
Computer and Information Science; Vol. 6, No. 2; 2013 
ISSN 1913-8989   E-ISSN 1913-8997 

Published by Canadian Center of Science and Education 

38 
 

Setting the Hidden Layer Neuron Number in Feedforward Neural 
Network for an Image Recognition Problem under Gaussian Noise  

of Distortion 

Vadim Romanuke1 
1 Applied Mathematics and Social Informatics Department, Khmelnitskiy National University, Khmelnitskiy, 
Ukraine 

Correspondence: Vadim Romanuke, Applied Mathematics and Social Informatics Department, Khmelnitskiy 
National University, Institutskaya str., 11, 29016, Khmelnitskiy, Ukraine. Tel: 380-972-895-239. E-mail: 
romanukevadimv@mail.ru 

 

Received: January 18, 2013   Accepted: March 1, 2013   Online Published: March 10, 2013 

doi:10.5539/cis.v6n2p38          URL: http://dx.doi.org/10.5539/cis.v6n2p38 

 

Abstract 

There is considered an image recognition problem, defined for the single hidden layer perceptron, fed with 
5-by-7 monochrome images on its input under Gaussian noise of their distortion. In this neural network the 
hidden layer neuron number should be set optimally to maximize its productivity. For minimizing traintime 
duration and recognition error rate both simultaneously there are suggested two ways of solving the 
corresponding two-objective minimization problem. One of them deals with equilibrium conception, and the 
other takes Bernoulli criterion for getting the single minimization problem. 

Keywords: image recognition, feedforward neural network, hidden layer neurons, traintime, neural network 
performance 

1. A Problem of Setting Neural Network Architecture 

Up-to-time neural networking solves a great many of practical tasks and problems, which cannot be solved with 
strict mathematical apparatus, because sometimes it takes much longer period to substantiate a case study 
mathematically, than just to train the appropriate architecture neural network and use it (Arulampalam & 
Bouzerdoum, 2003; Haykin, 1999; Kollias, 1996; Wöhler & Anlauf, 2001). Such training is nothing else but 
approximating that substantiation iteratively until the desired precision is reached. Nevertheless, the traintime 
may increase long as the problem dimensions for the neural network expand (Egmont-Petersen, de Ridder, & 
Handels, 2002; Haykin, 1999; Lo, Chan, Lin, Li, Freedman, & Mun, 1995). This can be fixed with adjusting the 
neural network architecture, where the adjustment is accomplished via selecting the architecture type (Aladag, 
2011; Benardos & Vosniakos, 2007; Ciarelli, Oliveira, & Salles, 2012; Iannella & Back, 2001; Mahmoud & 
Ben-Nakhi, 2003), whereupon distributing the total of neurons over neural network layers (Han & Yin, 2008; 
Yuan, Xiong, & Huai, 2003; Zeng & Yeung, 2006). Up to now there have not been published any exact ways of 
setting the neural network architecture for solving a defined class problem. Though, the network type is 
determined easier than neurons over neural network layers are distributed. 

2. Methods of Distributing Neurons over Neural Network Layers 

It has practically been observed and grounded that a problem of the defined class is solved with the 
corresponding neural network architecture (Haykin, 1999; Iannella & Back, 2001; Lo et al., 1995). For instance, 
the image recognition problem is solved with the feedforward neural network of one or more hidden neuron 
layers (Goltsev & Gritsenko, 2012; Kollias, 1996; Wilson, Grother, & Barnes, 1996; Wöhler & Anlauf, 2001). 
This neural network, being the multilayer perceptron, is usually trained with the backpropagation algorithm, 
providing the shorter traintime duration (Hagan & Menhaj, 1994; J. Plaza, A. Plaza, Perez, & Martinez, 2009; 
Plumb, Rowe, York, & Brown, 2005; Yu, Manry, Li, & Narasimha, 2006). A hidden layer neuron has the 
number of inputs hiddenI , being equal to the number of elementary features of the image. The network output 

layer consists of outputQ  neurons, where outputQ  is the number of elements in the image alphabet. Therefore the 

number of neurons in the hidden layer neuronq  is expressed through neither image dimensions, nor the 

cardinality of set of all possible images at the neural network input. This number is assigned heuristically, basing 
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mostly on the experience (Haykin, 1999; Zeng & Yeung, 2006; Zhang, Ma, & Yang, 2003), for reaching 
satisfactory performance under the accepted gradient method of backpropagation algorithm implementation 
(Hagan & Menhaj, 1994; Plaza et al., 2009; Yu, Manry, Li, & Narasimha, 2006). Roughly, the assignment initial 
point neuronq  is selected agreeing the inequality (Kruglov, Dli, & Golunov, 2001) for number of training 

samples trainN . 

 train train
hidden output neuron hidden output10 2

N N
I Q q I Q− − ≤ ≤ − −   (1) 

Else, to take the number neuronq  initially there may be used the inequality (Kruglov, Dli, & Golunov, 2001) for 

synaptic weights number weightL . 

