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Abstract 
It would cost much and much time in face detector training using AdaBoost algorithm. An improved face detection 
algorithm called Rank-AdaBoost based on feature-value-division and Dual-AdaBoost based on dual-threshold are 
proposed to accelerate the training and improve detection performance. Using the improved AdaBoost, the feature 
values with respect to each Haar-like feature are rearrange to a definite number of ranks.The number of ranks is much 
less than that of the training samples, so that the test time on each training samples is saved corresponding to the 
original AdaBoost algorithm. Inheriting cascaded frame is also proposed here. Experimental results on MIT-CBCL face 
& nonface training data set illustrate that the improved algorithm could make training process convergence quickly and 
the training time is only one of 50 like before. Experimental results on MIT+CMU face set also show that the detection 
speed and accuracy are both better than the original method.  
Keywords: Rank- AdaBoost, Feature value division, Dual-AdaBoost, Face detection, Hnheriting cascade 
1. Introduction 
For its interesting applications, automatic face detection has received considerable attention among researchers in many 
fields, such as content-based image retrieval, video coding, video conference, crowd surveillance, and intelligent 
human– computer interface. 
Many methods have been proposed to detect faces in a gray image or a color image, such as Template Matching, 
Mosaic Image, Geometrical Face Model, Difference Pictures, Snake, Deformable templates, Statistical Skin Color 
Models et al. Now the methods based on statistical learning algorithms have attracted more attention, including PCA, 
Artificial Neural Networks and Support Vector Machines, Bayesian Discriminant Features, etc. These methods show 
good performance in the detection precision, but their detection speed needs to be increased(Liang 
Luhong,2002,pp.449-458). 
The first real-time face detector was proposed by Viola and Jones (Viola and Jones, 2001,2004,pp.137-154). They 
described a face detection framework that is capable of processing images extremely rapidly while achieving high 
detection rates. There are three key contributions of this detection framework. The first is the introduction of a new 
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image representation called an “Integral Image” which allows the features used by the detector to be computed very 
quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm to select a 
small number of critical visual features from a very large set of potential features. The third contribution is a method for 
combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded and focus 
on promising face-like regions. Simple Haar-like features are extracted and used as weak classifiers. The Viola and 
Jones frontal face detector runs at about 15 frames per second on 320 by 240 image. As in the work of Rowley (Rowley 
et al,1998,pp.22-38) and Schneiderman(Schneiderman,2000,pp.746-751), Viola and Jones(Viola and Jones, 2003) built 
a multi-view face detector with AdaBoost to handle profile views and rotated faces.  
However, one problem with these approaches is that there are too many Haar-Like features in a single face image. 
Another difficulty is that a great deal of non-face training samples are used to reach good performance. The big set of 
training samples not only slow down the training, but also increase the number of weak classifiers greatly in cascaded 
detector. So AdaBoost on every round needs to search a large pool of candidate weak classifiers and the computation is 
very complex.  
Attempting to get more efficient detector, improved AdaBoost algorithm called Rank-AdaBoost and Dual-AdaBoost 
based on feature-value-division are proposed to speed-up the training and detection performance. Firstly, for one 
Haar−Like feature, distribution of feature values of all face samples is divided into definite ranks. A small quantity of 
value is used as possible threshold in training instead of all feature values of face samples. Then, the approach of fast 
dual-threshold finding is developed in the enhanced AdaBoost algorithm, which makes the training process faster and 
the detection accuracy higher. In the training process of cascaded detector, the formers classifiers are transferred to the 
later, so that more non-face would be ignored. Both computational speed and the performance are improved obviously 
by this approach simultaneously.  
Experimental results on MIT-CBCL face set and MIT+CMU face set show that our method yields higher classification 
performance than Viola and Jones' both on training speed and detection accuracy. 
2. AdaBoost using Haar-Like feature  
2.1 Haar-Like features and integral image 
Haar-Like features are a kind of simple rectangle features proposed by Viola et al. as shown in Figure 1. The squares 
represent a face image. The value of each Haar-Like feature is computed as a difference of the sum over the white and 
black regions. It describes the local gray feature in the image. Using parity and threshold on this value, a class is 
predicted. 
Viola et al. use three kinds of features. They differ by their division of two, three or four rectangular areas. Rotating 
these three types could easily generate other kinds of features. Every feature is characterized by its position in the face 
frame, pre-specified size and type. Given that the base resolution of the classifier is 24 by 24 pixels, the exhaustive set 
of rectangle filters is quite large, over 100,000, which is roughly O(N 4) where N=24 (i.e. the number of possible 
locations times the number of possible sizes). The actual number is smaller since filters must fit within the classification 
window.  
Computation of rectangle filters can be accelerated using an intermediate image representation called the integral image. 
Using this representation any rectangle filter, at any scale or location, can be evaluated in constant time. Integral image 
at location (x, y) is computed as the sum of the pixel values above and to the left of (x,y). A original gray image I and its 
integral image II is described as follows: 
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The integral image can be computed in one pass over the original image by using the following pair of recurrences: 
S(x, y) = S(x, y − 1) + I(x, y) 
II(x, y) =II(x − 1, y) + S(x, y) 

