
Computer and Information Science; Vol. 5, No. 6; 2012
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

73

WCAG 2.0 Semi-automatic Accessibility Evaluation System: Design
and Implementation

Hend S. Al-Khalifa1
1 Information Technology Department, College of Computer and Information Sciences, King Saud University,
Riyadh, Saudi Arabia

Correspondence: Hend S. Al-Khalifa, Information Technology Department, College of Computer and
Information Sciences, King Saud University, Riyadh, Saudi Arabia. E-mail: hendk@ksu.edu.sa

Received: September 18, 2012 Accepted: October 11, 2012 Online Published: October 21, 2012

doi:10.5539/cis.v5n6p73 URL: http://dx.doi.org/10.5539/cis.v5n6p73

Abstract

The current state of web accessibility evaluation systems is encouraging, yet not sufficient. Many evaluation
systems were developed for evaluating websites based on WCAG 2.0 recommendations, however, their
effectiveness is somewhat incomplete. Specifically, web accessibility evaluation systems, not being able to
handle a website language poses a series of challenges for web accessibility evaluation. This paper details the
design and implementation of Level A WCAG 2.0 semi-automatic accessibility evaluation system capable of
processing Arabic websites. The system builds on previous work in this area and overcomes the problem
encountered while dealing with Arabic websites. Our system evaluation shows that, in fact, there are
considerable differences between our system and other accessibility evaluation systems, in terms of having
distinct evaluation results.

Keywords: web accessibility, semi-automated evaluation, WCAG 2.0, Arabic language

1. Introduction

The World Wide Web (WWW) is evolutionary changing in terms of its technologies, recommendations and
guidelines (Harper & Chen, 2012). With this evolution, access to information on the web must be granted to all
people regardless of their disability. This assumption derived the field of web accessibility to flourish and become
a requirement when developing websites.

Web accessibility is defined as enabling people regardless of their disabilities to access interact and use the web
without any difficulties. Many guidelines and techniques were created to ensure that the web is equally accessible
to all people. Among these guidelines and techniques is a dominant policy document recommended by the World
Wide Web Consortium (W3C), the governing body of the web and its standards, which include the Web Content
Accessibility Guidelines (WCAG) (W3C, 2008b).

WCAG 2.0 is a technology-independent standard that provides general criteria and techniques for evaluating
accessibility across technologies. Beyond these techniques, developers need to conduct additional research to
ensure that the content or applications they create meet WCAG 2.0 success criteria. Conducting this evaluation
manually is time consuming, because of that different automated tools were developed.

In this paper, we present a semi-automatic WCAG 2.0 web accessibility evaluation system. The system currently
supports the processing of Arabic websites as well as providing evaluation reports in Arabic language. Our
experience in building this system gave us some interesting perspectives with regard to the weaknesses of current
evaluation tools.

The rest of the paper is organized as follows: Section 2 gives a brief background about WCAG and presents related
work in the area of automated web accessibility evaluation. Section 3 outlines our system analysis and design this
includes: the system architectural design and the steps followed to distill WCAG 2.0 criteria for automatic
evaluation. Section 4 provides the implementation details of our system. Finally, the paper concludes with
evaluating the system and summarizing the main contribution of this work.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

74

2. Background and Related Work

2.1 Web Content Accessibility Guidelines

When talking about how to achieve web accessibility, we must first refer to the World Wide Web Consortium
(W3C), which aims to recommend standards for web accessibility. The Web Content Accessibility Guidelines
(WCAG) is among the standards proposed by W3C.

WCAG consist of a set of guidelines for making content accessible, especially for disabled users. There are two
versions of WCAG: WCAG 1.0 (1999) and WCAG 2.0 (2008). WCAG 2.0 succeeds WCAG 1.0, it is easier to
use, understand and properly tested with automated testing tools and human evaluation (Shawn, 2009). It is also
backward compatible with WCAG 1.0 and can be applied widely in the field of advanced technologies, thus it is
recommended that accessibility practitioners reference WCAG 2.0.

WCAG 2.0 consists of four principle (Perceivable, Operable, Understandable, Robust), 12 guidelines, 61 success
criteria and over 571 WCAG 2.0 techniques distributed among 12 categories as follows: General Techniques,
HTML and XHTML Techniques, CSS Techniques, Client-side Script Techniques, Server-side Script Techniques,
SMIL Techniques, Plain Text Techniques, WAI-ARIA Techniques, Flash Techniques, Silverlight Techniques,
PDF Techniques and Common Failures. Basically, techniques are “specific authoring practices that may be used
in support of the WCAG 2.0 success criteria” (W3C 2008b). The techniques are the focus of this paper.