 ( )output train train
weight output hidden output output

2 train output

1 1
1 log

Q N N
L Q I Q Q

N Q

 
≤ ≤ + + + +  +  

 (2) 

Letting have another hidden layer neuron number assignment: 

 weight
neuron

hidden output

L
q

I Q
=

+
 (3) 

Wherethrough, if (3) is non-integer, neuronq  is taken as the nearest integer to (3). But heuristic estimations (3) by 

the inequality (2) may constitute very wide range for the same neural network, whereas hidden layer neuron 
number is the single value. The same consequence comes from the inequality (1). Besides, how-and-where-ever 
the number neuronq  is assigned, in (1) or (3), it is just only initial, and after it should be changed, decreased and 

increased, with observing the neural network performance (Benardos & Vosniakos, 2007; Mahmoud & 
Ben-Nakhi, 2003; Zeng & Yeung, 2006). Obviously, the best neural network performance indicates at the best 
number neuronq . Contrariwise, this performance is usually reached after pretty long traintime duration that could 

have been shortened. And shortening the traintime duration is fulfilled by adjusting the number neuronq . In fact, 

any attempts to improve the neural network performance and to shorten the traintime duration simultaneously are 
driven to appear confrontational: there is an interval of values of neuronq , where the network performance 

improves and the traintime duration increases. 

3. Objective of the Article 

Let there be the feedforward neural network with the single hidden layer, destined for an image recognition 
problem. The objective of the present article is to determine theoretically such hidden layer neuron number that 
ensures both the network performance and traintime duration satisfactory. Also it should be demonstrated how to 
apply that theoretical method of setting the hidden layer neuron number for a practical case. To accomplish this 
there is going to be used the Matlab® environment (license 161051) with its powerful tool Neural Network 
Toolbox for constructing and testing neural networks (Ballabio & Vasighi, 2012; Kuzmanovski & Novič, 2008). 

4. Setting Neurons into the Hidden Layer Theoretically 

As the number of neurons in the neural network hidden layer depends on quality of its productivity then this 
number is optimal when it is the argument of the maximized productivity quality over the set of all tolerable 
hidden layer neuron numbers. Before maximization the explicit estimation of dependence of quality against 
hidden layer neuron number must be obtained. This is a hard enough task that may be fulfilled only in the 
process of the neural network functioning (Kordík, Koutník, Drchal, Kovářík, Čepek, & Šnorek, 2010; Plumb, 
Rowe, York, & Brown, 2005; Torrecilla, Otero, & Sanz, 2007), but it is a question for the next section. So now, 
assume that any needed estimation of neural network productivity exists and is stated as a mathematical 
expression. In an image recognition problem, quality of such productivity includes the traintime duration traint  

and the neural network performance, measured as sum-squared error, mean-squared error or mean absolute error 
(Egmont-Petersen, de Ridder, & Handels, 2002; Haykin, 1999; Yu et al., 2006). Whatever the performance type 
is observed, it is actually the recognition error rate err . 

Then, having nonnegative dependences ( )train neuront q  and ( )er neuronr q  against the hidden layer neuron number, 

there are problems 
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  (4) 

And 

  (5) 

for getting the optimal number 

  (6) 

And 

  (7) 

where minq  is the minimal hidden layer neuron number, and maxq  is the maximal one. Here, if dependences 

( )train neuront q  and ( )er neuronr q  were both decreasing then there wouldn’t have been any difficulties to determine 
*
neuronq  in (6) and (7) for ensuring the network performance value and traintime duration both sufficiently 

minimal. Only a specificity of problems (6) and (7) is that dependences ( )train neuront q  and ( )er neuronr q  are put 

defined on the real range [ ]min max;q q , although they make sense only on the range [ ]min max;q q  of integers. 

This specificity is of fundamental importance when minimizing a function over the real range [ ]min max;q q  is 

transferred to minimizing the function over the integer range . In addition, it has to be accented 

what values of neural network productivity are between each couple of integers from the segment [ ]min max;q q , 

because the estimation is practically done for integers only. Henceforward, let every couple of integers from the 
segment [ ]min max;q q  in dependences ( )train neuront q  and ( )er neuronr q  be connected linearly. So, these 

dependences are continuous piecewise linear functions, and such simplification is the best as any other 
interpolations are out of naturalness (Edwards, 1965). 

In practice, the image recognition problem is solved in the presence of noise, meaning that images on the neural 
network input generally are different from original images. So, the dependence ( )er neuronr q  may be treated as 

the greatest recognition error rate (the lowest neural network performance) ( )er neuronr̂ q  within some domain of 

noise or as the mean recognition error rate ( )er neuronr q  over that domain. Therefore, the problem (5) is branched 

out into important ones 

  (8) 

  (9) 

Traintime duration may be presented in epochs, including total epochs from training procedure with passing 
under noise. However, for comparing the network properties, dependences ( )train neuront q  and ( )er neuronr q  must 

be normalized: 

 ( ) ( )
[ ]

( ){ }
neuron min max

train neuron
train neuron

train neuron
;

max
q q q

t q
q

t q
∈

τ =  (10) 