(where S(x, y) is the cumulative row sum, S(x,−1) = 0, and II(−1, y) = 0). Using the integral image, the value of a 
Haar-Like feature can be computed by plus or minus using the integral image. Any rectangular sum can be calculated in 
four array references. Clearly the difference between two rectangular sums can be calculated in eight references. Since 
the two-rectangle features defined above involve adjacent rectangular sums they can be computed in six array 
references, and eight and nine references in the cases of three and four-rectangle features respectively. 
In Figure 2, (d) is an integral image corresponding to the left image (a) and the feature (b). (c) shows the feature on the 
image. Simple p4+p1−p2−p3−(p6+p3−p4−p5) could give the value of the feature. Much computing time is saved. 
2.2 AdaBoost algorithm 
In its original form, the AdaBoost learning algorithm is used to boost the classification performance of a simple learning 
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algorithm (e.g., it might be used to boost the performance of a simple perceptron). It does this by combining a collection 
of weak classification functions to form a stronger classifier. In the language of boosting the simple learning algorithm 
is called a weak learner. So, for example, the perceptron learning algorithm searches over the set of possible perceptrons 
and returns the perceptron with the lowest classification error. The learner is called weak because we do not expect even 
the best classification function to classify the training data well (i.e. for a given problem the best perceptron may only 
classify the training data correctly 51% of the time). In order for the weak learner to be boosted, it is called upon to 
solve a sequence of learning problems. After the first round of learning, the examples are re-weighted in order to 
emphasize those who were incorrectly classified by the previous weak classifier. The final strong classifier takes the 
form of a perceptron, a weighted combination of weak classifiers followed by a threshold.  
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where f(x) is the final strong classifier, ( h1(x),h2(x),……,ht (x)) is the serials of weak classifiers. The ht(x) can be thought 
of as one feature with a threshold. The original form of the AdaBoost named as Init- AdaBoost is shown as: 
1) Given example images: (x1 , y1), …, (xL , yL ), where yi∈{1, 0} indicates positive or negative examples; gj(xi) is the jth 

Haar-Like feature of ith example xi. 
2) Initialize weights  
Where m, n are the number of positive or negative examples respectively. L=m+n. 
3) For t = 1 ... T  
a. Normalize the weights  
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b. For each feature j, train a weak classifier hj, and evaluate its error εj with respect to wt, iij
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Where pj∈{1, -1} is a parity bit and θj is a threshold. 
c. Choose the classifier ht with the lowest error εt 
d. Update the weights wt+1, i = wt, iβt

1-ei, where ei=0 if example xi is classified correctly, ei=1 otherwise, and βt = εt/(1−εt). 
4) Final classifier:   
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where αt = log (1/βt). 
2.3. Cascaded detector 
In an image, most sub-images are non-face instances. In order to improve computational efficiency greatly and also 
reduce the false positive rate, a sequence of gradually more complex classifiers called a cascade is built.  
An input window is evaluated on the first classifier of the cascade and if that classifier returns false then computation on 
that window ends and the detector returns false. If the classifier returns true, then the window is passed to the next 
classifier in the cascade. The next classifier evaluates the window in the same way. If the window passes through every 
classifier with all returning true, then the detector returns true for that window. The more a window looks like a face, 
the more classifiers are evaluated on it and the longer it takes to classify that window. Since most windows in an image 
do not look like faces, most are quickly discarded as non-faces. Figure 3 describes the cascade. 
By using cascaded detector, it is possible to use smaller and efficient classifiers to reject many negative examples at 
early stage while detecting almost all the positive instances. Classifiers used at successive stages to examine difficult 
cases become more and more complex. 

