
Vol. 1, No. 2 Computer and Information Science

 120

Fast Feature Value Searching for Face Detection
Yunyang Yan

Department of Computer Engineering
Huaiyin Institute of Technology

Huai’an 223001, China

E-mail: areyyyke@163.com

Zhibo Guo

School of Information Engineering
Yangzhou University

Yangzhou 225009, China
E-mail: zhibo_guo@163.com

Jingyu Yang

School of Computer Science and Technology
Nanjing University of Science and Technology

Nanjing 210094, China
E-mail: jingyuyang@mail.njust.edu.cn

This research is supported in part by the NSFC under grant 60632050, the High School Technology Fund of Jiangsu
province under grant 06KJD520024, and Technology Fund of Huai’an under grant HAG05053 and HAG07063.
Abstract
It would cost much and much time in face detector training using AdaBoost algorithm. An improved face detection
algorithm called Rank-AdaBoost based on feature-value-division and Dual-AdaBoost based on dual-threshold are
proposed to accelerate the training and improve detection performance. Using the improved AdaBoost, the feature
values with respect to each Haar-like feature are rearrange to a definite number of ranks.The number of ranks is much
less than that of the training samples, so that the test time on each training samples is saved corresponding to the
original AdaBoost algorithm. Inheriting cascaded frame is also proposed here. Experimental results on MIT-CBCL face
& nonface training data set illustrate that the improved algorithm could make training process convergence quickly and
the training time is only one of 50 like before. Experimental results on MIT+CMU face set also show that the detection
speed and accuracy are both better than the original method.
Keywords: Rank- AdaBoost, Feature value division, Dual-AdaBoost, Face detection, Hnheriting cascade
1. Introduction
For its interesting applications, automatic face detection has received considerable attention among researchers in many
fields, such as content-based image retrieval, video coding, video conference, crowd surveillance, and intelligent
human– computer interface.
Many methods have been proposed to detect faces in a gray image or a color image, such as Template Matching,
Mosaic Image, Geometrical Face Model, Difference Pictures, Snake, Deformable templates, Statistical Skin Color
Models et al. Now the methods based on statistical learning algorithms have attracted more attention, including PCA,
Artificial Neural Networks and Support Vector Machines, Bayesian Discriminant Features, etc. These methods show
good performance in the detection precision, but their detection speed needs to be increased(Liang
Luhong,2002,pp.449-458).
The first real-time face detector was proposed by Viola and Jones (Viola and Jones, 2001,2004,pp.137-154). They
described a face detection framework that is capable of processing images extremely rapidly while achieving high
detection rates. There are three key contributions of this detection framework. The first is the introduction of a new