 ( ) ( )
[ ]

( ){ }
neuron min max

er neuron
er neuron

er neuron
;

ˆ
ˆ

ˆmax
q q q

r q
q

r q
∈

ρ =  (11) 
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 ( ) ( )
[ ]

( ){ }
neuron min max

er neuron
er neuron

er neuron
;

max
q q q

r q
q

r q
∈

ρ =  (12) 

Consequently, instead of the problems (4), (8), (9), the problems 

  (13) 

  (14) 

  (15) 

with (10) - (12) are to be solved for getting the optimal hidden layer neuron number: 

  (16) 

  (17) 

  (18) 

Statements (16) — (18) assemble the three-objective minimization problem, which generally has no solution 
even over the real range [ ]min max;q q . Hence, it has to be figured out how to select such  that would 

impart sufficiently minimal recognition error rate to the neural network of its sufficiently short traintime duration, 
though it is not the argument, at which minima (13) — (15) are reached (in particular, they all are not reached or 

at least the one of them is not reached at that point). The number neuronq


 is not necessarily to be close to *
neuronq  

from (16) — (18). 

Obviously, functions ( )er neuronˆ qρ  and ( )er neuronqρ , reflecting the same network property, are similar, although 

they are not identical. So, it is comfortable to assign 

( ) ( ) ( ){ }er neuron er neuron er neuronˆ ,q q qρ ∈ ρ ρ  

whereby the performance is comprehended. 

If ( )train neuronqτ  and ( )er neuronqρ  are both strictly monotonic functions, then one of them is strictly decreasing 

and the other is strictly increasing, or both are strictly decreasing or strictly increasing simultaneously by 

[ ]neuron min max;q q q∈ . Obviously, the same assertion is true for continuous piecewise linear functions. If they both 

are strictly decreasing or strictly increasing simultaneously, then *
neuron maxq q=  if decreasing, and *

neuron minq q=  

if increasing. If one of them is strictly decreasing and the other is strictly increasing then there is a local theorem. 

Theorem 1. If continuous piecewise linear functions ( )train neuronqτ  and ( )er neuronqρ , whose linear pieces are 

defined on integer-endpoint subsegments of [ ]min max;q q , are both strictly monotonic by [ ]neuron min max;q q q∈ , 

and one of them is decreasing and the other is increasing, then exists such [ ]neuron min max;q q q∈
, being at that 

single, that 

 ( ) ( )train neuron er neuronq qτ = ρ 
 (19) 

If in the case of that  this point belongs to the interval ( ); 1q q +  by  then for neuron

1

2
q q= +
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there is the equality 

 ( ) ( ) ( ) ( )er train train er1 1q q q qρ − τ = τ + − ρ +  (20) 

For neuron

1

2
q q< +

 there is the inequality 

 ( ) ( ) ( ) ( )er train train er1 1q q q qρ − τ < τ + − ρ +  (21) 

and for neuron

1

2
q q> +

 

 ( ) ( ) ( ) ( )er train train er1 1q q q qρ − τ > τ + − ρ +  (22) 

Proof. Assume that 

( ) ( )train neuron er neuronq qτ ≠ ρ   [ ]neuron min max;q q q∀ ∈  

Then 

 ( ) ( )train neuron er neuronq qτ > ρ  (23) 

or 

 ( ) ( )train neuron er neuronq qτ < ρ  (24) 

For definiteness let it be (23). Consequently, if ( )train neuronqτ  is strictly decreasing and ( )er neuronqρ  is strictly 

increasing then 

( ) ( )train min er maxq qτ > ρ , 

what is false as 

( ) ( )train min er max 1q qτ = ρ =  

due to normalizing in (10) - (12). And if ( )train neuronqτ  is strictly increasing and ( )er neuronqρ  is strictly 

decreasing then 

( ) ( )train max er minq qτ > ρ , 

what is false also as 

( ) ( )train max er min 1q qτ = ρ =  

due to normalizing in (10) - (12). So, there exists such [ ]neuron min max;q q q∈
 that (19) is true. Now, will prove the 

uniqueness of the point [ ]neuron min max;q q q∈
. Assume that exist another [ ]*

neuron min max;q q q∈
 such that 

 ( ) ( )* *
train neuron er neuronq qτ = ρ 

 (25) 

along with (19). For definiteness let it be *
neuron neuronq q> 

. Then for strictly decreasing function ( )train neuronqτ  
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and strictly increasing function ( )er neuronqρ  

( ) ( )*
train neuron train neuronq qτ > τ 

 

and 

( ) ( )*
er neuron er neuronq qρ < ρ 

, 

that is 

 ( ) ( ) ( ) ( )* *
train neuron train neuron er neuron er neuronq q q qτ < τ = ρ < ρ   

 (26) 

So, (26) is contradictory to (25), and [ ]neuron min max;q q q∈
 is unique. Clearly, taking (24), or *

neuron neuronq q< 
, the 

symmetric contradiction appears. Hence, (19) is true for the single [ ]neuron min max;q q q∈
. 