Figure 1 shows the relationship between principles, guidelines, success criteria and techniques in WCAG 2.0.
Each principle has a set of guidelines. Each guideline has a set of success criteria and user category. The user
might be limited by Hardware, Software or has physical limitations. Finally each success criteria may employ
different techniques.

Figure 1. The relationship between principles, guidelines and success criteria in WCAG 2.0

Table 1 gives an example of a principle, a guideline, a success criteria and a technique that tackles non-text
content in WCAG 2.0.

Table 1. Example of a principle, guideline, success criteria and a technique from (W3C 2008b)

Principle 1 Perceivable

Guideline 1.1
Text
alternatives

Provide text alternatives for any non-text content so that it can be changed
into other forms people need, such as large print, speech, symbols or simpler
language.

Success
criteria 1.1.1

Non-text
content

All non-text content that is presented to the user has a text alternative that
serves the equivalent purpose, except for the situations listed below.

Technique
Controls,
input

If non-text content is a control or accepts user input, then it has a name that
describes its purpose.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

75

WCAG 2.0 has three levels of conformance (W3C 2008a), divided into: Single-A (minimum level of conformance
with minimum level of accessibility), Double-A (intermediate level of conformance with enhanced level of
accessibility) and Triple-A (high level of conformance with additional accessibility enhancements). Each level of
conformance has many testable techniques that are used to evaluate websites accessibility (Al-Khalifa, 2010).

2.2 Accessibility Evaluation Systems

Web accessibility evaluation tools are software programs or online services that help determine if a website meets
accessibility guidelines. We can categorize these tools into two types: (1) general tools that evaluate most WCAG
guidelines and (2) special tools that evaluate specific topics covered by the guidelines e.g. color checker.
Evaluation tools can be further categorized into (EOWG, 2005):

• Fully automated: can examine the whole website with all guidelines.

• Semi-automated: attempts to evaluate web pages with little or no user intervention. Usually these tools
produce reports with the results of checks they evaluate.

• In-page feedback evaluation tools: display the results of automated accessibility checks on the
respective locations of the web page by inserting icons and markup into the code of the page.

• Wizard interface: guides web developers through a series of checks in a defined sequence in order to
determine the conformance of the web content to accessibility guidelines.

• Page transformations: assist web developers in evaluating checkpoints which need to be manually
evaluated by modifying the appearance of the web pages.

There are several methods for evaluating the accessibility of a website:

1. Evaluate a remote file: This method evaluates a single web page.

2. Evaluate entire website: This method evaluates all pages in the website.

3. Evaluate HTML source: This method evaluate the accessibility of the HTML code.

There are different evaluation systems that can be used to test the accessibility of websites. However, the majority
of these systems follow WCAG 1.0 (the previous version of the accessibility guidelines), which has outdated. Also,
the list of Web Accessibility Evaluation Tools in the W3C website was not updated since 2006 (Shadi, 2006),
which made us search for WCAG 2.0 evaluation tools. So as of the date of this project we have found only five
systems providing support for WCAG 2.0: (1) TAW (Web Accessibility Test) (TAW, 2012); (2) Worldspace
FireEyes (Deque, 2012); (3) Total Validator (Total Validator, 2012); (4) Web Accessibility Assessment Tool
(WaaT) (Oikonomou et al., 2011) and (5) aChecker (aChecker, 2012).

TAW is an online accessibility tool. It analyzes websites according to W3C Web Accessibility guidelines
(WCAG 1.0 and WCAG 2.0) with recommendations for fixes. Accessibility violations in TAW are presented in
three categories (problems, warnings, and not reviewed).

Worldspace FireEyes is a free web accessibility evaluation tool which is introduced by Deque Systems, Inc. In
this tool, the accessibility evaluation of a website can be performed according to WCAG 1.0, WCAG 2.0 as well
as Section 508. FireEyes is designed as an add-on that works with Firefox browser through the Firebug tool.

Total Validator is a stand-alone application that validates (X) HTML, web accessibility as well as it works as a
spell checker and a broken links checker. It validates against WCAG (1.0 and 2.0) and Section 508. It also comes
as a browser extension for Chrome and Firefox.