0.5/m   i≤m, 
0.5/n   otherwise         w1, i = 
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Since easily recognizable non-face images are classified in the early stages. Subsequent classifiers are trained only on 
examples that pass through all the previous classifiers. That is to say, classifiers of the later stages of the cascaded 
detector can be trained rapidly only on the harder, but smaller, part of the non-face training set. Therefore this detection 
approach would save the computational cost and maintain the performance simultaneously.  
Stages in cascade are constructed by training classifiers using AdaBoost. Cascaded detector is trained as follows: 
1) Input: Allowed false positive rate f, and detection rate d per layer; target overall false positive rate Ftarget. P denotes 
set of positive examples, N denotes set of negative examples, ni is the number of weak classifiers in the ith layer 
classifier.  
2) F0 = 1, D0 = 1, i=0 
3) While Fi > Ftarget 
a. i++, ni=0, Fi=Fi-1 
b. While Fi > f × Fi-1 
• ni++. 
• Use P and N to train a ith layer classifier with ni weak features using AdaBoost. 
• Evaluate current cascaded classifier on validation set to determine Fi and Di. 
• Decrease threshold for the ith classifier until the current cascaded classifier has a detection rate Di of at least d×Di−1, 
evaluate Fi. 
c. If Fi > Ftarget then evaluate the current cascaded classifier on the set of non-face images, and put any false detection 
into the N. 
3. Proposed Improved AdaBoost 
3.1 Problem of time cost 
In AdaBoost algorithm, the step 3)b time costs expensively, because all simple classifier hj(j=1:k) is desired to compute 
where k is the number of the Haar-Like features and the k is a very large number. Moreover each hj is obtained by 
exhaustive searching every samples so that it would take much time to only get a weak classifier ht(x).  
If the Onetime is the time needed to get only one simple classifier, and the training time to get one weak classifier is 
Traintime, then 

Traintime = k* Onetime. 
The step is done repeatedly until the face detection rate is satisfied. If the number of weak classifiers is T, then it would 
cost Alltime to obtain the final strong classifier. 

         Alltime = Traintime *T = k* Onetime *T 
If there are 600 weak classifiers needed, the mean search time of each hj is 0.1s, only 24,000 features is used to train, 
then the consumed time would be 600×24,000×0.1 =1,440,000s(i.e. 400 hours, about 16 days ). It is too long. So it is 
necessary to save the time for computing hj. 
3.2 Division of the feature values 
According to Init-AdaBoost, for one Haar-like feature, the feature value of each face sample is used as possible 
threshold. Under a given parity, the possible threshold is compared with that of all training samples. Consequently the 
false detection rate is calculated. Do it again under another parity. The threshold and the parity with this Haar-like 
feature could be determined by the face sample which causes the minimum false detection rate, and the feature value of 
this face sample is used as the threshold for the Haar-like feature.The cost time is O(m×n) where m ,n is the number of 
face samples and non-face samples. In face detection training, m ,n are all very large, generally thousands even million. 
So the time corresponding to O(m×n)  is very expensive.  
By the experiment results, we find that false detection occurred frequently when there are some noise on the image and 
we also find that there are little difference between the feature values of some face samples, the ability of these feature 
values to discriminate face sample and non-face sample is similar. So to reduce the number of possible threshold, we 
could get the maximum and the minimum feature values of all training face samples with one Haar-like feature, and 
obtain r ranks of the feature value from minimum to maximum feature value. That is: 

∆j = (max(gj(xi))- min(gj(xi)))/r,   i=1…m 
Where gj(xi) is the jth Haar-Like feature of ith example xi.  
Then using each Thk as a possible threshold to find the weak classifier and its threshold with the parity. Thk is computed 
by Thk=min(gj(xi))+k×∆j  (k=1……r). 
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Now the cost time would be O(r×(m+n)) instead of O(m×n). After do many experiments,we find that the detection 
performance could be the same as Init-AdaBoost when r is less then 100. If let r=100, then the value of r×(m+n) would 
be smaller and smaller than m×n because m, n are usually thousands even millions. So the time used to train would be 
falled rapidly and could be denoted as O(m+n). 
Furthermore, let Wk is the sum of weight of every samples under threshold Thk,  Gk is the sum of weight of the samples 
whose feature value is more than Thk, but less than Thk+1 , then the sum of weight of every samples under threshold Thk+1 
is Wk+1. 

Wk+1= Wk +Gk. 