Now consider how functions ( )train neuronqτ  and ( )er neuronqρ  differ in the integer neighborhood of point 

. In the case ( )neuron ; 1q q q∈ +
 by  these functions may be stated as 

( )train neuron neuronq qτ ττ = α + β  and ( )er neuron neuronq qρ ρρ = α + β  at [ ]neuron ; 1q q q∈ +
 for some real coefficients 

τα , τβ , ρα , ρβ .  

For neuron

1

2
q q= +

 there are 

 ( ) ( ) ( ) ( )train train 1 1 2 1 2q q q q qτ τ τ τ τ ττ + τ + = α + β + α + + β = α + + β  (27) 

 ( ) ( ) ( ) ( )er er 1 1 2 1 2q q q q qρ ρ ρ ρ ρ ρρ + ρ + = α + β + α + + β = α + + β  (28) 

And 

 train er

1 1 1 1

2 2 2 2
q q q qτ τ ρ ρ
       τ + = α + + β = α + + β = ρ +       
       

 (29) 

using (19). From (29) it follows that 

 ( ) ( )2 1 2 2 1 2q qτ τ ρ ρα + + β = α + + β  (30) 

where (30) means the equality of (27) and (28): 

 ( ) ( ) ( ) ( )er er train train1 1q q q qρ + ρ + = τ + τ +  (31) 

Clearly, the equality (31) is identical to (20). 

If 0τα >  then 0ρα <  and for neuron

1

2
q q< +

 there are 

 ( ) ( ) ( ) ( )train train neuron train neuron1 2 1 2 2 2 2q q q q qτ τ τ ττ + τ + = α + + β > α + β = τ 
 (32) 

 ( ) ( ) ( ) ( )er er neuron er neuron1 2 1 2 2 2 2q q q q qρ ρ ρ ρρ + ρ + = α + + β < α + β = ρ 
 (33) 

whence due to (19), uniting inequalities (32) and (33), the inequality 
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 ( ) ( ) ( ) ( )train train er er1 1q q q qτ + τ + > ρ + ρ +  (34) 

turns true. And due to 0τα > , meaning that ( )train neuronqτ  increases against decreasing ( )er neuronqρ  at 

[ ]neuron ; 1q q q∈ + , the inequality (34) may be re-stated as 

 ( ) ( ) ( ) ( )train er er train1 1 0q q q qτ + − ρ + > ρ − τ >  (35) 

Otherwise, if 0τα <  then 0ρα >  and for neuron

1

2
q q< +

 there are 

 ( ) ( ) ( ) ( )train train neuron train neuron1 2 1 2 2 2 2q q q q qτ τ τ ττ + τ + = α + + β < α + β = τ 
 (36) 

 ( ) ( ) ( ) ( )er er neuron er neuron1 2 1 2 2 2 2q q q q qρ ρ ρ ρρ + ρ + = α + + β > α + β = ρ 
 (37) 

whence due to (19), uniting inequalities (36) and (37), the inequality 

 ( ) ( ) ( ) ( )train train er er1 1q q q qτ + τ + < ρ + ρ +  (38) 

turns true. And due to 0τα < , meaning that ( )train neuronqτ  decreases against increasing ( )er neuronqρ  at 

[ ]neuron ; 1q q q∈ + , the inequality (38) may be re-stated as 

 ( ) ( ) ( ) ( )train er er train0 1 1q q q q< τ − ρ < ρ + − τ +  (39) 

The inequality (21) is obtained with unifying the inequalities (35) and (39). 

For neuron

1

2
q q> +

 reasonings are symmetric. If 0τα >  then 0ρα <  and there are (36) and (37), and the 

inequality (38) turns true after having united them due to (19). Due to 0τα >  the inequality (38) may be 

re-stated as 

 ( ) ( ) ( ) ( )train er er train0 1 1q q q q< τ + − ρ + < ρ − τ  (40) 

Otherwise, if 0τα <  then 0ρα >  and there are (32) and (33), and the inequality (34) turns true after having 

united them due to (19). Due to 0τα <  the inequality (34) may be re-stated as 

 ( ) ( ) ( ) ( )train er er train1 1 0q q q qτ − ρ > ρ + − τ + >  (41) 

The inequality (22) is obtained with unifying the inequalities (40) and (41). 

The theorem has been proved. 

It is easy to see that the claim of Theorem 1 is easily narrowed (Edwards, 1965) from the segment [ ]min max;q q  

to the interval ( )min max;q q . Under conditions of this theorem the hidden layer neuron number should be set at 

neuronq


 if just , bringing the neural network performance and the traintime duration to equilibrium 

(19). Of course, it occurs rarely, and so in the case of that ( )neuron ; 1q q q∈ +
 by  the hidden layer neuron 

number should be set at q  for neuron

1

2
q q< +

 and 

 
{ }

( ) ( ){ }train er
, 1

arg min
k q q

q k k
∈ +

∈ τ + ρ  (42) 



www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013 

45 
 

and the hidden layer neuron number should be set at 1q +  for neuron

1

2
q q> +

 and 

 ( )
{ }

( ) ( ){ }train er
, 1

1 arg min
k q q

q k k
∈ +

+ ∈ τ + ρ  (43) 