Web Accessibility Assessment Tool (WaaT) is a stand-alone application that provides web accessibility
evaluation according to WCAG 2.0. This application allows a user to perform specific evaluation process, by
selecting different constraints (e.g. different types of impairments and disabilities, different sets of guidelines,
personas, etc.) It also has three possible outputs: “Errors”, “warnings” or general information about evaluated
page “info” e.g. number of forms in pages.

aChecker is an online web accessibility evaluation tool. It supports the evaluation of BITV 1.0 (Level 2), Section
508, Stanca Act as well as WCAG 1.0 and 2.0. The tool implementation is based on TinyMCE HTML editor, an
open source editor, used in many open source Web Applications such as ATutor learning management system.
This tool categorizes accessibility problems into three types: Known problems, Likely problems and Potential
problems.

It is also worth mentioning HERA-FFX for WCAG 2.0 (Fuertes et al., 2011). This Firefox add-on supports the
manual evaluation of web accessibility based on WCAG 2.0. It represents evaluation results in six-element array

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

76

as follows: fail, N/A, verify, ok, unknown, and partial. Similarly, (Fernandes et al., 2011) developed an
evaluation framework that was implemented for: Command Line and Browser environments. The evaluation
results are represented in three categories: pass, fail and warning. The environment is still under development to
include more WCAG 2.0 techniques.

Although the above examined systems have powerful evaluation engines, some of them faced problems while
processing Arabic websites. As our focus is on Arabic websites, we discovered that some accessibility errors
have emerged only from using Arabic language. These errors are generated under the 3.1 guideline: readable,
make text content readable and understandable (level A). Some systems also displayed Arabic content as
gibberish (Figure 2). In such case, if we evaluated Arabic websites, the number of errors resulted by such
systems will be always more than they actually are. It is indeed not correct for reliable accessibility evaluation
systems to report Arabic language content as an accessibility error.

Figure 2. Arabic language problems with aChecker, top shows the results with invalid language, bottom is the

tested page source code in Gibberish

So to overcome this problem, the aim of this project is to design and develop a WCAG 2.0 web accessibility
evaluation system that is capable of handling Arabic websites and generating accessibility reports in Arabic for
the sake of Arabic web developers and practitioners.

3. System Analysis and Design

Before designing our system, we first need to study and understand thoroughly WCAG 2.0 techniques for two
reasons: (1) distill those applicable for automatic evaluation and (2) classify the techniques in a way that makes
processing them programmatically more efficient. So, as a first step in our system we focused only on level A
techniques. Moreover, we studied similar automated accessibility evaluation systems interfaces and benefited from
their best practices in designing our system interface.

3.1 Analyzing WCAG 2.0 Techniques for Automatic Evaluation

After studying 138 WCAG 2.0 level A techniques (48 were HTML techniques (H), 9 were CSS techniques (C), 81
were general techniques (G)), we realized that the techniques can be implemented either fully automated or
semi-automated (i.e. needs human intervention or more complex techniques). Therefore, in our project we have
implemented 13 fully automated and 15 semi-automated techniques. Other techniques were not considered,
because most of them require complex processing procedures, which were beyond the objective of this project.

We also found that the current categorization of techniques (i.e. HTML techniques, CSS techniques, general
techniques, etc.) has some overlaps between them in their procedures, for instance, there were common steps in
more than one category to check for images. For this reason we created a new categorization to minimize the
overlap between techniques. The new categorization is based on media types (images, forms, pages, text, links and
tables). After classifying the techniques based on their media type we created a table to show the relationship
between the techniques. This helped in reducing the number of common (overlapped) evaluation procedures in
more than one technique; in addition this resulted in having the number of errors more valid and accurate as we
will see in section 5.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

77

Table 2 shows the dependent techniques of the fully automated techniques for each media type.

Table 2. Fully automated dependent techniques, where G means general techniques and H means HTML
techniques

Media Type Technique Dependent technique

Image G95 H37

Image H2 -

Forms G162, H71 -

Forms G80 H32

Page H74 G134

Page H46, H35 -

Table H43, H51 -

Table 3 shows the fully implemented techniques in our system.

Table 3. Implemented fully automated techniques

Technique Description
Corresponding

success criterion

H2 Combining adjacent image and text links for the same resource.

1.1.1

H35 Providing text alternatives on applet elements.

