
Computer and Information Science; Vol. 6, No. 3; 2013
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

68

An Assessment of Changeability of Open Source Software

Yirsaw Ayalew1 & Kagiso Mguni1
1 Department of Computer Science, University of Botswana, Botswana

Correspondence: Yirsaw Ayalew, Department of Computer Science, University of Botswana, Botswana Private
Bag 0704, Gaborone, Botswana. Tel: 267-355-2869. E-mail: ayalew@mopipi.ub.bw

Received: April 18, 2013 Accepted: May 9, 2013 Online Published: May 23, 2013

doi:10.5539/cis.v6n3p68 URL: http://dx.doi.org/10.5539/cis.v6n3p68

Abstract

Among the maintainability sub-characteristics, changeability plays a critical role in analyzing the maintainability
of software. Changeability is highly influenced by the dependencies that exist between the components of a
system. Therefore, we need to have measurement mechanisms that can take into account the dependencies
between components so as to determine the ease which modifications can be made to given software. This paper
attempts to investigate the usefulness of three coupling metrics (CBO, Ce, and Ca) and one size/complexity
metric (WMC) as predictors of changeability. The assessment is based on a case study of open source software
known as OpenBravoPOS which is commonly used in the retail business and developed in Java. The results
show that some of the coupling metrics can be used as good predictors of changeability.

Keywords: changeability, coupling metrics, maintenance, OpenBravoPOS

1. Introduction

Software maintenance is the most expensive activity that consumes about 50–70 percent of development cost
(Jalote, 2005). For this reason, people have attempted to find ways to minimize maintenance costs by introducing
better development methodologies that can minimize the effects of change, simplify understanding of programs,
facilitate early detection of faults, etc. Before a maintenance task is carried out, it is crucial to assess the
maintainability of the software under consideration. According to IEEE (1990), maintainability can be defined as
“The ease with which a software system or component can be modified to correct faults, improve performance
or other attributes, or adapt to a changed environment”.

In order to measure maintainability, we need to employ appropriate metrics. There are various maintainability
metrics of which some are based on design properties of a system while others are based on code level properties
of a system. In their study, (Riaz, Mendes, & Tempero, 2009) found that metrics based on size, complexity, and
coupling are the most successful maintainability metrics. Moreover, among the successful predictors, most are
gathered at the source code level. However, they have also discovered that there are no studies that attempted to
explore the treatment of maintainability metrics and their applicability on different maintainability
sub-characteristics and maintenance types. In another study, Yuming and Baowen (2008) conducted an
experimental study on the relationship between design metrics and maintainability of open source software. The
results of their study indicate that size and complexity metrics are strongly related to the maintainability of open
source software. Dagpinar and Jahnke (2003) found that size and direct coupling metrics are significant
predictors for measuring maintainability of classes. In a major critique to studies on maintainability (Broy,
Deissenboeck, & Pizka, 2006), argued that “there is no common understanding of what maintainability actually
is, how it can be achieved, measured, or assessed”. To address this issue, they proposed a two-dimensional
quality model that treats maintenance activities and system properties separately.

With regard to open source software, empirical studies show that open source software is more maintainable than
proprietary software (Samoladas, Stamelos, Angelis, & Oikonomou, 2004). These studies used design metrics
for comparing the maintainability of open source software and proprietary software. However, (Schach, Jin,
Wright, Heller, & Offutt, 2002) demonstrated that after a long period of maintenance, even an open source
software may become difficult to maintain. In other words, maintainability deterioration over time is expected
for both open source software and proprietary software system.

Among the maintainability characteristics, changeability plays a critical role in analyzing the maintainability of
software. Changeability refers to how easy it is to perform a specified modification (ISO/IEC9126-1, 2001).

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

69

Many studies assessed changeability based on change impact analysis (CIA). CIA is an approach used to identify
the potential ripple effects caused by changes made to software (Bohner & Arnold, 1996). CIA techniques focus
on determining the effects of the proposed changes on other parts of the software. Sun, Li, and Zhang (2012)
proposed an extension of the CIA technique by introducing an impactness metric which takes individual change
proposals into account and determines the degree to which the software can absorb the change proposal. For this
purpose, they introduced the formal concept analysis which is based on a lattice diagram constructed for a given
change proposal. Other studies focus on the development of changeability assessment models. For example,
Fluri (2007) proposed a changeability assessment model for source code entities. They provided taxonomy of
source code changes and used this taxonomy with a set of changeability criteria to assess the changeability of an
evolving system. Along this line, there are a number of techniques proposed for change impact analysis. Li, Sun,
Leung, and Zhang, (2012) conducted a comprehensive survey study to determine the application of existing
code-based CIA techniques in software maintenance. Their results show how CIA techniques are increasingly
becoming crucial for the assessment of software evolution. However, there are not many studies that investigated
metrics that can effectively be used to assess changeability of open source software systems.