Such hidden layer neuron number is optimal in the sense of that for neuron

1

2
q q< +

 the deviation from 

equilibrium (19) with q  hidden layer neurons is less than with 1q +  due to (21), and for neuron

1

2
q q> +

 the 

deviation from equilibrium (19) with 1q +  hidden layer neurons is less than with q  due to (22), where the 

sum of normalized traintime and performance value stays minimal. If neuron

1

2
q q< +

 and (43) is true then the 

hidden layer neuron number should be set at 1q + , using the principle of maximizing the productivity quality 

due to Bernoulli criterion (Trukhayev, 1981), rather than tending to equilibrium. Similarly, for neuron

1

2
q q> +

 

and (42) the hidden layer neuron number should be set at q , ensuring the productivity quality maximum due to 

(42). 

The subcase of  when neuron

1

2
q q= +

 is rare also, where instead of equilibrium (19) there is 

equilibrium (20), letting suggest to set the hidden layer neuron number at either q  or 1q + , if any additional 

preferences for one of those numbers can be provided. For instance, the less neuron number in neural network 
the greater possibility of saving the memory and accelerating the functionality. If nevertheless there are no any 
additional preferences then the hidden layer neuron number should be set randomly at either q  or 1q + , or to 

use the mix of two neural network architectures if it is available. 

However, conditions of Theorem 1 are too weak to use them in setting neurons into the hidden layer, as usually 
the structure of dependences ( )train neuronqτ  and ( )er neuronqρ  is not so simple. Surely, monotonicity is typical 

for these dependences over some intervals (Haykin, 1999; Tarca, Grandjean, & Larachi, 2004), but over a wider 
range of hidden layer neuron number each of them may become non-monotonic. Therefore, the following 
theorem discloses the simplest case of non-monotonicity. 

Theorem 2. Whatever continuous piecewise linear functions ( )train neuronqτ  and ( )er neuronqρ  with single 

minima within ( )min max;q q  are, being defined with its linear pieces on integer-endpoint subsegments of 

[ ]min max;q q  and having no maxima within ( )min max;q q , if ( )train neuronqτ  has the minimum in 

( )1
neuron min max;q q q∈  and ( )er neuronqρ  has the minimum in ( )2

neuron min max;q q q∈  by 1 2
neuron neuronq q≠ , and 

 
( )train neuron

neuron

0
q

dq

τ
≠  by ( )neuron ; 1q q q∈ + , min max, 1q q q= −  (44) 

 
( )er neuron

neuron

0
q

dq

ρ
≠  by ( )neuron ; 1q q q∈ + , min max, 1q q q= −  (45) 

then they are both strictly monotonic within the interval between endpoints 1
neuronq  and 2

neuronq , and one of them 

is decreasing and the other is increasing over that interval. 

Proof. For definiteness let it be 1 2
neuron neuronq q< . As neither ( )train neuronqτ  has maximum by 

( )1 2
neuron neuron neuron;q q q∈ , nor ( )er neuronqρ  has maximum by ( )1 2

neuron neuron neuron;q q q∈  then 

( )train neuron

neuron

0
q

dq

τ
<  by ( )1

neuron min neuron;q q q∈ ,  

( )train neuron

neuron

0
q

dq

τ
>  by ( )1

neuron neuron max;q q q∈ ,  
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and 

( )er neuron

neuron

0
q

dq

ρ
<  by ( )2

neuron min neuron;q q q∈ ,  

( )er neuron

neuron

0
q

dq

ρ
>  by ( )2

neuron neuron max;q q q∈   

with (44), (45). So, 

( )train neuron

neuron

0
q

dq

τ
>  by ( )1 2

neuron neuron neuron;q q q∈ ,  

( )er neuron

neuron

0
q

dq

ρ
<  by ( )1 2

neuron neuron neuron;q q q∈ ,  

that is the function ( )train neuronqτ  is monotonically increasing, and the function ( )er neuronqρ  is monotonically 

decreasing over the interval ( )1 2
neuron neuron;q q . Clearly, if there were taken 1 2

neuron neuronq q>  primarily then the 

function ( )train neuronqτ  would have appeared monotonically decreasing by the monotonically increasing 

function ( )er neuronqρ  over the interval ( )2 1
neuron neuron;q q . The theorem has been proved. 

