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Abstract 

Presently, sentence-level researches are very significant in fields like natural language processing, information 
retrieval, machine translation etc. In this paper we present a practical task on sentence classification. The main 
purpose of this work is to classify the abstract sentences of scientific papers in the corpus built by ourselves into 
four categories- the background, the goal, the method and the result- which differ from each other in common 
usage, so that we can do further researches such as frequent pattern mining, information extraction and making a 
corpus for writing assistant system of scientific paper with these results. The main method of the classification is 
the Support Vector Machine, which is acknowledged among the best machine learning methods in the common 
text classification tasks. A semi-supervised method, Transductive Support Vector Machine, is also introduced 
into this four-class classification task to improve the accuracy. The experiments are conducted upon the corpus 
made by ourselves that consists of abstract sentences of scientific papers. The accuracy of the classifier finally 
reaches 75.86% with the semi-supervised method. 
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1. Introduction 

Over the recent years, the study about short text becomes more and more significant in many fields such as 
natural language processing, information retrieval, machine learning etc. Our work aims at classifying abstract 
sentences in scientific papers into four categories according to the content of the sentences. In general, the 
abstract usually consists of the background part, the goal part, the method part and the conclusion part. In 
addition, they are also the most important parts even in the text of a scientific paper. So we consider it very 
significant to classify the sentences into the four categories for further usage like frequent pattern mining, 
information extraction and writing assistant of scientific paper with a large number of predicted sentences.  

The abstract almost covers the whole content of a paper clearly and concisely, and sentences in it usually have a 
large amount of information in spite of their short length. In the traditional text classification tasks, statistic 
machine learning methods usually have good performance along with the vector space model. Several studies 
suggest that Support Vector Machine is generally acknowledged to have the best performance in text 
classification among these statistical machine learning methods. However, short texts have quite sparse features, 
usually couples of words. So the traditional Bag-of-words method meets some problems which leads to low 
efficiency. In our task, an abstract sentence usually has tens of words. In addition, our aim is to classify the 
abstract sentences into “background”, “goal”, “method” and “result”, so some uncertain semantic factors may 
also influence the classification.  

Because of the lack of pre-existing corpus, we build the corpus and mark the instances ourselves. We carry out 
the experiments in both supervised and semi-supervised methods upon the scale-limited data set. And finally, we 
improve the accuracy of classification after several steps. After the classification, we may then choose the 
high-confidence predicted abstract sentences in each category for further researches such as frequent pattern 
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mining, information extraction and writing assistant of scientific papers. 

Figure 1 displays the process of our work. First, we build the corpus of abstract sentences ourselves in order to 
carry out the experiments, including acquiring the corpus, analyzing the corpus and tagging the instances in it. 
Second, we conduct a group of experiments on feature selection in order to get a better feature vector for 
classification in our task. Third, we carry out the classification task with both supervised method and 
semi-supervised method. 

 

 
Figure 1. The process of our work 

 

This paper is organized as follows: in Section 1, we introduce the background and aim of this work; in Section 2, 
we talk about the related work; in Section 3, we introduce the data set on which we conduct the experiment; in 
Section 4, we discuss the feature selection step of our work; in Section 5, we discuss the processing of the 
classification and the results of the experiments; in Section 6, we demonstrate the conclusion of our work. 

2. Related Work 

In this section we review some recent related literature on sentence classification and Transductive Support 
Vector Machine. 

2.1 Sentence Classification 

Research on sentence classification has been carried out over the recent years. In an earlier research, Naughton 
and Stokes et al. (2008) treated event detection as a sentence level text classification problem. They concluded 
that SVM consistently outperform the Language Model technique in their task, and that the manual rule based 
classification system was a powerful baseline that outperformed the SVM on half of the six event types. Lui 
(2012) used feature stacking to combine a variety of feature sets drawn from lexical and structural information at 
sentence level as well as the sequential information at the abstract level. Their system attained a ROC 
area-under-cure of 0.972 and 0.963 on two subsets of test data and produced the winning entry to the ALTA2012 
Shared Task (Note 1). Molla (2012) found that the cluster-based feature improved the results for Naive-Bayes 
classifiers but not for better-informed classifiers such as Max-Entropy and Logistic Regression in their 
participation to the ALTA 2012 Shared Tasks. 