In this study, we are interested in to assess the relationship between metrics and changeability of open source
software. Specifically, we would like to investigate design metrics that can be used as good indicator of
software changeability. To do so, we assessed the changeability of the evolving open sources software system –
OpenBravoPOS by analyzing its change history. The focus of this paper is on analyzing fine-grained source code
changes.

The rest of the paper is organized as follows: Section 2 presents related work on changeability assessment. A
discussion on how we conducted the study is provided in Section 3. The results of the study and issues
emanating from the study are discussed in Section 4. Finally, Section 5 presents the main points of the study and
future work.

2. Related Work

In the literature, there are different approaches used for the assessment of changeability. Most assessments are
based on change impact analysis (using changeability model) and some are based on design metrics. A
discussion of related work from both approaches is provided below.

2.1 Change Impact-Based Approaches

Grover, Kumar, and Kumar (2008) proposed a measurement approach for evaluating the changeability of an
aspect oriented (AO) system by assessing the changes made at the code level. This measurement approach
specifies the minimum changes required in order to properly evaluate changeability. For example, for a
component with 3 operations, a minimum of 12 changes are required to evaluate Average Change Impact (ACI).
For each component, they computed the ACI and the number of dependencies (measured with the help of
adjacency matrix). They found that as the dependency among components increases, the impact of change
increases which indicates low changeability. They concluded that a highly dependent AO system will absorb low
changeability.

Chaumun, Kabaili, Keller, and Lustman (1999) proposed a change impact model that aims to assess the impact
of change when a maintenance task is carried out on a system. The changes proposed in the model are carried out
at the field, method or class level. Their impact model is based on the types of changes, their links, and the
impact. Using this model, they computed the impact of changes made to classes of an object-oriented system
implemented in C++. They considered only the method signature change in their experiment. The result showed
that the software system used for the experiment was able to easily absorb that kind of change and that well
chosen OO design metrics (e.g., WMC) can be used as indicators of changeability.

Sun et al. (2012) proposed FCA-based Impact Analysis to assess the changeability of a system when presented
with a change proposal. By using formal concept analysis, they demonstrated how to perform change impact
analysis which estimates the ripple effects of the change proposal. With the use of the impactness metric it was
possible to measure the system’s changeability to absorb change proposals. Their case study results show that
their changeability assessment approach can provide more effective changeability information as compared to
those approaches that rely only on the impact results.

Arisholm (2006) carried out a study to assess the impact of structural properties of software on changeability. In
their study, they assessed the structural attributes and the change profile metrics. The structural metrics
considered were system size (LOC as in CK Metrics), Class Count and Class Size, Method Count (WMC as in
CK Metrics) and coupling metrics. The change profile metrics were calculated as the number of lines of code

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

70

added and deleted from snapshot j to j-1. It was found that the change profile measures are better to measure
maintenance effort. They also extended the definition of changeability by adding that a change should avoid
degrading software from a satisfactory state to an unsatisfactory state. In other words, being capable of change
should result in minimum degradation of the software quality.

2.2 Design Metrics-Based Approaches

Chaumun et al. (2000) used the CK Metrics for evaluating the changeability of OO software. They argued that
while the CK metrics have been used as good predictors of maintainability, the metrics were not assessed in
relation to changeability. The metrics considered in their study were WMC, DIT, NOC, CBO and RFC. In their
study they tried to determine a correlation between the number of classes impacted by a given change and the
CK metrics. They redefined the CBO metric and introduced the CBO_NA (CBO No Ancestors) metric to define
a coupling that does not include coupling to the ancestors. In their study, the changeability of three systems was
assessed: XForms which is a small sized graphical user interface application; ET++ which is a medium sized
application framework, and System-B which is a large sized system. The results of their study show that there is
a strong correlation between changeability and coupling to methods and fields. In particular, their CBO_IUB
(CBO Is Used By) metric was the most highly correlated with changeability. The CBO_IUB represents the part
of CBO that consists of the classes using the target class. In addition, they found out that DIT is not correlated
with changeability.

Ingram and Riddle (2011) proposed a method for predicting change proneness in software by demonstrating a
correlation between software size/complexity and change proneness. Their study was focused on one package
(e-Science pilot project developed in Java) which had two iterations in two years. In their study six metrics were
collected: LOC, DIT, WMC, CBO and McCabe's cyclomatic complexity. Change proneness was measured as
the number of files changed for each revision. They found out that classes with the highest CBO were the most
likeliest to change.

Wilkie and Kitchenham (2000) assessed the usefulness of the CBO metric in predicting the classes that are likely
to be affected by a given change. One of their research questions was whether classes with a higher CBO values
are more likely to be affected by a change originating in another class. Their case study was a C++ commercial
multimedia conferencing system which has 25, 000 lines of code. In their study, the CBO, WMC and NPM
metrics were measured. The features analysed for the study included addition of new features and bug fixes.
They found that the CBO metric is useful in identifying the most change prone classes but not the classes likely
to experience ripple effect changes. As a result, they recommended for a more comprehensive measure which
can predict change ripple effects.