Computer and Informaiton Science May, 2008

 121

image representation called an “Integral Image” which allows the features used by the detector to be computed very
quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm to select a
small number of critical visual features from a very large set of potential features. The third contribution is a method for
combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded and focus
on promising face-like regions. Simple Haar-like features are extracted and used as weak classifiers. The Viola and
Jones frontal face detector runs at about 15 frames per second on 320 by 240 image. As in the work of Rowley (Rowley
et al,1998,pp.22-38) and Schneiderman(Schneiderman,2000,pp.746-751), Viola and Jones(Viola and Jones, 2003) built
a multi-view face detector with AdaBoost to handle profile views and rotated faces.
However, one problem with these approaches is that there are too many Haar-Like features in a single face image.
Another difficulty is that a great deal of non-face training samples are used to reach good performance. The big set of
training samples not only slow down the training, but also increase the number of weak classifiers greatly in cascaded
detector. So AdaBoost on every round needs to search a large pool of candidate weak classifiers and the computation is
very complex.
Attempting to get more efficient detector, improved AdaBoost algorithm called Rank-AdaBoost and Dual-AdaBoost
based on feature-value-division are proposed to speed-up the training and detection performance. Firstly, for one
Haar−Like feature, distribution of feature values of all face samples is divided into definite ranks. A small quantity of
value is used as possible threshold in training instead of all feature values of face samples. Then, the approach of fast
dual-threshold finding is developed in the enhanced AdaBoost algorithm, which makes the training process faster and
the detection accuracy higher. In the training process of cascaded detector, the formers classifiers are transferred to the
later, so that more non-face would be ignored. Both computational speed and the performance are improved obviously
by this approach simultaneously.
Experimental results on MIT-CBCL face set and MIT+CMU face set show that our method yields higher classification
performance than Viola and Jones' both on training speed and detection accuracy.
2. AdaBoost using Haar-Like feature
2.1 Haar-Like features and integral image
Haar-Like features are a kind of simple rectangle features proposed by Viola et al. as shown in Figure 1. The squares
represent a face image. The value of each Haar-Like feature is computed as a difference of the sum over the white and
black regions. It describes the local gray feature in the image. Using parity and threshold on this value, a class is
predicted.
Viola et al. use three kinds of features. They differ by their division of two, three or four rectangular areas. Rotating
these three types could easily generate other kinds of features. Every feature is characterized by its position in the face
frame, pre-specified size and type. Given that the base resolution of the classifier is 24 by 24 pixels, the exhaustive set
of rectangle filters is quite large, over 100,000, which is roughly O(N 4) where N=24 (i.e. the number of possible
locations times the number of possible sizes). The actual number is smaller since filters must fit within the classification
window.
Computation of rectangle filters can be accelerated using an intermediate image representation called the integral image.
Using this representation any rectangle filter, at any scale or location, can be evaluated in constant time. Integral image
at location (x, y) is computed as the sum of the pixel values above and to the left of (x,y). A original gray image I and its
integral image II is described as follows:

∑
=

=
yx

ji

jiIyxII
,

1,

),(),(

The integral image can be computed in one pass over the original image by using the following pair of recurrences:
S(x, y) = S(x, y − 1) + I(x, y)
II(x, y) =II(x − 1, y) + S(x, y)

(where S(x, y) is the cumulative row sum, S(x,−1) = 0, and II(−1, y) = 0). Using the integral image, the value of a
Haar-Like feature can be computed by plus or minus using the integral image. Any rectangular sum can be calculated in
four array references. Clearly the difference between two rectangular sums can be calculated in eight references. Since
the two-rectangle features defined above involve adjacent rectangular sums they can be computed in six array
references, and eight and nine references in the cases of three and four-rectangle features respectively.
In Figure 2, (d) is an integral image corresponding to the left image (a) and the feature (b). (c) shows the feature on the
image. Simple p4+p1−p2−p3−(p6+p3−p4−p5) could give the value of the feature. Much computing time is saved.
2.2 AdaBoost algorithm
In its original form, the AdaBoost learning algorithm is used to boost the classification performance of a simple learning

Vol. 1, No. 2 Computer and Information Science

 122

algorithm (e.g., it might be used to boost the performance of a simple perceptron). It does this by combining a collection
of weak classification functions to form a stronger classifier. In the language of boosting the simple learning algorithm
is called a weak learner. So, for example, the perceptron learning algorithm searches over the set of possible perceptrons
and returns the perceptron with the lowest classification error. The learner is called weak because we do not expect even
the best classification function to classify the training data well (i.e. for a given problem the best perceptron may only
classify the training data correctly 51% of the time). In order for the weak learner to be boosted, it is called upon to
solve a sequence of learning problems. After the first round of learning, the examples are re-weighted in order to
emphasize those who were incorrectly classified by the previous weak classifier. The final strong classifier takes the
form of a perceptron, a weighted combination of weak classifiers followed by a threshold.

f(x) =)(
1

xht

T

t
t∑

=

α

where f(x) is the final strong classifier, (h1(x),h2(x),……,ht (x)) is the serials of weak classifiers. The ht(x) can be thought
of as one feature with a threshold. The original form of the AdaBoost named as Init- AdaBoost is shown as:
1) Given example images: (x1 , y1), …, (xL , yL), where yi∈{1, 0} indicates positive or negative examples; gj(xi) is the jth