2.2 Transductive Support Vector Machine 

After Joachims (1999) proposed the Transductive Support Vector Machine, lots of machine learning researches 
and tasks were carried out based on it. Chen and Wang et al. (2008) introduced an application of TSVM in 
Chinese Semantic Role Labeling. They designed some heuristics from the semantic perspective to improve the 
performance of TSVM and the results showed that TSVM outperformed SVM in small tagged data and that after 
using heuristics TSVM performed further better. Miceli-Barone and Attardi (2012) presented a shift/reduce 
dependency parser that could handle unlabeled sentences in its training set using a transducive SVM as its action 
selection classifier. They performed the experiments with this parser on a domain adaptation task for the Italian 
language. TSVM was also used in fields like pixel classification (Chakraborty & Maulik, 2011; Maulik & 
Chakraborty, 2013). 
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3. The Building of Date Set 

Our study object is mainly abstract sentences in scientific papers, because the abstract usually covers the whole 
content of a paper. The scientific papers are downloaded from the web site “http://www.sciencedirect.com/”, 
involving several fields. And then the abstract parts are extracted from the pages and split into sentences. By 
several studies and investigating of our corpus, we find that the abstract sentences could be classified into four 
categories as follows. 

Class 1 is the background, usually including the general areas of the research, the specific research direction, the 
background and related work of the research, the significance and importance of the research, the usual research 
methods and basis of the area. For instance, the sentence “Feature selection is an indispensable preprocessing 
step for effective analysis of high dimensional data.” belongs to this category. So does the following sentence 
“Finding an optimal feature subset for a problem in an outsized domain becomes intractable and many such 
feature selection problems have been shown to be NP-hard.”. 

Class 2 is the goal, usually including the sentences that directly point out the proposed idea, methods, concepts, 
etc., but not the simple repetition of the aim. In addition, it can also contain the structure of the paper. For 
instance, the sentence “This paper formulates the text feature selection problem as a combinatorial problem and 
proposes an Ant Colony Optimization (ACO) algorithm to find the nearly optimal solution for the same.” belongs 
to this category. So does another sentence “In this study, we focused on pathway figures that illustrate signaling 
or metabolic pathways, because many of these are important in understanding disease mechanism(s).”. 

Class 3 is the method, usually including the process of the research, what method and data is used, as well as the 
principle and the conditions of the experiment. For instance, the sentence “Documents from 20 newsgroup 
benchmark dataset were used for experimentation.” belongs to this category, so does another sentence 
“Multivariate analyses were performed to analyze the subject's perceptions and to build conceptual models for 
telephone design.”. 

Class 4 is the result, usually including the observed results of the experiment, the analysis of the results, the 
conclusion obtained from the results, comparison with other results and the prospect of further work. For 
instance, the sentence “An F -score of 0.78 is obtained for labeling relevant coordinating constructions in an 
independent test set.” belongs to this category. So does another sentence “Experiments showed that the 
performance of classifiers improved through adopting the proposed methodology.”. 

We then tagged the corpus that has a scale of 4550 abstract sentences with the four labels. After splitting, we get 
127718 words (including words, tokens, names, other special tokens) and a vocabulary book of 10346 words. 
Table 1 displays the statistics of the labeled corpus for each class. The “#sentence” refers to the number of the 
sentences for each class. The “proportion” refers to the proportion of the sentences in each class. The “#word” 
refers to the number of words in each class. The “vocabulary” refers to the scale of vocabulary for each class. 
And Figure 2 displays the distribution of the words after lowercasing, stemming, lemmatizing and stop words 
removal. 

