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Abstract 

The objective of this paper is the short description of the LAM (Local Area Multicomputer) implementation of 
MPI that can be used for the development of parallel applications based on the message passing interface. The 
paper describes the main aspects of the LAM environment such as the LAM architecture, configuration and use. 
A comparison between the LAM and the MPICH implementation (another very popular and commonly used 
MPI implementation) with respect to their performance is also presented. 
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1. Introduction 

The message passing interface (Snir et al., 1995) is an efficient parallel programming model that allows the 
implementation of a parallel application as a set of processes communicating through properly defined messages. 
During the last years, many different MPI implementations have been developed - such as the MPICH (Gropp et 
al., 1999), the CHIMP (Alasdair, 1994), the IBM MPI (IBM, 2000), the Sun MPI (SUN, 2003), the HP MPI (HP, 
2007) and the SGI MPI (SGI, 2003) - that allow the use of the model in different and heterogenous computing 
nodes. In this paper, we focus on another efficient MPI implementation identified by the name LAM-MPI 
(Squyres & Lumsdaine, 2003), that has been developed by the OpenSystems Laboratory of Indiana University. 
The current version of the platform is LAM 7.1.4 and it can be downloaded freely from the 
http://www.lam-mpi.org web site. The main feature of this implementation is the SSI system (System Services 
Interface). This system allows the determination of the basic building blocks used by the platform, at run time, 
namely, during the execution of the parallel application, that can be build on TCP/IP, InfiniteBand as well as on 
shared memory systems that use semaphores. LAM supports the implementation of point to point as well as 
collective operations, it provides the latest version of the ROMIO library for the implementation of high 
performance parallel I/O operations and it is compatible with the TotalView debugging utility. 

2. LAM Architecture 

The core of the LAM-MPI implementation is the SSI system defined as a two tiered modular framework capable 
of enabling multiple instances of interfaces, ensuring their availability at run time. This system allows the 
dynamic insertion and removal of programming modules (i.e. fundamental units that implement specific 
operations), in a plug-and-play fashion. This base system can be described as a set of “sockets” that accept the 
appropriate modules used in any case. In the current version of LAM-MPI there exist four different module types 
which, in short, are the following: 

• boot SSI modules: the modules of this category allow the initialization of the LAM environment without 
the use of LAM daemons and they are used by the lamboot, recon, wipe and lamgrow commands. 

• coll SSI modules: the modules of this category allow the implementation of collective communications 
between the processes of the parallel application. The modules lam_basic and smp belong to this category. 
These two modules allow the application programmers to design and implement collective algorithms 
without any knowledge of the LAM-MPI internal details. 

• cr SSI modules: the modules of this type provide support for checkpoint/restart functionality and they are 
used by the LAM-MPI commands as well as the MPI processes. The most important module of this type is 
the blrc module. 
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• rpi SSI modules: these modules support the implementation of point to point communications and they are 
used by the MPI processs only. The modules gm, lamd, tcp, sysv and usysv are members of this family. 
These modules belong to the lowest layer of the LAM multilayered architecture and they are responsible for 
the data exchange between the processes of the parallel application. 

In a more detailed description, the boot SSI modules are part of the LAM layer. This layer is composed of the 
LAM runtime environment (LRE) and the associated functions. This environment uses the so-called LAM 
daemons that operate on user level and provide services of any type such as the message passing operations, the 
control of the system processes and the remote file access. The startup and the shutdown of the LRE is 
performed by the commands lamboot and lamhalt. Regarding the MPI layer, it is characterized also by a 
multilayered structure, in which the upper layers are associated with the MPI functions, and the lower layers 
implement low level functions. This multilayered LAM architecture is shown in Figure 1. 

 

 
Figure 1. The multilayered structure of LAM-MPI architecture 

 

2.1 Boot SSI Modules 

The main functions of the boot SSI modules are the startup of the LAM-RTE and the handling of the parallel 
application processes in the local as well as in the remote computing nodes. This procedure can be resolved to a 
sequence of low level stages, such as the identification of the remote nodes, the process execution on these nodes 
and the passing of the startup protocol parameter to the new nodes registering to the LAM Universe. These 
stages are performed by the lamboot and lamgrow modules; the first module starts the LAM daemons to the 
network nodes, while the second module adds a new node to an existing LAM environment. Other modules that 
belong to the boot SSI module family, are the recon module associated with the control of the status of each 
computing node, the bproc module that initializes the system using the Bproc library (Beowulf Distributed 
Process Space) which allows the process startup in remote nodes of Beowulf systems, and the wipe module that 
terminates the LAM-RTE by issuing the tkill command. 

