lies between 0 and Qtotal. The inverted index consists of a list of entries each of which is
associated with a keyword (term). The size of the generated inverted index (Interms) or the total number of terms is
300 terms. The document set is assumed to consist of Dtotal = 10000 documents. Each document in the document
set is associated with a number of terms which is a random integer between 1 and TMaxDoc inclusive where
TMaxDoc=15. A query’s arrival time QArr is a randomly generated integer between 0 and QMaxArr inclusive. QMaxArr

is varied in 4 values (20, 30, 60 an 100) to simulate different query inter-arrival times.

A total of 32 simulation experiments are run using a single processor, shared-memory architecture and cluster –
based architecture. The 4 sets of parameters (varying QMaxArr) are used in the simulation experiments for all
architectures. In the shared-memory experiments, the number of processors is varied (4, 8, 16 and 32). In
cluster-based experiments, the number of processors within a cluster is fixed to 4 in all experiments whereas the
number of clusters is varied (2, 4 and 8).

7. Results and Discussion
A sample of the simulation output file is shown in Figure 3. A number of performance measures are computed
and output by the simulation program to show the effect of varying QMaxArr, the parallel architecture used and the
number of processors (N).

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

131

Simulation parameters

Number of shared memory processors 4

Number of queries= 1000

 Max.KW per query = 5

Number of queries = 300

 Max. docs per KW = 15

Number of docs=10000

Max. Arr. time=60.00

no.of docs in query 0 is 2 no of kw = 1

no.of unique docs in query 0 is 2

P0 processing query 0 arr. time= 3 start time=3 endtime=11 querytime=8

no.of docs in query 1 is 36 no of kw = 3

no.of unique docs in query 1 is 36

P1 processing query 1 arr. time= 4 start time=4 endtime=1372 querytime=1368

no.of docs in query 2 is 12 no of kw = 2

no.of unique docs in query 2 is 12

P2 processing query 2 arr. time= 8 start time=8 endtime=176 querytime=168

no.of docs in query 3 is 29 no of kw = 3

no.of unique docs in query 3 is 29

P0 processing query 3 arr. time= 14 start time=14 endtime=913 querytime=899

no.of docs in query 4 is 12 no of kw = 2

no.of unique docs in query 4 is 12

.

Summary

P0 busytime=1275.69 tkws=645 Percent util.=1.00

P1 busytime=1270.32 tkws=623 Percent util.=1.00

P2 busytime=1264.38 tkws=650 Percent util.=0.99

P3 busytime=1276.31 tkws=615 Percent util.=1.00

Avg. Proc. Util = 1.00

Avg. Query Response time = 590.08

Total waiting time for all queries=584997.03

Avg waiting time = 585.00

Total no. of kws for all processors=2533

Arrival time Mean=30.47 Variance=28841.95 SD=16.98

time taken (makespan)=1276.50

Figure 3. Part of a log file and simulation output of a simulation experiment

The results of a number of performance measures are shown in Tables 2, 3 and 4 using one processor,
shared-memory and clusters respectively. The maximum query arrival time QMaxArr is varied to vary the average
query inter-arrival time while keeping the total number of queries constant as explained before. The average
query response time decreases with the increase in QMaxArr. Average processor and cluster utilization are
measured as a fraction between 0 and 1. A cluster is busy from the time the first processor in the cluster starts
processing till the last processor in the cluster finishes. Consequently, a cluster is considered occupied processing
queries even though a number of processors within the cluster may be idle. Therefore, average processor
utilization in case of shared-memory is high while average cluster utilization is relatively low and reaches 0.39.