That is to say only those samples are tested whose feature value is more than Thk,,  and it is not necessary to test all 
samples to calculate Wk+1  when Wk has been known. So the time for training could be also saved. 
The improved AdaBoost based on the division of the feature values is called Rank- AdaBoost. 
3.3 Finding of dual-threshold  
According to experimental results, the local feature distributes regularity corresponding to a weak classifier. The typical 
local features of face and non-face are shown in Figure 4. 
In Figure 4, vertical axis y says the ratio of face or non-face in total samples, the horizontal axis x is values of feature. 
Threshold used to indicate face or non-face could be obtained rapidly. As Figure 4 shows, face  is higher than non-face 
from θ (1) to θ (2), so θ (1)and θ (2) are used as dual-threshold. The specific method to find threshold is described as 
follows. 
1) For each x, compute face(x)- nonface(x). 
2) Choose x' with the maximum:  x’=argmax (face (x)- nonface (x) ). 
3) From x' to left or right to find the crossing point which cause face(x)-nonface(x)<0. If no crossing point is found, 
then the boundary point is selected as crossing point. So we could get two crossing points and use them as 
dual-threshold. AdaBoost based dual-threshold is called Dual- AdaBoost. 
When determining a feature as a current weak classifier or not, the dual-threshold of the features may be adjusted to 
ensure weak classifier ht to meet the demand of detection. So this method can greatly accelerate each weak classifier 
search. If there were 24,000 features, the search time would be 1/50 of that of exhaustive search.  
4. Proposed Inheriting cascaded detector 
In cascaded detector, fewer and fewer sub-window images need to be detected by layer classifier at later stages, a little 
error would make overall detection performance decline. So, a sequence of gradually more complex and more powerful 
classifiers are trained to increase classification performance with examples that have pass through all the previous 
classifiers. During cascaded detector training, the predecessor is used as a part of its successor, that is to say each layer 
is considered not only as an independent node of the cascaded classifier but also as a component of its successor. So the 
later classifier includes more classification features.  

fk(x) = fk−1(x) + )(
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where fk(x) and  fk-1(x) is a strong classification function on the kth and k-1th layer respectively. It is called inheriting 
cascaded detector. Based on this algorithm, the overall performance of the cascaded detector is enhanced. Moreover, the 
threshold of classifier on different layers is adjusted to separate the training samples of face and non-face as far as 
possible, so that more non-face would be ignored. Both computational speed and the performance are improved 
obviously by this detection approach simultaneously. 
As an example, we need to train strong classifiers on the kth layer. fk(x) and  Hk(x) is a strong classification function 
and strong classifier respectively. A total of L samples consist of m positive examples (face) and n negative examples 
(non-face). Positive examples arrange in a sequence before n negative examples.  
1) Given example images: (x1, y1), …, (xL, yL ), where yi∈{1, -1} represents positive or negative examples; gj(xi) is the 
jth Walsh feature of ith example xi. L=m+n. 
2) Using the last weights resulted from the strong classifiers training on (k-1)th layer as w1,i. If k=1 then initialize 

weights 
3) Search θj

 (1) and θj
 (2) of each local feature based on its distribution in all face and non-face examples. Use θj

 (1) and θj
 

0.5/m   i≤m, 
0.5/n   otherwise        

w1, i = 
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(2) as dual-threshold . 
4) For t = 1, ..., T  
a. Normalize the weights  
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b. For each feature j, get a weak classifier hj with θj 
(1) and θj

 (2) by the method discussed above, and evaluate its error εj, 
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calculate coefficient  
αt

(0) = (ln ((1−εt)/εt))/2. 
c. Get a strong classifier function 
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The corresponding strong classifier is: 
 
 
 
d. Using the thresholds to test on positive samples and to make fk(x) achieve the default requirements Dk≥d×Dk−1. 
e. Use fk(x) to test on negative samples, if Fi≤f×Fi−1 then exit the iteration. 

f. Update the weights tth
itit ww α−

+ = e,,1 , where αt = (ln ((1−εt)/εt))/2. 

5) Get a strong classifier function 
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the corresponding strong classifier is: 
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5. Experimental results 
5.1 Experiments on MIT-CBCL data set  
The publicly available MIT-CBCL face database is used to evaluate the performance of the proposed face detection 
system. The original MIT-CBCL training set contains 2,429 face images and 4,548 non-face images in 19 ×19 pixels 
grayscale PGM format. The training faces are only roughly aligned, i.e., they were cropped manually around each face 
just above the eyebrows and about half-way between the mouth and the chin. The data set willserve our purpose of 
comparing our detection system with their original system, which we shall train using the same training set. Some 
samples are shown as Figure 5.  
The training data set we used is the subset of MIT-CBCL and consist of 1,429 face images and 3,548 non-face images. 
The test set consists of 1,000 face images and 1,000 non-face images left. The compuer we used is with P4/2.4GHz 
CPU, 1 GB memory. The results are shown as Table 1. 
According to Table 1, the Detection rate and False positive under Rank-AdaBoost or Dual-AdaBoost are similar with 
Init-AdaBoost, but the training time is obviously different. The training time used in Dual-AdaBoost is only 1/50 of that 
of Init-AdaBoost. The detection time also fall about half because of less classifiers used. Moreover,the robustness and 
the ability of generalization become better and better. 
 