The claim of Theorem 2 is easily propagated (Edwards, 1965) from the interval ( )1 2
neuron neuron;q q  to the segment 

1 2
neuron neuron;q q 

   if only to state that a function may have single maximum either in the point minq  or maxq  

(actually, it has). In the partial case, a function may have two maxima in these points, where the function value is 
the same (equal to 1). And normalizing again the functions ( )train neuronqτ  and ( )er neuronqρ  on the segment 

1 2
neuron neuron;q q 

   as 

 ( ) ( )
( ){ }

1 2
neuron neuron neuron

train neuron
train neuron

train neuron
;

max
q q q

q
q

q
 ∈  

τ
τ =

τ
  (46) 

 ( ) ( )
( ){ }

1 2
neuron neuron neuron

er neuron
er neuron

er neuron
;

max
q q q

q
q

q
 ∈  

ρ
ρ =

ρ
  (47) 

have conditions of Theorem 1, letting know that there exists the unique point 1 2
neuron neuron neuron;q q q ∈  


 and to set 

neurons into the hidden layer optimally. Rarely, if ( )train neuronqτ  and ( )er neuronqρ  with single minima have 

their minima in the same point ( )0
neuron min max;q q q∈  then 0*

neuron neuronq q= , meaning that the two-objective 

minimization problem (16), (17), or (16), (18) is solved exactly. 

More generally, on the segment [ ]min max;q q  continuous piecewise linear functions ( )train neuronqτ  and 

( )er neuronqρ  with nonzero derivatives may have up to max min 1q q− +  local extremums, including extremums in 

the endpoints. The practical rare case when these functions have their global minima in the same point 
*

neuron neuronq q=  is pretty trivial, though it gives the exact solution in setting hidden layer neuron number at 
*
neuronq . So further there is only the case with different global minima of functions ( )train neuronqτ  and 

( )er neuronqρ . 

Theorem 3. If continuous piecewise linear functions ( )train neuronqτ  and ( )er neuronqρ , whose linear pieces are 

defined on integer-endpoint subsegments of [ ]min max;q q , have their global minima in the points 

( )1
neuron min max;q q q∈  and ( )2

neuron min max;q q q∈  correspondingly by 1 2
neuron neuronq q≠ , (44), (45), then in the case 
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of when their global maxima on the segment 1 2
neuron neuron;q q 

   are in the points 1 2
max neuron neuron;q q qτ  ∈    and 

1 2
max neuron neuron;q q qρ  ∈    correspondingly by max maxq qτ ρ≠ , there exists the nonempty set of the points of 

intersection of functions (46) and (47). 

Proof. For definiteness let it be 1 2
neuron neuronq q< . Assume that 

( ) ( )train neuron er neuronq qτ ≠ ρ   1 2
neuron neuron neuron;q q q ∀ ∈   . 

Then 

 ( ) ( )train neuron er neuronq qτ > ρ  (48) 

Or 

 ( ) ( )train neuron er neuronq qτ < ρ  (49) 

For definiteness let it be (48). Consequently, 

( ) ( ) ( )1
train max train neuron er maxq q qτ ρτ > τ > ρ   

what is false as 

 ( ) ( )train max er max 1q qτ ρτ = ρ =  (50) 

due to conditions of this theorem and normalization in (46), (47). Assuming that (49) is true, have 

( ) ( ) ( )2
train max er neuron er maxq q qτ ρτ < ρ < ρ   

what is false as (50) is fulfilled due to conditions of this theorem and normalization in (46), (47). So, there exists 

the nonempty set of the points of intersection of functions (46) and (47). Clearly, if it were taken 1 2
neuron neuronq q>  

primarily then the symmetric contradictions would have appeared. The theorem has been proved. 

May the conditions of Theorem 3 are true. Let { }2
neuron

1

K
k

k
q +

=
 be the set of  points of intersection of 

functions (46) and (47) on the segment 1 2
neuron neuron;q q 

  , having integer points in the set . 

Obviously, the hidden layer neuron number is selected from the set of points 

 
{ }

( ) ( ){ }
2

neuron
1

*
neuron train erarg min

K
k

k
q q

q q q
+

=
∈

∈ τ + ρ  (51) 

where the point  is preferred to the point { }2*
neuron neuron

1

K
k

k
q T q +

=
∉ ⊂ . If ( )*

neuron ; 1q q q∈ +  by 

 then the hidden layer neuron number should be set in the way, described before Theorem 2. Here, 

however, the applied Bernoulli criterion may be extended from minimal-integer vicinity to the whole integer 

range { }1 2
neuron neuron,q q , letting come from (51) to the problem 

 
{ }

( ) ( ){ }
1 2

neuron neuron

*
neuron train er

,

arg min
q q q

q q q
∈

∈ τ + ρ  (52) 

where the point *
neuronq T∈  is preferred to the point { }1 2*

neuron neuron neuron,q T q q∉ ⊂  as in accordance with 

Theorem 3 a point from the set  brings the neural network performance and the traintime 

duration to equilibrium: 
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( ) ( )train erq qτ = ρ   . 