H46 Using noembed with embed.

G95
Providing short text alternatives that provide a brief description of the
non-text content.

H37 Using alt attributes on img elements.

H51 Using table markup to present tabular information.

1.3.1
H43

Using id and headers attributes to associate data cells with header cells
in data tables.

H71
Providing a description for groups of form controls using fieldset and
legend elements.

H32 Providing submit buttons.

3.3.2 G80 Providing a submit button to initiate a change of context.

G162 Positioning labels to maximize predictability of relationships.

G134 Validating Web pages.

4.1.1
H74

Ensuring that opening and closing tags are used according to
specification.

For each technique, an evaluation algorithm was produced by converting W3C Test procedures written in plain
English into Pseudocode. Table 4 demonstrates the Pseudocode for technique number 51 that evaluates the table
element.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

78

Table 4. Pseudocode for html technique of table element

Technique H51: Using table markup to present tabular information.

Test procedure from W3C:

1. Check for the presence of tabular information.

2. For each occurrence of tabular information: Check that table markup with at least the elements
table, tr and td is used.

Expected results: PASS if #1 and #2 are true.

Pseudocode:

Check for <TABLE> elements

 IF <TR> elements exist

 NO error

 ELSE

 INCREMENT number of errors

 INCREMENT number guideline 1.3 errors

UPDATE report with page title, line of code, line code number, hints and Success Criterion 1.3.1

END IF

 IF <TD> elements exist

 NO error

 ELSE

 INCREMENT number of errors

 INCREMENT number of guideline 1.3 errors

 UPDATE report with page title, line of code, line code number, hints and Success Criterion 1.3.

 END IF

 END IF

Table 5 shows the semi-automated implemented techniques in our system. Fifteen semi-automated techniques
were partially checked by our system, this was performed by checking the steps that do not require human
intervention to check for no errors then issuing a warning to advise the user to perform manual check.

Table 5. Implemented semi automated techniques

Technique Description Corresponding success
criterion

H30 Providing link text that describes the purpose of a link for anchor
elements.

1.1.1
G73 Providing a long description in another location with a link to it that is

immediately adjacent to the non-text content.

H86 Providing text alternatives for ASCII art, emoticons, and leetspeak.

H36 Using alt attributes on images used as submit buttons.

H65
Using the title attribute to identify form controls when the label element
cannot be used.

1.1.1

3.3.2

1.3.1

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

79

H44 Using label elements to associate text labels with form controls.

1.1.1

3.3.2

4.2.1

H39 Using caption elements to associate data table captions with data table.

1.3.1
H63

Using the scope attribute to associate header cells and data cells in data
tables

H56
Using the dir attribute on an inline element to resolve problems with
nested directional runs.

1.3.2

G88 Providing descriptive titles for Web pages.
2.4.2

H25 Providing a title using the title element.

H4 Creating a logical tab order through links, form controls, and objects. 2.4.3

H24 Providing text alternatives for the area elements of image maps. 2.4.4

H57 Using language attributes on the html element. 3.1.1

H88 Using the title attribute to provide context-sensitive help. 4.1.1

Table 6 shows one semi- automated technique, notice that it was not fully automated at step 2.

Table 6. Pseudocode for html technique of area element

Technique H24: Providing text alternatives for the area elements of image maps.

Test procedure from W3C:

For each area element in an image map:

1. Check that the area element has an alt attribute.

2. Check that the text alternative specified by the alt attribute serves the same purpose as the part
of image map image referenced by the area element of the image map.

Expected results: Pass if #1 and #2 are true.

Pseudocode:

IF alt attribute of <AREA> elements include in <MAP> elements

 NO error

 ELSE

 INCREMENT number of errors

 INCREMENT number guideline 2.4 errors

 UPDATE report with page title, line of code, line code number, hints and Success Criterion 2.4.4

 END IF

IF "alt" attribute serves the same purpose as the part of image map referenced by the area element
of the image map.

 NO warning

 ELSE

 INCREMENT number of warnings

 INCREMENT number guideline 2.4 warnings

 UPDATE report with page title, line of code, line code number, hints and Success Criterion 2.4.4

 END IF

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

80

3.2 Design Patterns

Designing a usable and accessible user interface is very important for the success of our system. So, based on our
previous research on similar systems and examining their interfaces we distilled the following best design
patterns:

3.2.1 Results Types

All examined systems divided their accessibility problems into different sections; in our system we divided our
accessibility results into two types:

 Errors: automatically checked and mean that there is an accessibility violation.