 

Table 1. Statistics for each category 

 Label 1 Label 2 Label 3 Label 4 

#sentence 1054 783 1716 997 

proportion 0.232 0.172 0.377 0.219 

#word 29035 23125 47162 28396 

vocabulary 4542 3969 6418 4674 

Description: The “#sentence” refers to the number of the sentences for each class. The “proportion” refers to the 
proportion of the sentences in each class. The “#word” refers to the number of words in each class. The 
“vocabulary” refers to the scale of vocabulary for each class.  
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Table 3. Feature selection mode for parameter P 

P  Feature selection mode 

0 No stop word removal, no stemming, uni-gram 

1 No stop word removal, no stemming, bi-gram 

2 No stop word removal,  stemming, uni-gram 

3 No stop word removal,  stemming, bi-gram 

4 stop word removal, no stemming, uni-gram 

5 stop word removal, no stemming, bi-gram 

6 stop word removal, stemming, uni-gram 

7 stop word removal, stemming, bi-gram 

 

Table 4. Feature selection mode for parameter F 

F Feature selection mode 

0 binary 

1 Word count 

2 TF 

3 TF-IDF 

 

5. Classification of Abstract Sentences 

5.1 Supervised Learning Method 

Supervised statistical machine learning methods are widely used in text classification tasks, such as KNN 
method, Naive Bayes method, ME model, Support Vector Machine model, Decision Tree method, ANN model et 
al. And among them Support Vector Machine has the best effect in most common text classification tasks. 
However, for short text classification, Support Vector Machine also meets the problem of sparse feature. In our 
task, lack of training data is another factor that can affect the performance of the classifier.  

We determine the feature selection modes based on the investigation above, namely lower letter formula, no stop 
word removal, stemming, lemmatizing and bi-gram. We make a CHI-test for the four categories in the training 
set and select the Top-1000 words that have the highest CHI-value from each category. Then we merge the four 
sets of words and finally get a 3758-dimension feature vector. We train the Support Vector Machine model on the 
training set with libsvm-3.16 (Note 3). With the RBF kernel trick and the grid technique, the accuracy rises to 
70.2579%. 

5.2 Semi-Supervised Learning Method 

Semi-supervised learning method can be used in a task in the situation that the labeled training data is not 
enough to fit the distribution while a large number of unlabeled data is available. This situation should usually 
rely on the cluster assumption that the decision hyperplane should cross the area in which few spots are located. 
Joachims (1999) proposed a semi-supervised learning method based on Support Vector Machine model, the 
Transductive Support Vector Machine (TSVM). In his work he conducted several experiments on text 
classification and gave an explanation why TSVMs are especially well suited for text classification. Based on the 
theory he proposed, he developed the SVMlight to solve the optimization problem. Generally speaking, a TSVM 
trains a classifier both on the labeled training data and unlabeled data. 

In our task, we carry out a group of experiment based on SVMlight-5.00 (Note 4). The training set contains the 
2404 labeled instances and large amount of unlabeled data. The testing set is still the 2146 labeled instances. The 
feature selection mode is the same as Section 2 has described. On bringing in 8821 unlabeled instances totally, 
the accuracy rises to 75.8621% on the test dataset. The following figures (Figure 3, Figure 4, Figure 5 and Figure 
6) show the trend of accuracy, precision, recall, F-score for each class after bringing in unlabeled instances step 
by step. The X-axis refers to the number of training data, 1 represents 2404 labeled instances, 2 represents 2404 
labeled instances with 2246 unlabeled instances, 3 represents 2404 labeled instances with 4368 unlabeled 
instances, 4 represents 2404 labeled instances with 6657 unlabeled instances and 5 represents 2404 labeled 
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Note 1. http://alta.asn.au/events/sharedtask2012/ 
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Note 4. http://www.cs.cornell.edu/people/tj/svm_light/ 
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