Other interesting modules that belong to this class, is the rsh module which is responsible for the startup of the 
remote processes based on the rsh or the ssh utility, the globus module that allows the collaboration of 
heterogenous computing nodes by using the Globus system and a special fork job manager, as well as, the tm 
module associated with task management. The slurm (Simple Linux Utility for Resource Management) module 
is a special LAM module that can be used for the management of Linux clusters. Even though there are so many 
available boot modules, only one of them can be used during the boot process, and the selection of another boot 
module during the operation of the LAM-RTE is not possible. Regarding the boot process itself, it can be 
customized by using one of the following boot algorithms: 
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• Linear: this is the simplest boot algorithm and allows the sequential initialization of the processes of the 
parallel application. However a process starts, only after the completion of its predecessor. 

• Linear-Windowed: this is a variation of the previous algorithm and supports the execution of the process 
regardless the status of the previous process. The control of the callback functions associated with the 
process startup is based on the use of a sliding window of length N. This algorithm is particularly useful if 
the protocol adopted use TCP and impose restrictions to the number of pending requests associated with a 
network socket. 

• Tree: in this algorithm, a tree of auxiliary processes running in the internal tree nodes is constructed. These 
processes are provided by the LAM itself and not by the boot module and can initialize, in turn, new 
auxiliary as well as actual processes, thus allowing the generation of all the processes of the parallel 
application. The process creation in each tree node follows the linear approach. 

• Thread: this algorithm is similar to the previous one, except the fact that the process initialization can be 
performed by a set of threads running concurrently. 

The use of the modules of the boot family is supported by an API that contains a lot of data structures and 
functions such as the lamnode structure describing a computing node. The most important fields of that structure, 
are the node id, the node type (boot node, local node, or original node), the number of CPUs in that node, the 
TCP port number and the TCP address in binary format, the node host name, as well as a set of (key, value) pairs 
parsed from the boot schema file that provide an extensible method to obtain module-specific information from 
that file. 

2.2 Coll SSI Modules 

The modules of this family implement a set of algorithms used in collective operations in the LAM-RTE. The 
main task of those modules is the management of the operating environment of each communicator and the 
selection of the best algorithm for collective operations. 

The startup and the initialization of each collective module is performed during the call of the MPI_Init MPI 
function. In this stage, all the available coll modules are probed and only the one that is to be used is being 
considered for further processing; all the other modules are ignored. In the next step, the pointers to the functions 
of this module are embedded to the handler of the MPI communicator in order to be used by the parallel 
application. During the termination stage, the module is shutdown by the MPI_Finalize function that calls 
internally the module shutdown routine. 

LAM collective modules provide two different versions of each collective function, one for intracommunicators 
and one for intercommunicators. The main advantage of this approach is that, each communicator can use 
different collective modules, thus allowing the implementation of parallel applications in which the collective 
operations that are performed in different communicators, can use different algorithms. However, in such cases, 
the collective operations are not allowed to interfere with the possible point to point communications occurring 
in the same communicator. This restriction can be implemented by using different tags. In this approach, the tags 
with a positive value denote point to point operations, while, the tags with negative values are associated with 
collective communications. 

The most important modules associated with the Coll family, are briefly described below: (a) the lam_basic 
module provides simple collective communication algorithms based to point to point operations. The algorithms 
offered by this module are linear or binomial according to the number of processes of the parallel application; (b) 
the smp module, supports the use of SMP nodes and is based to the MagPIe family of algorithms (Kielmann et 
al., 1999) associated with process locality; (c) the shmem module allows collective operations between processes 
running on the same node. The interprocess communication is performed in a shared memory fashion and 
requires that all processes must be able to attach the shared memory addresses to their own address space. In a 
more technical description, the shared memory is composed of two different and disjoint memory spaces, the 
control section that is responsible for the process synchronization and the message pool associated with the 
message passing operations. The size of the control section equals to ( (2 x N) + 2 ) x C x S, where N is the 
number of the message pool segments, C is the cache line size and S is the number of the processes associated 
with the current communicator. 

2.3 CR SSI Modules 

The modules that belong to this class, support checkpoint/restart functionality and allow the storage of the 
process state at some checkpoints as well as the restart of that process in subsequent time instances on the same 
or different computing node. In most cases, the stored information includes, among other things, the contents of 
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the data segment, the stack and the registers for each process, as well as the file descriptors, the network sockets, 
the signal and timer values and the contents of the shared memory segments. All this information is stored in the 
secondary memory of the local computing node or a network server, while, the restore of all these values is 
performed by a set of auxiliary functions and temporary files of the operating system. This mechanism supports 
the development of fault tolerant applications and the efficient distribution and use of the system resources. 