If the problem (52) solution set is empty, what may happen for continuous piecewise nonlinear functions, then 
the hidden layer neuron number is selected through solving the extended problem 

 ( ) ( ){ }
1 2

neuron neuron

*
neuron train er

;
arg min

q q q
q q q

 ∈  

∈ τ + ρ  (53) 

where the point { }2*
neuron neuron

1

K
k

k
q q +

=
∈  is preferred to the point { }2*

neuron neuron
1

K
k

k
q q +

=
∉  as in accordance with Theorem 

3 a point from the set of  points of intersection of functions (46) and (47) on the segment 
1 2

neuron neuron;q q 
   brings the neural network performance and the traintime duration to equilibrium: 

 ( ) ( )train erq qτ = ρ   { }2
neuron

1

K
k

k
q q +

=
∀ ∈  (54) 

After (53) is solved, for { }2*
neuron neuron

1

K
k

k
q q +

=
∈  and ( )*

neuron ; 1q q q∈ +  by  the hidden layer neuron number 

should be set at q  or 1q +  due to Theorem 1. In the case of that { }2*
neuron neuron

1

K
k

k
q q +

=
∉ , where 

( )*
neuron ; 1q q q∈ +  by , the hidden layer neuron number should be set at 

{ }
( ) ( ){ }train er

, 1
arg min

k q q
k k

∈ +
τ + ρ . 

Actually, the problem (53) generalizes the procedure of searching the optimal hidden layer neuron number, but 
before it there must be tried (51) and (52). It remains only to say that the case, when (44) or (45) is untrue, 
occurs rarely, and it may lead to a continuum of the optimal hidden layer neuron numbers. Its practical rarity, as 

well as that max maxq qτ ρ=  under conditions of Theorem 3, lets omit its consideration. As for the generalization, 

then claims of Theorems 1 - 3 may be propagated from the continuous piecewise linear function to a polynomial, 

any part of which on the segment [ ]; 1q q +  by min max, 1q q q= −  has its derivative of the constant sign 

(Edwards, 1965). 

5. Setting Neurons into the Hidden Layer for a Practical Case 

For demonstrating how to apply conditions and claims of Theorems 1 - 3 for setting the hidden layer neuron 
number there is going to be constructed the feedforward neural network with the single hidden layer, using the 
Matlab® environment (license 161051) with its powerful tool Neural Network Toolbox for designing and testing 
neural networks. This network is destined for solving the problem of 5-by-7 monochrome image (symbol) 
recognition under noise of distortion, output 26Q = . A good practical model for distortion noise is Gaussian noise. 

For the said image recognition problem its expectation is zero and standard deviation is set at 0.5. Due to (1) and 
(2) by train 1040N =  the hidden layer neuron number may be varied as 

neuron43 459q≤ ≤  

or 

neuron40.2163 1083.9q≤ ≤  

correspondingly. The network is trained with Matlab-function traingda of the backpropagation algorithm, 
whereby 2 replicas of the pure symbol alphabet and 4 noised symbol alphabets are passed for 10 times. 
Practicing, it is sufficient to vary that number from 10 up to 120, as with neuron 10q <  the neural network is 

trained too slow (Figure 1), and with neuron 120q >  the neural network mean recognition error rate (Figure 2) 

becomes greater than the error rate for the network, trained without noise (Hagiwara, Hayasaka, Toda, Usui, & 
Kuno, 2001). It is seen from Figures 1 and 2 that for searching the optimal hidden layer neuron number it is 
sufficient to explore the segment [ ]20; 120 . Dependences ( )train neuronqτ  and ( )er neuronqρ  as continuous 

piecewise linear functions on that segment, and their normalized sum 
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Figure 1. Dependences ( )train neuront q  of the traintime duration in seconds against the hidden layer neuron 

number, drawn from averaging over the series of 1000 tests of the neural network 

 

 
Figure 2. Dependences ( )er neuronr q  of the mean recognition error rate (percentage wise) against the hidden layer 

neuron number, drawn from averaging over the series of 1000 tests of the neural network 

 

neuronq

( )er neuronr q

neuronq

( )train neuront q
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( ) ( )

[ ]
( ) ( ){ }

neuron

train neuron er neuron

train neuron er neuron
20; 120

max
q

q q

q q
∈

τ + ρ
τ + ρ

 (55) 

as well, are shown on Figure 3, where polynomials, fitting these dependences are figured also. 

 

 

Figure 3. Dependences ( )train neuronqτ  and ( )er neuronqρ  as continuous piecewise linear functions  

on the background of polynomials ( )train neuronqτ  and ( )er neuronqρ


, fitting these dependences  

over the segment [ ]20; 120  

 

The dependence ( )train neuronqτ  polynomial is 

( ) 8 4 6 3
train neuron neuron neuron2.9 10 8.99835 10q q q− −τ = ⋅ ⋅ − ⋅ ⋅ +  

 2
neuron neuron+0.001008915 0.044171 1.2997346q q⋅ − ⋅ +  (56) 

and the dependence ( )er neuronqρ  polynomial is 

( ) 8 4 5 3
er neuron neuron neuron3.267 10 1.06582 10q q q− −ρ = ⋅ ⋅ − ⋅ ⋅ +  

 2
neuron neuron0.0012673 0.0660244 1.893601q q+ ⋅ − ⋅ +  (57) 

neuronq

( ) ( )
[ ]