In this study, we focus on changeability assessment based on design metrics. Most studies that used metrics to
assess changeability used the CK metrics. Among the CK metrics, CBO and WMC are found to be useful in
assessing changeability. Some studies (e.g., Chaumun, Kabaili, Keller, Lustman, & Saint-Denis, 2000), used
modified versions of the CBO metric and found that this modified version can also be indicator of changeability.

We believe that changeability of a system is better assessed in terms of coupling metrics as coupling metrics
measure the dependencies among various objects of a system. Coupling is a measure of the degree to which two
classes in an object-oriented system depend on one another. These dependencies can serve to assess the impact
of change as changes can propagate from one class to other classes through the dependencies. A class that is
coupled to other classes is sensitive to changes and as a result it becomes more difficult to maintain and gets
more error-prone. Additionally it is harder to test a heavily coupled class in isolation and it is harder to
understand such a class. Changeability of a class (and hence a system) depends on the number of changes
required in the class and the impacts of these changes on other classes. For example, a change prone class will
lead to more changes applied to it where the changes are a result of changes necessary in its functionality or bug
fixes or necessitated by changes on other classes upon which it depends. Therefore, those metrics that capture the
dependencies among classes will have a better likelihood of indicating changeability.

Therefore, our case study investigates the suitability of the coupling metrics Ca (afferent coupling), Ce (efferent
coupling), CBO, and WMC to the assessment of changeability of evolving open source software implemented in
Java. We are aware that there are many other structural coupling metrics as documented in Poshyvanyk and
Marcus (2006). However, for this study, we focus on CBO, Ca, and Ce together with WMC. The coupling
metrics Ca and Ce have not been investigated adequately for their capability in assessing the changeability of a
system despite their presence in many tools that are used for code analysis (e.g., JDepend). The Ca and Ce
metrics have been used to assess modularity of a system which is a characteristic of maintainability in that

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

71

modular systems are easy to maintain. Therefore, metrics applicable for assessing modularity are expected to
have the ability of predicting changeability of a system.

3. Study Setup

The main aim of this research is to determine the metrics that can be used as good indicators of software
changeability. To do so, we collected historical maintenance data from an open source software system known as
OpenBravoPOS.

3.1 Selection of OpenBravoPOS

The main reason for the selection of OpenBravoPOS system is because we have experience in the development
of the system. OpenBravoPOS is a Java-based application that implements functionalities for the retail business
(OpenBravoPOS, 2008). It is an open-source system built with several components which include Apache poi
which is used for reading and writing Microsoft Office files, iText which is used for reading and writing PDF
files, Commons-Logging which is a component that provides logging features, and jasperreports which is used
for the generation of reports.

To get reliable assessment of changeability, we wanted to use existing historical data about maintenance records
of real-world example systems. This helps us to avoid bias as the maintenance tasks had already been carried out
by people different from the researchers who carry out the changeability assessment. This also helps to achieve a
more objective assessment as we are not trying to predict future maintenance effort.

3.2 Data Collection

Version 2.20 of OpenbravoPOS was forked from version 2.10 after over 70 maintenance tasks. The maintenance
log files were accessed from the SVN repository of the OpenbravoPOS project. These maintenance tasks fall into
the following categories:

 Bug fixes – Bug fixes are maintenance tasks that are carried to resolve bugs that exist in the software.
These bugs were tracked using Bugzilla bug tracking system for version 2.20 of OpenbravoPOS.
Version 2.30 and upwards use the Mantis bug tracking system and git for source code versioning.

 Addition of new features – This represents the addition of new features to the existing feature set of
OpenbravoPOS.

 Refactoring – This represents the changes to the source code of OpenbravoPOS that leave the functional
state unchanged. An example of a refactoring is a removal of dead code.

Each revision of the OpenbravoPOS represented a separate maintenance task and the impact of change in
response to this task is the number of components affected by the change. In the SVN repository, the log
messages were used to classify the maintenance tasks into either a bug fix, feature addition or refactoring. The
bug fixes log messages start with the word “Fix” and in some cases they also included bug ids. The feature
additions had the word “add” or variants of the word add. Refactoring tasks had the word “refactoring” or
“code clean-up”.

The different maintenance tasks were mapped to the corresponding program components in the source code
using the Feature Exploration and Analysis Tool (FEAT) (Robillard, 2005). FEAT has been used for mapping
the components related to a maintenance tasks. The maintenance tasks were identified by the revision ID. In the
SVN repository the changes made can be viewed at the code level hence they can be easily identified and then
manually assigned to the different program units.