Table 2. Performance measures for simulation results with N=1 varying the maximum query arrival time

Performance Measure QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100

Makespan 5383.50 5228.73 5086.70 4635.52

Average Query Response Time 2684.77 2641.42 2450.13 2250.75

Average Query Waiting Time 2679.39 2636.20 2445.04 2246.12

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

132

Table 3. Performance measures for shared-memory simulation results varying the number of processors N and
the maximum query arrival time QMaxArr

Performance Measure N QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100

Makespan

4 1347.78 1309.07 1276.50 1166.69

8 676.86 655.77 641.12 589.31

16 342.49 330.84 326.30 302.50

32 174.72 171.63 172.59 159.61

Average Processor
Utilization

4 1.00 1.00 1.00 0.99

8 0.99 1.00 0.99 0.98

16 0.98 0.99 0.97 0.96

32 0.96 0.95 0.92 0.91

Average Query Response
Time

4 664.18 649.52 590.08 524.98

8 327.35 317.66 280.09 237.46

16 159.04 151.75 125.47 93.97

32 74.95 69.01 48.76 23.54

Average Query Waiting
Time

4 658.80 644.29 585.00 520.35

8 321.96 312.43 275.01 232.83

16 153.65 146.53 120.38 89.35

32 69.57 63.78 43.67 18.91

Table 4. Performance measures for clusters simulation results varying the number of clusters C and the
maximum query arrival time QMaxArr. The number of processors per cluster is kept constant and is equal to 4

Performance Measure C QMaxArr=10 QMaxArr=30 QMaxArr=60 QMaxArr=100

Makespan

2 775.79 777.31 738.11 722.78

4 388.66 389.17 369.42 361.97

8 194.96 194.71 185.72 181.55

Average Cluster
Utilization

2 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00

8 0.99 1.00 0.99 0.99

Average Processor
Utilization

2 0.40 0.40 0.40 0.39

4 0.40 0.40 0.40 0.40

8 0.40 0.40 0.40 0.39

Average Query Response
Time

2 379.22 376.45 332.54 308.70

4 185.03 181.17 151.40 129.43

8 87.95 83.57 60.94 39.87

Average Query Waiting
Time

2 377.67 374.90 331.06 307.26

4 183.48 179.62 149.92 127.99

8 86.40 82.02 59.47 38.42

Speedup is a performance measure that indicates the gain from parallelism. It is measured as a fraction SN=T1/TN
where T1 is the time taken using one processor and TN is the time taken using N processors. Efficiency is also
another performance measure that shows how efficiently processors are utilized and is measured as EN=SN/N.
Table 5 shows that both speedup and efficiency are higher in case of shared-memory than in case of clusters.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

133

Table 5. Speedup and Efficiency in shared memory and clusters experiments

Shared-Memory Experiments Clusters Experiments

N Average Speedup Efficiency C Average Speedup Efficiency

4 3.9 97.5% 2 6.7 83.8%

8 7.8 97.5% 4 14.7 91.9%

16 15.5 96.9% 8 26.8 83.8%

32 29 90.6%

The effect of changing the parallel architecture on query response time while keeping the total number of
processors constant has been investigated (Figures 4, 5 and 6). In case of cluster experiments, the number of
processors per cluster is kept constant and equals to 4). The number of queries which achieve lower response
time is higher when using shared-memory compared to clusters.

Figure 4. Comparison between shared-memory architecture and clusters having the same number of nodes (8

nodes) showing the number of queries achieving specified ranges of response time

Figure 5. Comparison between shared memory architecture and clusters having the same number of nodes (16

nodes) showing the number of queries achieving specified ranges of response time

0
10
20
30
40
50
60
70
80
90

100
110
120

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

SM N=8

2C x 4N

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

SM N=16
4C x 4N

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

134

Figure 6. Comparison between shared memory architecture and clusters having the same number of nodes (32

nodes) showing the number of queries achieving specified ranges of response time

Histograms of Figures 7 and 8 show further details on query count of queries achieving different response times
for shared-memory and cluster models respectively. In these histograms, query response time is divided into
intervals where each column represents the query count in a specific range (between 2 bins). When comparing,
for example, the second histogram (N=8) in Figure 7 with the first histogram (C=2) in Figure 8, both having 8
processors and the same bin ranges, it is noted that the number of queries in case of using shared-memory is
higher than that in case of using clusters in the same bin range. Similarly, other pairs of histograms can be
compared with the same observation.