 

1    fk(x)≥0, 
-1  otherwise               

Hk(x) = 
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5.2 Experiments on a Real-World Test Set 
5.2.1 Training data sets selection 
Face samples must be selected carefully with variability in face orientation (up-right, rotated), pose (frontal, profile), 
facial expression, occlusion, and lighting conditions. Moreover some unimportant features of the face should be 
removed, such as hair and or so.  
Non-face samples could be selected randomly. Any sub-window of an image containing no face can be used as a 
non-face sample. Almost arbitrary large training set can be easily constructed using these non-face samples. 
In our experiment, the training data were collected from various sources. Face images were taken from the MIT-CBCL 
face training dataset, FERET face dataset, NJUST603 and web. The dataset contains face images of variable quality, 
different facial expressions and taken under wide range of lightning conditions. The dataset contained 8145 face 
samples including rotated versions of some faces.  
Non-face images were collected from the web and MIT-CBCL non-face dataset. Images of diverse scenes were 
included. The dataset contained images such as animals, plants, countryside, man-made objects, etc. Some non-face 
samples were selected by randomly picking sub-windows from hundreds of images that did not contain face. More than 
2,180 thousand non-face samples were used. Hundreds of these non-face images is very similar to face. Each image of 
all samples was cropped into size of 19×19. Figure 6 shows some face samples. Figure 7 shows some non-face samples.  
In the experiment, 9954 total Haar-like features were selected and used as weak classifiers. The smallest rectangle filter 
was defined as 4×4, the biggest was 16×16 on the window of 19×19 image.  
5.2.2 Experimental results 
Given that non-face samples discarded on each layer was more than 40%, at the same time the face samples detection 
rate was more than 99.99% . We get a cascaded detector using the proposed improved AdaBoost and inheriting cascade 
model. The face cascaded detector using Rank-AdaBoost has 35 layers of classifiers. The face cascaded detector using 
Dual-AdaBoost has 21 layers of classifiers.  
We tested our system on the MIT+CMU frontal face test set(Rowley et al,1998, pp.22–38). MIT+CMU dataset consists 
of 130 images with 507 total frontal faces. Every image was resized by 0.85 each iteration during test. The the 
performance of our detection system are shown in Table 2.  
Experimental results on MIT+CMU face set shows that our method provides higher classification performance than 
Viola and Jones' method both on training speed and detection accuracy. 
6. Conclusions and Future Work 
In this paper, we presented a speed-up technique to train a face detecotor using AdaBoost by improveing the threshold 
searching method and new inheriting cascaded frame. Our proposed face detection system incorporating the technique 
reduces the number of subwindows that need preprocessing and verification. The proposed system is much faster than 
the original AdaBoost-based detection systems in training speed and is also higher in testing accuracy. It is suitable for 
realtime applications. Further, the system performs well for frontal faces in gray scale images with variation in scale 
and position. 
A larger training set would be essential for the detector to be of practical use. In particular, the number of non-face 
images would have to be drastically increased in order to decrease false positives. Moreover, as mentioned earlier, using 
a larger number of Haar-like features would also improve the accuracy. Implementing and inproving the cascade is 
required in order to achieve the ultimate aim of our work, i.e., to improve the accuracy of the detector while maintaining 
real-time detection speed.  
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Table 1. Comparison o f the training and detection 

 Init-AdaBoost Rank-AdaBoost Dual-AdaBoost 

Time for getting a Simple 
classifier (s) 0.1192 0.0071 0.0023 

Sum of weak classifier 96 98 56 

Detection rate (%) 97% 96.4% 98.6% 

False positive 1 2 0 

Detection time (s) 1.766 1.781 0.953 

Table 2. Results on the MIT+CMU test set 

 Viola’s Detector Rank-AdaBoost Dual-AdaBoost 

False Positive 50 78 167 48 82 169 51 69 138 

Detection Rate(%) 91.4 92.1 93.9 91.2 92.3 94.0 91.8 92.6 94.2 

 

 

 

 

Figure 1. Examples of the Viola and Jones features 
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Figure 2. Features extraction using integral image 

 

 

 

 

 

 

Figure 3. Schematic depiction of a cascaded detector 
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Figure 4. Distribution of typical local features 

 

 

 

 

 

(a) Some face examples             (b) Some nonface examples 

Figure 5. Some training examples 

 

 

 

 

 

 

Figure 6. Some faces from the training set 

 

 

 

 

 

 

Figure 7. Some non-faces from the training set 
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