 Warnings: need human intervention and mean that there might be an accessibility violation.

This classification is similar to what WaaT is using.

3.2.2 Report Generation

Most systems provide two kinds of reports: (1) summary report and (2) detailed report. In our system, these two
kinds are implemented as follows:

1)- Summary Report:

This report type gives a high-level overview of the results. It displays the number of errors and warnings of each
guideline in each page.

Figure 3 shows a screenshot of our system summary report with the following elements: (1) number of errors, (2)
number of warnings, (3) accessibility score bar (this was computed using the following equation: 100 - ((number
of errors/number of evaluated page lines)*100), and (4) success criteria table.

Figure 3. Summary report showing number of errors and warnings for each success criteria

2)- Detailed Report:

It consists of a more detailed information about (errors and warnings) which display the errors and warnings
reporting for each page according to media type (text, link, image, table, page, form) and display: page title, line of
code, success criteria, code line number and hint for the error or warning. Also it displays detailed HTML report in
a table view which contains code line number, column number, error type and source code. Finally it displays
detailed CSS report that shows a table containing code line number, type of error and source code. Figure 4 shows
a screenshot of the detailed report.

1 2

3

4

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

81

Figure 4. The detailed report with different tabs for errors and warnings

3.2.3 Viewing Line of Code

Viewing a line of code that caused an error or a warning is an important thing for developers to capture the
violating code (i.e. for tracing purposes). During our research we found that other systems follow diversified ways
to view line of code, basically, we took advantage of viewing line of code with sufficient hint as aChecker did and
combine it with Worldspace & FireEyes data table used for organizing violations.

3.2.4 Annotated Page View

Viewing visually the places of violations in a page might be more helpful for the novice evaluators than viewing
line of code. Figure 5 demonstrates a web page with annotated icons showing the places of errors (with x) and
warnings (with exclamation mark).

Figure 5. Page view with annotation violations

3.2.5 Providing Hints

Telling the user 'where' the errors are is very effective when used alone. However, supporting the error place with
'how' to repair is more effective. Providing hints create two challenges:

 Writing in an easy and understandable way.

 Writing clear Arabic terms that reflect the gist of the error.

We provided detailed information about each success criteria, including normative text and techniques to be

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

82

applied for assessment as well as W3C descriptive link for each success criteria violation. This is similar to what
Web Assessment Tool does to support the user with more information.

3.2.6 Website Depth

All accessibility evaluation systems evaluate only one page except for Web Assessment Tool, which evaluates
more than one page; however it is not clear what criteria the tool is using for page selection.

In our system we evaluated a website by tracing its hierarchy (i.e. its depth). Our evaluation depends on two levels
of a website hierarchy (level 0 and level 1). Level 0 means evaluating one page (the target). Level 1 means
evaluating pages under the target (max=5 sibling pages).

3.2.7 Downloading Report

Our system allows the user to download the result as a PDF file. The PDF file describes the accessibility results
of the evaluated web page. This PDF file contains an overview of the result as well as details for all detected
errors, warnings, HTML and CSS validation.

4. System Implementation

Our system is considered a function oriented pipelining model where the system is decomposed into functional
modules that accept input data and transform it into output data. Figure 6 shows the Data Flow Diagram (DFD) of
our system.

Figure 6. System DFD

4.1 System Processes

The system consists of six major processes grouped into two main groups as follows:

Process 1.1: Evaluation manger

This process receives the URL of a website and the evaluation depth from the user. Then, it finds the URL's of all
pages under the received URL according to the given depth using depth first searching technique. After collecting
the URL’s, they are sent to: HTML validator, CSS validator, and Evaluate success criteria processes.

Process 1.2: HTML Validator

This process receives the URL of each page that needs to be evaluated, and then send them to W3C HTML

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

83

validator API. The results of the validation are sent back to the View detailed report process.

Process 1.3: CSS Validator

Similar to HTML Validator process, this process receives the URL of each page that needs to be evaluated, and
then send them to W3C CSS validator API. The results of the validation are sent back to the View detailed report
process.

Process 1.4: Evaluate Success Criteria (level A)

This process receives the URL of each page that needs to be evaluated, and then performs WCAG 2.0 level A
evaluation techniques on each page. The results of the validation are sent to the View detailed report process.