The commit messages in the SVN repository included a description of the changes and also showed a list of
modified files. The metrics collected in this study are the OO metrics, while the changes made to the
OpenbravoPOS are not limited to only Java files. Some of the changes are linked to other files such
as .properties, .sh, .bat and also .sql files. Maintenance tasks carried out on non-java programs were ignored in
this study as our metrics suite only focused on OO metrics. Moreover, we relied only on the SVN commits and
not the issue tracking system as the focus of the study is on the maintenance tasks that had already been carried
out. Bugs that are not fixed means that they cannot be linked to the different program elements hence they are
ignored in this study. We followed the same definition as Eaddy et al. (2008) in linking the program elements
with a maintenance tasks, i.e., a program element is relevant to a maintenance task if it was modified or added to
carry out the maintenance task.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

72

An example of the log message from the SVN repository is shown below:

Revision: 178

Author: adrianromero

Date: 6:14:10 PM, Wednesday, May 28, 2008

Message:

Fixes issue 1976384 AT210: The customers list does not work in Oracle

Modified : /trunk/src-pos/com/openbravo/pos/customers/CustomersPanel.java

Modified : /trunk/src-pos/com/openbravo/pos/customers/CustomersPayment.java

Modified : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomers.java

Added : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomersCreate.java

Added : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomersHSQLDB.java

Added : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomersMySQL.java

Added : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomersOracle.java

Added : /trunk/src-pos/com/openbravo/pos/customers/DataLogicCustomersPostgreSQL.java

Modified : /trunk/src-pos/com/openbravo/pos/payment/JPaymentSelect.java

Modified : /trunk/src-pos/com/openbravo/pos/reports/JParamsCustomer.java

Modified : /trunk/src-pos/com/openbravo/pos/sales/JPanelTicket.java

Modified : /trunk/src-pos/com/openbravo/pos/sales/restaurant/JTicketsBagRestaurantRes.java

The above log file from OpenbravoPOS shows that some of the code was modified and others were added as a
result of fixing bug 1976384. For example, the Customerspanel.java file was modified and the
DataLogicCustomers.java was added. In addition to showing the files that were modified the SVN client also
allows us to see the changes at the code level. This helped us to map the program elements to the maintenance
tasks.

4. Data Analysis and Results

4.1 Maintenance Tasks

OpenBravoPOS has 119,269 lines of code (LOC). Among this, Java code is 62,417 LOC. The rest of the code
has been written in a combination of other language such as XML, HTML, CSS, SQL, JavaScript, etc. The LOC
reported here excludes comments. This study analyzes only the Java code.

Table 1 provides a summary of the maintenance tasks and the impacts on the system. It shows that most of these
maintenance tasks were bug fixes.

Table 1. Maintenance tasks and their impact

Maintenance Type
No. of maintenance
tasks/changes

Components affected Average impact of change

Bug fixes 34 117 3.44

New features 20 433 21.65

Refactoring 8 21 2.63

Total 62

A component in Table 1 refers to fields, methods, or classes. According to Chaumun et al. (2000), there are 12
types of changes that can affect a component. These 12 types of changes are as follows:

 Variable or Field - Addition, deletion, type change and scope change

 Method – Addition, deletion, implementation change, signature change and scope change

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

73

 Class – Addition, deletion and structure change

In addition to the above 12 changes, we identified 2 more types of changes that could be useful during the
assessment of changeability. These two changes are the renaming of a field and a change of a field. The change
of a field includes such changes as changing the static declaration of a field or changing the initial value of a
field. The following table provides the list of change types and their frequencies during the maintenance of
OpenBravoPOS.

Table 2. Different change types and their impact

Type of change Frequency

Field deletion 21

Field added 78

Field type change 2

Field renamed 3

Field change 5

Field scope 11

Method implementation change 304

Method signature 6

Method deleted 43

Method added 91

Class deleted 4

Class structure change 3

Class added 20

Table 2 shows that method implementation change was the most common maintenance task followed by the
addition of methods and fields. Overall methods were the most affected by the maintenance tasks as expected.

4.2 Impact of Change

Different changes in the source code have different impact on the system. Some changes are localized that they
do not affect other components (field, method, class) of the system whereas others affect a number of
components. This depends mainly on the relationship between a component where the change originates
(sometimes called base component) and the other components which depend on the base component. For
example, in our analysis, we found that some changes affect only 1 component while another affected up to 110
components. The following table shows our analysis of the impact of change from the historical maintenance
data. We distinguish between the impact of change as a result of addition of new features and the impact of
change as a result of fixing faults. The table below shows a comparison between the impacts brought about by
fixing faults as compared to that brought about by addition of new features.

Table 3. Comparison of Impact of change due to addition of new features and due to bug fixes

 Min #
components

Max #
components

Average #
components

Min #
classes

Max #
classes

Average #
classes

Impact of Changes due
to addition of features

1 110 22 1 28 7

Impact of Changes due
to fixing of Faults

1 24 3 1 12 2

Among the changes due to addition of new features, the maximum number of components affected was 110
whereas the average was 22. On the other hand, the maximum number of components affected as a result of bug
fix was 24 whereas the average was 3.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

74

According to Chaumun’s model the impact of change is dependent on the links and the types of change. For
example, in revision 215, changing fields from private to protected resulted in the corresponding fields removed
from the sub-class. In addition, a new field called search key was added to the CustomerInfo class and the
constructor was modified. Following the modification of the signature of the constructor, all calls to this
constructor were modified.