In LAM-MPI applications, the checkpoint/restart functionality can be used only for the mpirun command and the 
processes of the parallel applications, but not for the LAM runtime environment itself. To use this functionality, 
a checkpoint request is sent to mpirun command, which, in response, forwards this request to the parallel 
processes without interrupting their execution. When, at a later time, the user wants to restart the application 
from the checkpoint, the stored image of mpirun is restored in the memory, and a new instance of that command 
with an application scheme capable of restarting the parallel processes is issued. In the last step, the processes of 
the parallel application, in response to this event, restart themselves from their own checkpoint and the control is 
passed to the parallel application again. 

The implementation of the mechanism that controls the checkpoint / restart functionality is supported by the CR 
SSI modules. These modules are composed of two components, a CRMPI type component that supports the 
checkpoint functionality and a CRLAM type component used by the mpirun command for the coordination of 
the procedure and the communication with the corresponding CRMPI unit of each process (this situation is 
shown in Figure 2). These two components of each CR module share the same name and they are used together 
as a single unit during the CR module selection stage. Regarding the operation of those units, it must support 
three different procedures identified by the names Checkpoint, Continue and Restart that describe the type of 
operation presented above. 

 

 
Figure 2. The communication of the CRLAM and CRMPI modules 

 

The Checkpoint/Restart functionality can be used only if all the processes of the parallel application have issued 
the MPI_Init function. On the other hand, if at least one process has called the MPI_Finalize function, this type 
of functionality is no longer available. In order to maximize the time duration for this functionality, the MPI_Init 
function must be called as soon as possible, while, the MPI_Finalize function must be called after the 
MPI_Barrier function, so that, all the processes of the parallel application reach the same execution point. 

The most important modules of the CR family are the blcr module that uses the blcr (Berkeley Lab’s 
Checkpoint/Restart) system in Linux clusters and the self that supports checkpoint/restart functionality based on 
user defined functions. 

2.4 RPI SSI Modules 

The RPI (Request Progression Interface) module family of the LAM-MPI, allows the implementation of point to 
point communications and its main task is the receipt/forward of messages from/to the MPI/LAM level of the 
LAM architecture. The support of these operations is based on the use of request messages that allow the MPI 
layer to communicate with the system processes without needing to know anything about the message transfer 
details. Each of these requests is characterized by the so-called request life cycle that is composed of the 
following stages: (a) Building: in this stage, the memory space required for the communication is allocated and 
initialized according to the parameter values of the current message. (b) Starting: in this stage the current request 
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is placed to the system request list and its state is characterized as START, ACTIVE or DONE. (c) Progression: 
this stage is associated with the progressive processing of the request until its completion. During the data 
transfer initialization, the request moves from the START state to the ACTIVE state, while, after its completion 
and the receipt of the acknowledgment message, the request moves to the DONE state. (d) Completion: in this 
stage, the process of the request has been completed and the request object is initialized or destroyed, depending 
on whether it will be used or not. 

The most important modules of the RPI family are the crtcp module that allows point to point communications 
with checkpoint/restart functionality support, the gm and the ib modules that are used in Myrinet and Infiniband 
networks respectively, and the lamd module that performes interprocess communication by means of lam 
daemons, thus allowing asynchronous message passing operations by using a lam daemon between the source 
and the target process. However, the bandwidth available is reduced, while latencies increase. The sysv module 
performs the message passing between processes running in the same node via shared memory architectures, and 
by using TCP sockets if the processes run on different machines. Regarding the process synchronization, it is 
based on the System V semaphores. A variation of this module supported by the usysv module, uses spin locks 
with back off. Finally, the tcp module uses TCP sockets for the interprocess communication together with the 
eager or the rendezvous communication protocol according to the size of the transferred messages. 

3. LAM Configuration and Use 

For security reasons, the LAM environment forbids its usage by the root user; therefore, it has to be used in the 
name of another user. Regarding the configuration of the LAM host machine it has to support the usage of the 
rsh or ssh remote services. The parallel application can be executed in a single host or in a set of hosts that can 
be accessed via a network connection. In the last case, the execution of the parallel application requires the 
following configuration options: 

• The remote host has to be accessible through the network. 

• The LAM user must exist in the remote machine. 

• The LAM commands have to be accessible in the remote hosts. 

• The LAM user must have write access rights to the LAM session directory. 

• The system startup scripts must not print messages in the system console. 

• The FQDN name of each host has to be resolvable by the remaining hosts. 