Process 2.1: View Detailed Report

This process consolidates the evaluation results returned back from the Evaluate success criteria process and
HTML and CSS validators. It generates two reports, the first report contains detailed information of errors, and
the second one contains detailed information of code warnings. Each report views code line number that contains
the error or warning, page title, line code that contains an error or warning, success criteria from WCAG 2.0
which is supposed to be applied, and hints that help to understand and repair the error or warning.

Process 2.2: View Summary Report

This process receives detailed information from the View detailed report process, and then generates a summary
report which contains each guideline from WCAG 2.0 and number of errors and warnings in each guideline.

4.2 Implemented Modules and Used Tools

A set of modules were implemented which include:

 URL Checker: this module checks the validity of the entered URL in terms of syntax and existence.

 Depth function: this module is used to get the URLs under the entered URL.

 Image techniques: this module implements WCAG 2.0 image techniques.

 Table techniques: this module implements WCAG 2.0 table techniques.

 Form techniques: this module implements WCAG 2.0 form techniques.

 Link techniques: this module implements WCAG 2.0 link techniques.

 Page techniques: this module implements WCAG 2.0 page techniques.

 HTML validation: this module receives the URL of each page that needs to be evaluated. It validates the
HTML of each page according to W3C HTML criteria.

 CSS validation: this module receives the URL of each page that needs to be evaluated. It validates the CSS
of each page according to W3C CSS criteria.

Besides, our system was implemented using PHP 5.0, JavaScript, HTML and CSS. It used open source libraries to
perform certain functions. For HTML DOM parsing, we used (Simplehtmldom V1.11) (Note 1), for URL
manipulation, we used (URL-to-Absolute) (Note 2) to combine the base URL to some relative URL to produce
absolute URL. For the user interface narratives we consulted the glossary of information technology terms in
Arabic (Alhafez, 2007).

5. System Testing and Evaluation

In our system we conducted two types of testing: user acceptance via usability testing and performance testing
via comparing our system performance against other accessibility systems.

5.1 Usability Testing

To measure our system usability and user satisfaction, users must have at least the basic knowledge about web
terminologies as well as being familiar with the domain of web development. Our target users were Arabic
speaking web developers.

They were asked to try our system first then answer the questionnaire. So, five students who already studied a
web course and accessibility standards and developed a website have tried our system. After that we asked them
to grade the usability of our system using System Usability Scale (SUS) (Brooke 1996). SUS is a five scale
Likert questionnaire, (ranging from strongly disagree to strongly agree), which consist of the following items:

(1) I think that I would like to use this system frequently.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

84

(2) I found the system unnecessarily complex.

(3) I thought the system was easy to use.

(4) I think that I would need the support of a technical person to be able to use this system.

(5) I found the various functions in this system were well integrated.

(6) I thought there was too much inconsistency in this system.

(7) I would imagine that most people would learn to use this system very quickly.

(8) I found the system very cumbersome to use.

(9) I felt very confident using the system.

(10) I needed to learn a lot of things before I could get going with this system.

Table 7 shows SUS results, and the score for each user. From the table we can see that our system in general
performed well in terms of ease of use. However, the answers to question 1, 2 and 7 were not very encouraging,
basically because the users pointed out the importance of having English technologies enclosed after their
Arabic counterparts, because they are not familiar to their translations.

Table 7. SUS Results

 User1 User2 User3 User4 User5

Result from 100 95 92.5 87.5 85 92.5

This result encouraged us to conduct another deep evaluation using remote testing to further discover any
problems, if exists, in our system and understand any difficulties that might limit our system functionality.

5.2 Remote Testing

We conducted another survey for remote users; we know that we can get more responses online more than
conducting live usability tests. We wrote a survey directly related to our system tasks. We published this survey
on Facebook, a social networking site, and asked interested people to evaluate the website and fill out the survey.

The survey consisted of twelve closed questions listed in Table 8 with a corresponding comments area for each
question. Every question has three options “agree”, “partially agree” and “disagree”.

The feedback gathered from the remote testing was more than the feedback gained by the usability testing. We
got 16 responses, fourteen were females and two were males, ages ranged between 15 and 25 years old. All have
experiences in building websites except for one user. Thirteen respondents have some background in WCAG and
web accessibility standards.