4.3 Coupling Metrics

As indicated earlier in Section 2 (related work), in this study we focus on investigating the capability of
coupling metrics to serve as indicators of changeability. Many studies have already investigated the CBO and
WMC metrics for this purpose. However, the coupling metrics Ca and Ce have not been studied adequately as
predictors of changeability. Therefore, in this study, in addition to the well studied metrics CBO and WMC, we
investigate Ca and Ce for their capability in predicting changeability.

We used the CKJM extended (Chidamber and Kemerer Java Metrics) tool for calculating the metrics. The
definitions of the different metrics are given below:

Table 4. Definition of metrics

Metric Definition

WMC (weighted method per class) represents the sum of the complexities of its methods

CBO (coupling between objects)
represents the number of classes coupled to a given class.
This coupling can occur through method calls, field accesses,
inheritance, arguments, return types, and exceptions

CA (Afferent Couplings) a measure of how many other classes use the specific class

CE (Efferent Couplings)
a measure of how many other classes are used by the specific
class

Table 5 shows the different classes that had changes and their corresponding values of the different metrics.

Table 5. Coupling and complexity metrics

Class Name CBO CA CE WMC # maintenance tasks

com.openbravo.pos.sales.JPanelTicket 77 19 72 69 8

com.openbravo.pos.forms.DataLogicSales 42 14 38 42 4

com.openbravo.pos.sales.JTicketsBagTicket 31 7 31 21 3

com.openbravo.pos.ticket.TicketLineInfo 10 1 9 42 3

com.openbravo.possync.DataLogicIntegration 28 13 20 13 3

com.openbravo.data.loader.Session 12 12 0 11 2

com.openbravo.pos.forms.BeanFactoryData 7 2 5 4 2

com.openbravo.pos.panels.JPanelCloseMoney 25 2 25 12 2

com.openbravo.possync.DataLogicIntegration$2 10 3 10 2 2

com.openbravo.pos.inventory.TaxEditor 10 1 9 9 1

com.openbravo.pos.panels.PaymentsModel 15 3 14 30 1

com.openbravo.pos.payment.JPaymentDebt 15 2 14 7 1

com.openbravo.possync.OrdersSyncCreate 6 0 6 2 1

com.openbravo.pos.panels.PaymentsEditor 11 1 10 9 1

com.openbravo.pos.panels.PaymentsModel$2 3 1 3 5 1

com.openbravo.pos.payment.JPaymentSelect 30 18 17 30 1

com.openbravo.pos.sales.JProductLineEdit 18 7 17 19 1

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

75

Class Name CBO CA CE WMC # maintenance tasks

com.openbravo.possync.ProductsSyncCreate 7 0 7 2 1

com.openbravo.pos.forms.BeanFactoryScript 9 1 8 3 1

com.openbravo.pos.reports.JParamsCustomer 13 2 13 10 1

com.openbravo.pos.customers.CustomersPanel 16 0 16 10 1

com.openbravo.pos.customers.CustomerInfoExt 6 3 3 41 1

com.openbravo.pos.config.JPanelConfigGeneral 18 9 17 22 1

com.openbravo.pos.customers.CustomersPayment 37 5 37 23 1

com.openbravo.possync.DataLogicIntegration$4 12 3 12 2 1

com.openbravo.pos.customers.DataLogicCustomers 31 12 24 11 1

com.openbravo.possync.DataLogicIntegrationMySQL 7 1 7 3 1

com.openbravo.possync.DataLogicIntegrationCreate 1 0 1 1 1

com.openbravo.possync.DataLogicIntegrationHSQLDB 7 1 7 3 1

com.openbravo.possync.DataLogicIntegrationOracle 7 1 7 3 1

com.openbravo.pos.customers.DataLogicCustomersMySQL 1 0 1 1 1

com.openbravo.pos.payment.JPaymentCashPos$AddAmount 5 1 4 2 1

com.openbravo.pos.customers.DataLogicCustomersCreate 1 0 1 1 1

com.openbravo.pos.customers.DataLogicCustomersHSQLDB 1 0 1 1 1

com.openbravo.pos.customers.DataLogicCustomersOracle 11 1 11 2 1

com.openbravo.possync.DataLogicIntegrationPostgreSQL 7 1 7 3 1

com.openbravo.pos.forms.StartPOS$1 8 1 8 2 1

com.openbravo.pos.catalog.JCatalog 22 8 22 28 1

com.openbravo.pos.admin.PeopleView 15 4 14 15 1

com.openbravo.pos.util.RoundUtils 1 0 1 4 1

com.openbravo.pos.forms.AppConfig 2 1 1 14 1

com.openbravo.data.gui.MessageInf 6 5 2 11 1

com.openbravo.pos.forms.JRootApp 36 10 31 36 1

com.openbravo.pos.customers.DataLogicCustomersPostgreSQL 1 0 1 1 1

com.openbravo.beans.JNumberKeys 2 1 2 13 1

com.openbravo.pos.forms.AppUser 12 9 5 18 1

In order to determine the suitability of the metrics for the assessment of changeability of the system, we
computed the Pearson correlation coefficients between the metrics used in the study and the maintenance tasks.
Table 6 shows the correlation coefficients.