( ) ( ){ }
neuron

train neuron er neuron

train neuron er neuron
20;120

max
q

q q

q q
∈

τ + ρ
τ + ρ

( )er neuronqρ

( )train neuronqτ

( )er neuronqρ


( )train neuronqτ
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Their normalized sum (55) is applied under Bernoulli criterion for (53). After normalization there can be seen 
(Figure 3) some shift upwards of polynomials, representing dependences ( )train neuronqτ  and ( )er neuronqρ . For 

further, clearly, the continuous piecewise linear function, whose linear pieces are defined on integer-endpoint 

subsegments of [ ]min max;q q , having the same values as polynomials (56) and (57) have at points { }min max,q q , 

can be substituted with these polynomials. At least, deductions of Theorems 1 - 3 with such substitution are fully 
applicable, as any linear piece on an integer-endpoint subsegment of [ ]min max;q q  approximates to any nonlinear 

piece of polynomials (56), (57), defined on that subsegment. From Figure 3 it is seen that on the segment 

[ ]20; 120  each of dependences ( )train neuronqτ  and ( )er neuronqρ  has the single minimum: for ( )train neuronqτ  this 

is 1
neuron 38q = , for ( )er neuronqρ  this is 2

neuron 111q = . Also they do not have any maxima within ( )20; 120  by 

that the statements (44) and (45) are true. So, here conditions of Theorem 2 come into force: dependence 

( )train neuronqτ  is strictly increasing, and dependence ( )er neuronqρ  is strictly decreasing within the interval 

( )38; 111 . At that by Theorem 1 there is the single point neuron 44.643q ≈
, giving the equilibrium (19). As here  

( )neuron 44; 45q ∈
 at 44q = ,  

and for neuron 44.5q >
 here is the inequality (22) 

( ) ( ) ( ) ( )er train train er44 44 45 45ρ − τ > τ − ρ  

then in the hidden layer there should be set 45 neurons due to (43). 

The point of intersection of normalized (Figure 4) dependences ( )train neuronqτ  and ( )er neuronqρ  on the segment 

[ ]38; 111  can be seen also by Theorem 3. The normalization (46), (47) shifted the intersection point: functions 

( )train neuronqτ  and ( )er neuronqρ  on the segment [ ]20; 120  have the intersection point neuron 44.643q ≈
, whereas 

functions ( )train neuronqτ  and ( )er neuronqρ


 on the segment [ ]38; 111  have the intersection point 

3
neuron 79.728q ≈ . The normalized sum of these functions reaches its minimum in the same point *

neuron 49q =  as 

on the segment [ ]20; 120 , as well as on the segment [ ]38; 111 . So,  

1K = , 3
neuron 79.728q ≈ , T = ∅ ,  

and the problem (52) solution is *
neuron 49q = , leading to 49 neurons in the hidden layer. The problem (53) 

solution here is the same due to the mentioned above substitution. 
Obviously, that the result of solving the two-objective minimization problem (16), (18) depends on method to 
reduce it to the single objective minimization. The equilibrium way with (19) is suitable when it is unknown 
relationship of priority of the traintime duration and the network performance value, where neural network is 
probably to be retrained frequently. The way of Bernoulli criterion in (53) is suitable when influences of the 
traintime duration and the network performance value are roughly similar. However, as it is seen from Figure 4, 
equilibria (19) and (54) are quite different. On the other hand, the problem (52) solution always exists for 
continuous piecewise linear functions ( )train neuronqτ  and ( )er neuronqρ , whose linear pieces are defined on 

integer-endpoint subsegments of [ ]min max;q q . This may be called a Bernoulli criterion advantage (Trukhayev, 

1981). Well, reasoning from Figure 4, in 5-by-7 monochrome image recognition problem the feedforward neural 
network should have 45 or 49 hidden layer neurons, allowing to have almost minimized the traintime duration 
and the network mean recognition error rate simultaneously. The number 45 is suitable for the case of total 
uncertainty of their influences. Nevertheless, 49 neurons in the hidden layer seem to be more adequate as 
Bernoulli criterion deals also with uncertainty, assuming equiprobability (Trukhayev, 1981). 
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Figure 4. Dependences ( )train neuronqτ , ( )er neuronqρ , and their normalized sum (55) 

 

6. Conclusion 

The stated two ways of setting the hidden layer neuron number in feedforward neural network with the single 
hidden layer are questioned for 5-by-7 monochrome image recognition problem. And the other question is of 
possibility of whether the stated result could be propagated to large-scale images recognition problem. For 

instance, there is the task to express the map of dependences ( ) ( ){ }train neuron er neuron,q qτ ρ  and the segment 

[ ]min max;q q  for 5-by-7 monochrome image recognition problem into 10-by-14, 50-by-70, 600-by-800 and many 

others problem formats (scales). It is expectable that for problems, which scales are closed to the considered 
5-by-7 format, this task is realizable, as the result for the 5-by-7 problem must be similar to 10-by-14 problem or 
something like that. Especially, if width and height of image in a new problem are in the same ratio 5-to-7. The 
most expected change after the map is that the segment [ ]min max;q q  is shifted right, as for larger-scale images 

there is need to set greater number of neurons into the hidden layer (Yuan, Xiong, & Huai, 2003), while shape of 

dependences ( ) ( ){ }train neuron er neuron,q qτ ρ  might be maintained. 
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