Figure 7. Histograms showing the number of queries having response times in different ranges in shared memory

simulation. Response time is measured in simulation time steps. N is the number of processors

0
20
40
60
80

100
120
140
160
180
200
220
240
260

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

SM N=32
8C x 4N

0

20

40

60

80

100

120

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

N=4

0

20

40

60

80

100

120

140

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Unit)

N=8

0

20

40

60

80

100

120

140

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

N=16

0

50

100

150

200

250

300

10 20 30 40 50 60 70 More

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

N=32

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

135

Figure 8. Histograms showing the number of queries having response times in different ranges in clusters

simulation. Response time is measured in simulation time steps. C is the number of processors where the number
of processors per cluster is fixed to 4

Figure 8 represents a total view or log for the actual number of queries of every possible response time. The
execution profile (Figure 10) of a number of experiments shows the effect of changing QMaxArr on the percentage
of queries processed as simulation time passes (also represented as a percentage of total simulation time). This
figure represents 4 experiments for C=8 varying QMaxArr and shows that a higher percentage of queries are
processed earlier as QMaxArr increases. This is due to the fact that with higher values for QMaxArr, average query
inter-arrival time increases and hence, queries do not have to wait as long as in case of lower QMaxArr.

Figure 9. Example simulation experiments showing the number of queries of every possible response time

Figure 10. Percentage queries processed versus the percentage of simulation time passed when C=8 varying

maximum arrival time in each graph

0

20

40

60

80

100
Q

ue
ry

 C
ou

nt

Query Response Time (Sim. Units)

C=2

0

20

40

60

80

100

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

C=4

0
20
40
60
80

100
120
140
160

10 20 30 40 50 60 70 80 90 More

Q
ue

ry
 C

ou
nt

Query Response Time (Sim. Units)

C=8

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

Q
ue

ry
 C

ou
nt

Response Time (Sim. Units)

Shared Memory N=32

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

Q
ue

ry
 C

ou
nt

Response Time (Sim. Units)

Clusters C=8

0%

20%

40%

60%

80%

100%

%
 o

f a
rr

iv
ed

 q
ue

rie
s p

ro
ce

ss
ed

% Simulation time passed

QMaxArr=10

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

%
 o

f a
rr

iv
ed

 q
ue

rie
s p

ro
ce

ss
ed

% Simulation time passed

QMaxArr=30

0%

20%

40%

60%

80%

100%

%
 o

f a
rr

iv
ed

 q
ue

rie
s p

ro
ce

ss
ed

Simulation time passed

QMaxArr=60

0%

20%

40%

60%

80%

100%

%
 o

f a
rr

iv
ed

 q
ue

rie
s p

ro
ce

ss
ed

% Simulation time passed

QMaxArr=100

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

136

References
Baeza-Yales, R., & Ribeiro-Neto, B. (1999). Modern Information Retreival (1st ed.). Addison Wesley,

Longman.

Büttcher, S., Clarke, C. L. A. & Cormack, G. V. (2010). Parallel Information Retrieval . In Information Retreival:
Implementing and Evaluating Search Engines, 492-510. MIT Press.

Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer
Networks and ISDN Systems (Proceedings of the Seventh International World Wide Web Conference),
30(1-7), 107-117. http://dx.doi.org/10.1016/S0169-7552(98)00110-X

Cambazoglu, B., Catal, A., & Aykanat, C. (2006). Effect of inverted index partitioning schemes on performance
of query processing in parallel text retrieval systems. Lecture Notes in Computer Science, 4263, 717-72.
Springer Berlin Heidelberg. http://dx.doi.org/10.1007/11902140_75

Chung, S., Kwon, H., Ryu, K., Chung, Y., Jang, H., & Choi, C. (2001). Information retrieval on an SCI-based
PC cluster. Journal of Supercomputing, 19(3), 251-265. http://dx.doi.org/10.1023/A:1011178530932

Daily estimated size of the World Wide Web. (2013). Retreived May 9, 2013, from
http://www.worldwidewebsize.com/

Delbrua, R., Campinas, S., & Tummarello, G. (2012). Searching Web Data: an Entity Retrieval and
High-Performance Indexing Model. Web Semantics: Science, Services and Agents on the World Wide Web,
10, 33-58. http://dx.doi.org/10.1016/j.websem.2011.04.004

Ding, S., He, J., Yan, H., & Suel, T. (2009). Using Graphics Processors for High Performance IR Query
Processing. In Proceedings of the 18th International Conference on World Wide Web, WWW’09, 421-430.
ACM Press. http://dx.doi.org/10.1145/1526709.1526766

Epimakhov, I., Hameurlain, A., Dillon, T., & Morvan, F. (2011). Resource Scheduling Methods for Query
Optimization in Data Grid Systems. In J. Eder, M. Bielikova, & A. M. Tjoa (Eds.), Lecture Notes in
Computer Science (ADBIS 2011), (pp. 185-199). Springer-Verlag Berlin Heidelberg.

Frachtenberg, E. (2009). Reducing Query Latencies in Web Search Using Fine-Grained Parallelism. World Wide
Web, 12(4), 441-460. http://dx.doi.org/10.1007/s11280-009-0066-4

Google Annual Search Statistics. (2013). Retreived May 9th, 2013, from
http://www.statisticbrain.com/google-searches/

Hong, W., & Stonebraker, M. (1991). Optimization of Parallel Query Execution Plans in XPRS. In Proceedings
of the First International Conference on Parallel and Distributed Information Systems, PDIS 1991,
218-225. http://dx.doi.org/10.1109/PDIS.1991.183106

Kang, J., Ahn, H., Jung, S., Ryu, K., Kwon, H., & Chung, S. (2004). Improving load balance and fault tolerance
for PC cluster-based parallel information retrieval. In Proceedings of the 5th International Conf on Parallel
Process and Applied Mathematics (PPAM 2003), Lecture Notes in Computer Science, 3019, 682-687.
Springer. http://dx.doi.org/10.1007/978-3-540-24669-5_89

Konstantopoulos, C., Mamalis, B., Pantziou, G., & GavalasHong, D. (2009). Efficient parallel Text Retrieval
techniques on Bulk Synchronous Parallel (BSP)/Coarse Grained Multicomputers (CGM). Journal of
Supercomputing, 48(3), 286-318. http://dx.doi.org/10.1007/s11227-008-0225-x

Mamalis, B., Spirakis, P., & Tampakas, B. (1999). Optimal High-Performance Parallel Text Retrieval via
Fat-Trees. Theory of Computing Systems, 32(6), 591-623. http://dx.doi.org/10.1007/ s00224000013

Rungsawang, A., Laohakanniyom, A., & Lertprasertkune, M. (2001). Low-Cost Parallel Text Retrieval Using
PC-Cluster. Recent Advances in Parallel Virtual Machine and Message Passing Interface (Lecture Notes in
Computer Science, 2131), 419-426. http://dx.doi.org/10.1007/3-540-45417-9_56

Singhal, A. (2001). Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 24(4), 35-42.

Svenonius, E. (2000). The Intellectual Foundation of Information Organization (1st ed.). MIT Press.

Wen, J., Nie, J., & Zhang, H. (2001). Clustering User Queries of a Search Engine. In Proceedings of the 10th
International Conference on World Wide Web, WWW’01, 162-168. ACM Press.
http://dx.doi.org/10.1145/371920.371974

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

137

Zobel, J., & Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys, 38(2), Article No.
6. http://dx.doi.org/10.1145/1132956.1132959

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