The names of the computing nodes that are going to execute the processes of the parallel application are stored in 
an ASCII file, one name per line, and the distribution of the processes to them is performed in a round robin 
fashion. The LAM RTE startup process is performed by the lamboot command via a three step procedure: (a) 
The hboot command that allows the initialization of a process set based on a process scheme is executed in each 
computing node. (b) A communication port is allocated by each node and the lamboot command gets informed 
about this allocation. (c) The lamboot command broadcasts the collected (machine, port) pairs to all the 
computing nodes creating thus a fully functional network topology capable of executing parallel applications. If 
some node is not able to performe anyone of those steps in a predefined time interval, the process is aborted and 
the wipe command is called to terminate the process and inform the user with the appropriate error message. 

The compilation and building of the parallel application can be performed by using a C compiler such as the gcc 
GNU compiler, while the execution of the application is based on the mpirun command that accepts the name of 
the executable and the number of processes to be created as arguments. The executable file must be copied to the 
same location in all computing nodes by using the FTP service or the NFS file system, but in general, there other 
alternatives available, such as to place the file in a shared network directory visible by all nodes. It is clear that if 
these nodes are heterogenous machines running different operating systems in different CPU architectures, the 
source code of the parallel application has to be compiled separately on them, so that the executable file to be 
compatible with the CPU architecture of each computing node. 

4. LAM Commands 

The LAM parallel programming environment allows the control of the parallel system via a set of user 
commands that can be called from the command line at each computing node. We briefly describe the most 
important of these commands: 

• mpitask: it prints in the user screen the status of each mpi task such as the task id, the state of the task 
(running, paused, stop, blocked) as well as the size and the datatype of the current message. 
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• mpimsg: it reports the structure of the stored messages such as the ranks of the source and the target process, 
the message size, tag and datatype as well as the id of the communicator used for the message passing 
operation. 

• lamexec: it allows the execution of non-MPI application in the LAM-RTE computing nodes. 

• lamclean: it initializes the LAM environment by terminating all the active processes and running messages 
and freeing the allocated resources in all computing nodes. 

• lamgrow: it adds a new computing node to an existing LAM-RTE environment. 

• lamshrink: it removes a computing node from an existing LAM-RTE environment. 

• tping: it checks the state of each computing node in a LAM-RTE environment by issuing the ping command 
for each one of them and counting the roundtrip time. 

• recon: it is called before the lamboot command to check if the current network system is capable of 
supporting the execution of the LAM-RTE environment. 

• lamhalt: it terminates the LAM-RTE environment in all computing nodes. 

• lamcheckpoint: it defines a checkpoint for the current process. 

• lamrestart: it issues the mpirun command to restart the parallel application from the checkpoint defined via 
the lamcheckpoint command. 

5. LAM Performance 

The LAM-MPI programming environment is characterized by very good performance and efficiency compared 
with the other MPI implementation. A good performance benchmark of the LAM in comparison with the MPICH 
platform can be found in (Nevin, 1996). In this test, the two platforms were evaluated under many different 
viewpoints such as the execution time of parallel applications for point to point and collective operations, barrier 
synchronization and ping requests. Another performance test between LAM, MPICH and MVICH (a VIA based 
MPI Implementation) can be found in (Ong & Farrell, 2000). 

Even though both LAM and MPICH use a short/long message protocol for communication, the adopted 
implementation is quite different. More specifically, in the LAM architecture, a short message is composed of a 
header and a data section and it is sent to the destination node as a single unit, while, a long message is divided 
into smaller packets with the first one of them to carry the message header. When this first packet is sent to the 
destination node, an acknowledgment is transmitted back to the sender in order to initiate the communication of 
the remaining data. On the other hand, the MPICH implementation supports three different protocols for data 
exchange: the eager protocol for short messages, and the rendezvous and the get protocol for long messages. In 
the eager protocol, the message data is sent to the destination node immediately, with the possibility of buffering 
data at the receiving node, when the node is not expecting the data. In the rendezvous protocol the data is sent to 
the destination node upon request, while in the get protocol, data is read directly by the receiver. 

Since LAM and MPICH use TCP/UDP socket interfaces to communicate messages between nodes, there have 
been great efforts in reducing the overhead incurred in processing of TCP/IP stacks. An interesting and efficient 
approach on this direction, is the development of the Virtual Interface Architecture (Dunning, 1998) that defines 
mechanisms allowing the bypass of the layers of the protocol stack, avoiding thus the generation of the 
intermediate copies of data during sending and receiving messages. This bypass improves significantly the 
application performance, not only because eliminates this overhead, but because decreases the processor 
utilization by the communication subsystem. The only requirement of the VIA architecture is that the control and 
the setup to go through the kernel of the operating system. VIA supports send/recv and remote direct memory 
access read/write types of data movements. 