Table 6. Pearson correlation coefficients

Metric Pearson correlation coefficient (r)

CBO 0.741996

CA 0.56808

CE 0.736076

WMC 0.660035

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

76

The Pearson correlation coefficients show moderate to strong correlations between the number of maintenance
tasks and the metrics. Among the metrics, the CBO shows a strong positive correlation followed by the Ce
followed by WMC and then the Ca. Commonly, a value of r > 0.7 represents strong positive correlation and a
value of 0.3 < r < 0.7 represents moderate correlation. Therefore, CBO and Ce show strong correlations while
WMC and Ca show moderate correlation. In some cases, a value of r > 0.5 is considered strong. Therefore, the
selected metrics are strongly correlated to maintenance tasks. That means as more maintenance tasks are applied
to a class, the values of the CBO, Ce, Ca, and WMC increase. The increase in the values of the metrics indicates
that more effort is required to carry out the changes. Therefore, as the values of these metrics increase, the
changeability of the classes and hence the system decreases. Hence, these metrics are inversely proportional to
changeability.

5. Disscussion

5.1 Metrics and Changes

From the Pearson correlation coefficients, all the coupling metrics and the WMC have a strong positive
correlation with maintenance tasks. This shows that the metrics considered in this study (i.e., CBO, WMC, Ca,
and Ce) are good indicators of changeability. As the values of these metrics increase, the changeability of the
system decreases. As shown by Dubey and Rana (2011), maintainability is inversely proportional to the metrics
CBO, WMC, RFC, LCOM, DIT, and NOC. Therefore, from our correlation result, we can see that CBO, WMC,
Ca, and Ce are inversely proportional to changeability.

CBO has the highest correlation coefficient among the metrics used in this study. As the number of changes
increases, the CBO values increases. This is because any maintenance action on a class will propagate the action
to all the classes depending on that class. Thus all the classes depending upon a class have to undergo a change
every time a class changes. Thus, as the number of classes accessing a particular class increases, the CBO value
increase and hence more maintenance effort is required. This degrades the changeability of a class.

Another perspective to look at is the percentage of classes with more than the recommended CBO values.
According to Sahraoui, Godin and Miceli (2000), the maximum CBO value should be 14 as higher values have
negative impacts on several quality aspects of a class, which includes the maintainability, stability and
understandability. But from the Table in appendix A, we can observe that more than a third of the classes have
CBO value of more than 14. This indicates the degree of changeability of the system.

Among the metrics, Ce has the second highest correlation coefficient. A high value for Ce indicates that a class
depends on many other classes which could be difficult to deal with during changes. Classes that have a high
efferent coupling may be inversely related to changeability, since they are using other classes of the system
which might need to be changed as well. Therefore, changeability decreases with increasing Ce. We can also see
that other sub-characteristics of maintainability (e.g., analyzability, adaptability, etc.) decrease with increasing
Ce and hence high Ce affects maintainability of a system. This result is also in line with other studies such as
Arisholm (2002) and (Emam, Melo, & Machado, 2001) which found that efferent coupling being stronger at
predicting class quality when compared to afferent coupling.

WMC represents a weighted sum of methods implemented within a class which in a way also indicates the
complexity of a class. A high value in WMC indicates that classes are more complex and hence require a
significant effort to change. Therefore, as WMC increases the changeability decreases. Changing a class requires
prior understanding, which, in turn, is more complicated for large and complex systems. Since WMC also allows
an assessment of size or complexity, changeability declines with increasing WMC.

The inward coupling of classes is represented by the Ca values. This indicates that as changes increase, the
number of classes that depend on some high responsibility classes also grow. This clearly shows the ripple effect
that can be created when changes are applied to those high responsibility classes. This shows maintainability of
such a system will be low and hence changeability becomes low. The maintainability of a system is improved
when changes can easily be made without propagating to other parts of the system. The larger the number of
dependents of a class, the higher the likelihood of ripples effects when a change is implemented to the base class.
Therefore, changeability declines with increasing Ca.