Table 8. Remote testing questions

1. Was the evaluation process easy?

2. Are errors content clear and understandable?

3. Are the hints provided for the errors clear and understandable?

4. Are warnings content clear and understandable?

5. Are the hints provided for the warning clear and understandable?

6. Is the summary report understandable?

7. Is the content of the (success criteria) in the summary report clear and understandable?

8. In “HTML Violations” tab did you find the errors and warnings understandable?

9. Is the content of the “Error Type” clear and understandable?

10. In “CSS Violations” tab did you find the errors and warnings understandable?

11. Could you distinguish easily between errors and warnings in the “page capture” tab?

12. Is our system easy to use?

www.ccsen

Figure 7 s
output wit
compared
either alon
the other h
contributes

5.3 Perfor

In this sect
We choose
websites).

Figure 8 sh

0

50

100

150

200

250

300

350

et.org/cis

summarizes the
th Arabic lang
to the rest of t

ne or when the
hand, question
s to the previo

rmance Compa

tion, we comp
e a sample of t

hows the numb

0

0

0

0

0

0

0

0

TAW

e results of th
guage; howeve
the questions.
ey come with e
ns 2, 4 and 7 d
ous observation

Figur

arison

ared the perfor
three Arabic w

ber of Level A

Figure 8. T

aChec

Newspape

Computer an

e remote testin
er, question nu
Both question
errors, which
demonstrate hi
n about the clar

e 7. Summary

rmance of our
websites that h

A errors each sy

The accessibilty

ker FIRE E
World

r Educati

nd Information S

85

ng. It shows t
umber 5 and 1
ns focused on t
seems that wa
igh scores for
rity of narrativ

of the remote

system agains
ave different c

ystem has gene

y violation resu

EYES
Space

Total V

onal website

Science

hat Arab users
11 shows the
the understand

arnings' narrati
partially agree

ves for warning

testing results

st the performa
content (gover

erated.

ults for each sy

Validator W

Ministry W

s in general ac
heights numbe

dability of the
ives have conf
e answers. Th
g and errors.

s

ance of previou
rnment, educat

ystem

WaaT @

Website

Vol. 5, No. 6;

ccepted the sy
er of disagree
provided warn

fused the users
his observation

us studied syst
tion and newsp

@WAEF

2012

ystem
ment
nings
s. On

n also

tems.
paper

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

86

To further investigate why these tools generated different errors, we performed detailed accessibility test for the
Newspaper website taking into account (the number of errors only). We observed that there is a significant
discrepancy between the number of errors generated by these tools. We next justify why our system sometimes
generated fewer errors than other tools like (TAW and WaaT). We can summarize the reasons in the following
points:

 If there are two errors or warnings with the same content in different techniques, our system does not repeat it.
It only shows one of them. For example: In techniques (H44 and G162), we have the same error message in
the test procedure: (Check that the label element is visible). So in this case we did not repeat the message error.
We report it only once.

 Our system does not consider HTML markup errors as accessibility errors.

 Since our system did not implement all Level A techniques there are some techniques that are not applied
such as audio, video and flash techniques.

Finally, as we have mentioned previously, although the above evaluated tools have powerful evaluation engines,
some of them faced problems. One of the major problems was the inability to process Arabic pages; however, our
system solved this problem regarding the Arabic language encoding.

6. Conclusion and Future Research

In this paper we detailed the design and implementation of an online Arabic web accessibility system designed to
evaluate Arabic websites accessibility based on W3C WCAG 2.0 level A success criteria. Our system recognizes
two types of accessibility problems: errors and warnings and produces two types of reports: summary report and
detailed report.

Our system was evaluated using two types of testing: user acceptance via usability testing and performance
testing via performance comparison. The results of the evaluation highlighted the strength and weaknesses of our
system and provided recommendations for future improvements.

While working on our system we faced many difficulties that limit our work, among them are:

(1) Finding proper Arabic translation for many technical terminologies.

(2) Translating messages in a readable way. Some of the translated technical terms were not understandable
by Arab web developers.

(3) Our depth method used to extract pages’ URLs for a given website cannot deal with some websites that
use dynamic URL generation.

Albeit the limitations in our system, the novelty of our system is present besides the adoption of the latest
WCAG 2.0 accessibility standard, in overcoming of the evaluation of Arabic websites and providing a complete
system with Arabic user interface. Moreover, our system proposed a new method for evaluating websites
accessibility.