An interesting comparison test regarding the performance of LAM and MPICH can be found in (Ong & Farrell, 
2000); in this work, the two implementations were compared by using three different Gigabit Ethernet NICs - 
namely, a Packet Engine GNIC-II, an Alteon ACEnic and a SysKonnect SK-NET NIC - in two Pentium III PCs 
running at 450 MHz with a 100 MHz memory bus and 256 MB of PC100 SD-RAM running RedHat Linux 
version 6.1. The switch-over point from the short to the long message format - this parameter can be configured 
at compile time - was 128 KB for both LAM and MPICH, while the used MTU value was the default value of 
the Ethernet standard, namely 1500 bytes. During the test, the maximum attainable throughput and the latency 
value for both LAM and MPICH were estimated, leading to comparable results (see the Figure 3). However, the 
two MPI implementations are quite different regarding their behavior with respect to the variation of the MTU 
parameter. Ong and Farrell found that an increase of the size of MTU, leads to the improvement of the LAM 
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performance but to the degradation of the performance of the MPICH implementation. This difference is 
explained by the fact that during initialization, LAM sets the send and receive socket buffers to a size equal to 
the switch-over point plus the size of the C2C (client to client) protocol envelope data structure (this protocol 
allows the bypass of the LAM daemon during data exchange operations). On the other hand, in MPICH the 
buffer size is fixed and equal to 4096 bytes; this is the reason for the fact that the increase of the MTU size does 
not improve the MPICH performance. Regarding the measured latency value, it is increased slightly in both 
cases with the increase of the MTU size, except in the case of the test of MPICH using the ACEnik card. 

 

 
Figure 3. Experimental results for the maximum attainable throughput and the latency for LAM-MPI and 

MPICH 

 
6. The Future of LAM-MPI 

LAM-MPI served as a platform for the development of parallel applications for a long time period leading to 
new ideas and parallel programming techniques. This platform is no longer supported since 2004, as it has been 
replaced by the Open MPI project (Squyres, 2012), a more recent implementation that provides more 
sophisticated characteristics and a more advanced architecture. During the same time period many other MPI 
implementations as for example CHIMP, SUN MPI and HP MPI stopped to develop and gave their position to 
more recent efforts such as MVAPICH (Sur et al., 2011) and Intel MPI (Intel, 2012). 

Open MPI is characterized by a layered structure similar to the one of LAM-MPI but with a lot of changes. More 
specifically, the two of the three layers of Figure 1, namely, the operating system layer and the MPI application 
layer remain the same, but the LAM layer has been substituted by a multi-layered architecture consisting of three 
layers each one of them is associated with its own programming library (the implementation is coded to the C 
language) and offers its own services. These layers from down to top are the following: 

• Open, Portable Access Layer (OPAL) that is located after the operating system layer. It provides generic 
support such as linked list and string manipulation, and focuses on the individual processes. Furthermore, it 
ensures the portability of the Open MPI core between different operating systems, performing functions such 
as sharing memory between processes and discovering IP interfaces. 

• Open MPI Run-Time Environment (ORTE) that provides services to the OMPI layer. Its main task is to 
launch the individual processes in the computing nodes via the rsh or ssh command, as well as to share 
computational resources between the users. 

• Open MPI (OMPI) that serves as the highest abstraction layer and provides services to the parallel 
applications. The MPI API is implemented in this layer that supports a wide variety of network types and 
underlying protocols.  

Even though each layer uses the services of its underlying layer, the ORLE and the OMPI layer can bypass the 
underlying layers and interact directly with the hardware and the operating system when needed. This feature 
increases the performance of the system, thus leading to higher execution speeds. The modular approach of the 
LAM-MPI also characterizes the structure of the Open MPI; the version 1.5 of Open MPI implementations is 
composed of 155 plugins that ensure the software abstraction and allow to third party developers to implement 
their own plugins outside the core of the Open MPI package. Detailed information about the Open MPI 
implementation can be found in the literature. 
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7. Conclusions 

The objective of this review paper is the presentation of the LAM-MPI programming environment, an efficient 
MPI implementation that allows the development of parallel applications based on the message passing interface. 
The platform is characterized by a modular architecture, while its operation and use can be controlled by the user 
by means of a lot of tools and utilities. The platform supports the execution of the application in homogenous as 
well as heterogenous machines that run a variety of operating systems and the applications created are 
characterized by a good performance compared to applications provided by other platforms. The last years the 
LAM-MPI has been substituted by the Open MPI, a more sophisticated and advanced MPI implementation that 
leads to better performances and higher execution speeds. 
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