In the literature some researchers consider CBO and Ce as synonymous. As Ce depicts one direction of
dependency, this interchangeability is not appropriate. Still others consider CBO as the combination of Ce and
Ca. Again here, since CBO also refers to dependencies through inheritance and other dependencies, it is more
than a combination of Ca and Ce. It is for this reason that some researchers (e.g., chaumun et al. (2000))
explicitly state dependencies such as CBO_NA (CBO No Ancestor).

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

77

5.2 Threats to Vailidity

We have demonstrated in our case study that apart from the common metrics such as CBO and WMC, coupling
metrics such as Ce and Ca can be considered as good predictors of changeability of a system. However, these
results should be taken cautiously as there are some issues that might have affected the validity of our case study
results. First, as a case study of one open source system, the results will be difficult to generalize. Therefore, a
significant number of systems should be assessed in relation to the metrics investigated in this study.
Nevertheless, the data collected is from a historical maintenance data from the SVN repository of
OpenBravoPOS. In addition, this system is being used by many businesses around the world which makes the
change data a real data that has been collected from its change history. In addition, even though the size of
OpenBravoPOS is 119,269 LOC, we considered only the Java code (62,417 LOC) for analysis which is not large.
Therefore, generalization from the result of such analysis may be difficult.

Second, we considered the maintenance tasks applied to release 2.10 which resulted in release 2.20 with a total
of 62 maintenance tasks. Whether these changes are representatives of the evolution of OpenBravoPOS cannot
be easily predicted. However, we plan to expand our investigation up to the latest release of the product and also
compare the pattern of change from one release to the next.

Third, the coupling metrics investigated are few. There are many coupling metrics proposed in the literature;
however, some are redundant. Therefore, it is important to investigate as many coupling metrics as possible by
carefully removing redundant metrics. In that case, we may find a different set of coupling metric as a better
indicator of changeability. This will be one of our future works.

6. Conclusions

In this paper we presented the results of our case study which focused on investigating the capability of four
metrics in assessing changeability. For this purpose, we collected historical maintenance data of evolving open
source software OpenBravoPOS. Specifically, our study focused on analyzing the maintenance tasks applied to
release 2.10 of the product to upgrade it to release 2.20. In total, we analyzed 62 maintenance tasks and their
impact on the parts of the system.

Our case study results show that CBO, Ce, WMC, and Ca are good indicators of changeability of the system
considered. Even though Ce and Ca are closely related to CBO, Ce showed a stronger correlation to maintenance
tasks as compared to Ca. A study by Dubey and Rana (2011) determined that maintainability of a system is
inversely proportional to the CK metrics which includes CBO and WMC. Therefore, higher values of CBO and
WMC indicate low maintainability. In other words, as CBO and WMC values increase, the maintainability of a
system decreases. Hence, in our case, the strong correlation of CBO, Ce, WMC and Ca with maintenance tasks
indicates that as the values of these metrics increase, the changeability of the system decreases. From this we can
conclude that CBO and Ce can be good indicators of changeability as are WMC and Ca. For a system to be
changeable the values of the CBO, Ce, WMC, and Ca metrics should remain low.

In our future work, we would like to investigate two issues. First, we plan to investigate all relevant coupling
metrics to determine the most appropriate metrics for changeability. Second, we plan to extend our investigation
to the other sub-characteristics of maintainability (e.g., analyzability, adaptability, and stability) to determine the
most appropriate metrics for these sub-characteristics of maintainability.

References

Ajrnal, C. M., Kabaili, H., Keller, R. K., Lustman, F., & Saint-Denis, G. (2000). Design properties and
object-oriented software changeability. Proceedings of the Fourth European Conference on Software
Maintenance and Reengineering, 2000 (pp. 45-54). http://dx.doi.org/10.1109/CSMR.2000.827305

Arisholm, E. (2002). Dynamic coupling measures for object-oriented software. Eighth IEEE Symposium on
Software Metrics (pp. 33-42). http://dx.doi.org/10.1109/METRIC.2002.1011323

Arisholm, E. (2006). Empirical assessment of the impact of structural properties on the changeability of
object-oriented software. Information and Software Technology, 48(11), 1046-1055.
http://dx.doi.org/10.1016/j.infsof.2006.01.002

Bohner, S., & Arnold, R. (1996). Software Change Impact Analysis: IEEE Computer Society Press.