There are many local and global impacts of our system. From a local perspective, our system can help people
interested in web accessibility to learn more about the guidelines and success criteria and how a website will be
accessible in their native Arabic language. From a global perspective, our system has an impact on the field of
automated web accessibility tools. As our project is considered the first Arabic Web Accessibility evaluation
system that is based on WCAG 2.0, this contributes to the limited number of systems dedicated for evaluating
web accessibility using WCAG 2.0.

The future work of our project is to extend our evaluation algorithms to cover level AA and AAA success
criteria, as well as complete the remaining level A techniques.

Also, because the number of people accessing the web using their mobile phones is increasing rapidly, we plan
to provide an engine for mobile websites accessibility.

Acknowledgment

The author is thankful to her project students (Maryam Al-Kanhal, Hailah Al-Nafisah, Noura Al-soukaih, Elaf
Al-hussain and Moneerah Al-onzi) for implementing and evaluating the system. She is also thankful to the
Motah grant (http://motah.org.sa) provided by King Abdul Aziz City for Science and Technology.

References

aChecker. (2012). IDI Web Accessibility Checker: Web Accessibility Checker. Retrieved August 17, 2012, from
http://achecker.ca/checker/index.php

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 6; 2012

87

Al-Khalifa, H. S. (2010). The accessibility of Saudi Arabia government Web sites: an exploratory study.
Universal Access in the Information Society, 11(2), 201-210. http://dx.doi.org/10.1007/s10209-010-0215-7

Brooke, J. (1996). SUS: A quick and dirty usability scale. In Usability evaluation in industry. Taylor and
Francis.

Deque Systems. (2012). Worldspace FireEyes. Retrieved August 17, 212, from
http://www.deque.com/products/worldspace-fireeyes

EOWG. (2005). Selecting Web Accessibility Evaluation Tools. Retrieved August 15, 2012, from
http://www.w3.org/WAI/eval/selectingtools.html

Fernandes, N., Lopes, R., & Carriço, L. (2011). An architecture for multiple web accessibility evaluation
environments. In Proceedings of the 6th international conference on Universal access in human-computer
interaction: design for all and eInclusion - Volume Part I. UAHCI’11. Berlin, Heidelberg: Springer-Verlag,
pp. 206-214. Retrieved from http://dl.acm.org/citation.cfm?id=2022591.2022616

Fuertes, J. L., Gutiérrez, E., & Martínez, L. (2011). Developing Hera-FFX for WCAG 2.0. In Proceedings of the
International Cross-Disciplinary Conference on Web Accessibility. W4A ’11. New York, NY, USA: ACM,
pp. 3:1-3:9. Retrieved August 17, 2012, from http://doi.acm.org/10.1145/1969289.1969294

Harper, S., & Chen, A. (2012). Web accessibility guidelines. World Wide Web, 15(1), 61-88.
http://dx.doi.org/10.1007/s11280-011-0130-8

Oikonomou, T., Kaklanis, N., Votis, K., & Tzovaras, D. (2011). An accessibility assessment framework for
improving designers experience in web applications. In Proceedings of the 6th international conference on
Universal access in human-computer interaction: design for all and eInclusion - Volume Part I. UAHCI’11.
Berlin, Heidelberg: Springer-Verlag, pp. 258-266. Retrieved August 17, 2012, from
http://dl.acm.org/citation.cfm?id=2022591.2022622

Shadi, A. Z. (2006). Complete List of Web Accessibility Evaluation Tools. Retrieved August 17, 2012, from
http://www.w3.org/WAI/ER/tools/complete

Shawn, H. (2009). How WCAG 2.0 Differs from WCAG 1.0. Retrieved August 15, 2012, from
http://www.w3.org/WAI/WCAG20/from10/diff.php

TAW. (2012). TAW (Web Accessibility Test). Retrieved August 17, 2012 from
http://www.tawdis.net/ingles.html?lang=en

Total Validator. (2012). Total Validator. Retrieved August 17, 2012, from http://www.totalvalidator.com/

W3C, (2008a). WCAG 2.0 Conformance Level. Retrieved August 15, 2012, from
http://www.w3.org/TR/WCAG20/#conformance

W3C. (2008b). Web Content Accessibility Guidelines (WCAG) 2.0. Retrieved from
http://www.w3.org/TR/WCAG20/

Notes

Note 1. http://simplehtmldom.sourceforge.net/

Note 2. http://sourceforge.net/projects/absoluteurl/