Broy, M., Deissenboeck, F., & Pizka, M. (2006). Demystifying Maintainability. Proceedings of the 2006
international workshop on Software quality (pp. 21-26). http://dx.doi.org/10.1145/1137702.1137708

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

78

Chaumun, M. A., Kabaili, H., Keller, R. K., & Lustman, F. (1999). A change impact model for changeability
assessment in object-oriented software systems. Proceedings of the Third European Conference on
Software Maintenance and Reengineering (pp. 130-138). http://dx.doi.org/10.1109/CSMR.1999.756690

Chaumun, M. A., Kabaili, H., Keller, R. K., Lustman, F., & Saint-Denis, G. (2000). Design properties and
object-oriented software changeability. Fourth European Conference on Software Maintenance and
Reengineering (pp. 45-54). http://dx.doi.org/10.1109/CSMR.2000.827305

Dagpinar, M., & Jahnke, J. H. (2003). Predicting Maintainability with Object-Oriented Metrics - An Empirical
Comparison. Proceedings of the 10th Working Conference on Reverse Engineering (pp. 155-164).
http://dx.doi.org/10.1109/WCRE.2003.1287246

Dubey, S. K., & Rana, A. (2011). Assessment of Maintainability Metrics for Object-oriented Software System.
ACM SIGSOFT Software Engineering Notes, 36(5), 1-7. http://dx.doi.org/10.1145/2020976.2020983

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C., Nagappan, N., & Aho, A. V. (2008).
Do Crosscutting Concerns Cause Defects? IEEE Trans. Softw. Eng., 34(4), 497-515.
http://dx.doi.org/10.1109/TSE.2008.36

Emam, K. E., Melo, W., & Machado, J. C. (2001). The prediction of faulty classes using object-oriented design
metrics. Journal of Systems and Software, 56(1), 63-75. http://dx.doi.org/10.1016/S0164-1212(00)00086-8

Fluri, B. (2007). Assessing Changeability by Investigating the Propagation of Change Types. 29th International
Conference on Software Engineering (pp. 97-98). http://dx.doi.org/10.1109/ICSECOMPANION.2007.23

Grover, P. S., Kumar, R., & Kumar, A. (2008). Measuring changeability for generic aspect-oriented systems.
SIGSOFT Softw. Eng. Notes, 33(6), 1-5. http://dx.doi.org/10.1145/1449603.1449610

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990.

Ingram, C., & Riddle, S. (2011). Linking software design metrics to component change-proneness. Proceedings
of the 2nd International Workshop on Emerging Trends in Software Metrics (pp. 31-37).
http://dx.doi.org/10.1145/1985374.1985384

ISO/IEC9126-1. (2001). Software Engineering - Product Quality International Standard. Geneva.

Jalote, P. (2005). An Integrated Approach to Software Engineering (3rd ed.). Springer.

Li, B., Sun, X., Leung, H., & Zhang, S. (2012). A survey of code-based change impact analysis techniques.
Software Testing, Verification and Reliability (pp. 1-34). http://dx.doi.org/10.1002/stvr.1475

OpenBravoPOS. (2008). OpenBravoPOS. Retrieved November 1, 2012, from
forge.openbravo.com/projects/openbravopos

Poshyvanyk, D., & Marcus, A. (2006). The Conceptual Coupling Metrics for Object-Oriented Systems.
Proceedings of the 22nd IEEE International Conference on Software Maintenance (pp. 469-478).
http://dx.doi.org/10.1109/ICSM.2006.67

Riaz, M., Mendes, E., & Tempero, E. (2009). A Systematic Review of Software Maintainability Prediction and
Metrics. Proceedings of the 3rd International Symposium on Empirical Software Engineering and
Measurement (pp. 367-377). http://dx.doi.org/10.1109/ESEM.2009.5314233

Robillard, M. (2005). FEAT: An Eclipse Plug-in for Locating, Describing, and Analyzing Concerns in Source
Code. Retrieved February 19, 2012, from http://www.cs.mcgill.ca/~swevo/feat/

Sahraoui, H. A., Godin, R., & Miceli, T. (2000). Can Metrics Help Bridging the Gap Between the Improvement
of OO Design Quality and Its Automation? Proceedings of the International Conference on Software
Maintenance (pp. 154-162). http://dx.doi.org/10.1109/ICSM.2000.883034

Samoladas, I., Stamelos, I., Angelis, L., & Oikonomou, A. (2004). Open Source Software Development Should
Strive for Even Greater Code Maintainability. Communications of the ACM, 47(10), 83-87.
http://dx.doi.org/10.1145/1022594.1022598

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., & Offutt, A. J. (2002). Maintainability of the Linux Kernel.
IEEE Software, 149(1), 18-23. http://dx.doi.org/10.1049/ip-sen:20020198

Sun, X., Li, B., & Zhang, Q. (2012). A Change Proposal Driven Approach for Changeability Assessment Using
FCA-based Impact Analysis. Proceedings of the 36th International Conference on Computer Software and
Applications (pp. 328-333). http://dx.doi.org/10.1109/COMPSAC.2012.44

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 3; 2013

79

Wilkie, F. G., & Kitchenham, B. A. (2000). Coupling measures and change ripples in C++ application software.
Journal of Systems and Software, 52(2-3), 157-164. http://dx.doi.org/10.1016/S0164-1212(99)00142-9

Yuming, Z., & Baowen, X. (2008). Predicting the Maintainability of Open Source Software Using Design
Metrics. Wuhan University Journal of Natural Sciences, 13(1), 14-20.
http://dx.doi.org/10.1007/s11859-008-0104-6