Haar-Like feature of ith example xi.
2) Initialize weights
Where m, n are the number of positive or negative examples respectively. L=m+n.
3) For t = 1 ... T
a. Normalize the weights

∑
=

=
L

j
jtitit www

1
,,, /

b. For each feature j, train a weak classifier hj, and evaluate its error εj with respect to wt, iij

L

i
itj yxhw −=∑

=

)(
1

.ε ,

⎩
⎨
⎧ <

=
otherwise

pxgp
xh jjjj

j
　　　

　　　

0

)(1
)(

θ

Where pj∈{1, -1} is a parity bit and θj is a threshold.
c. Choose the classifier ht with the lowest error εt
d. Update the weights wt+1, i = wt, iβt

1-ei, where ei=0 if example xi is classified correctly, ei=1 otherwise, and βt = εt/(1−εt).
4) Final classifier:

⎪⎩

⎪
⎨
⎧ ≥

= ∑∑ ==

 otherwise

xhxH
T
t tt

T
t t

 0

 5.0)(1)(11
αα

where αt = log (1/βt).
2.3. Cascaded detector
In an image, most sub-images are non-face instances. In order to improve computational efficiency greatly and also
reduce the false positive rate, a sequence of gradually more complex classifiers called a cascade is built.
An input window is evaluated on the first classifier of the cascade and if that classifier returns false then computation on
that window ends and the detector returns false. If the classifier returns true, then the window is passed to the next
classifier in the cascade. The next classifier evaluates the window in the same way. If the window passes through every
classifier with all returning true, then the detector returns true for that window. The more a window looks like a face,
the more classifiers are evaluated on it and the longer it takes to classify that window. Since most windows in an image
do not look like faces, most are quickly discarded as non-faces. Figure 3 describes the cascade.
By using cascaded detector, it is possible to use smaller and efficient classifiers to reject many negative examples at
early stage while detecting almost all the positive instances. Classifiers used at successive stages to examine difficult
cases become more and more complex.

0.5/m i≤m,
0.5/n otherwise w1, i =

Computer and Informaiton Science May, 2008

 123

Since easily recognizable non-face images are classified in the early stages. Subsequent classifiers are trained only on
examples that pass through all the previous classifiers. That is to say, classifiers of the later stages of the cascaded
detector can be trained rapidly only on the harder, but smaller, part of the non-face training set. Therefore this detection
approach would save the computational cost and maintain the performance simultaneously.
Stages in cascade are constructed by training classifiers using AdaBoost. Cascaded detector is trained as follows:
1) Input: Allowed false positive rate f, and detection rate d per layer; target overall false positive rate Ftarget. P denotes
set of positive examples, N denotes set of negative examples, ni is the number of weak classifiers in the ith layer
classifier.
2) F0 = 1, D0 = 1, i=0
3) While Fi > Ftarget
a. i++, ni=0, Fi=Fi-1
b. While Fi > f × Fi-1
• ni++.
• Use P and N to train a ith layer classifier with ni weak features using AdaBoost.
• Evaluate current cascaded classifier on validation set to determine Fi and Di.
• Decrease threshold for the ith classifier until the current cascaded classifier has a detection rate Di of at least d×Di−1,
evaluate Fi.
c. If Fi > Ftarget then evaluate the current cascaded classifier on the set of non-face images, and put any false detection
into the N.
3. Proposed Improved AdaBoost
3.1 Problem of time cost
In AdaBoost algorithm, the step 3)b time costs expensively, because all simple classifier hj(j=1:k) is desired to compute
where k is the number of the Haar-Like features and the k is a very large number. Moreover each hj is obtained by
exhaustive searching every samples so that it would take much time to only get a weak classifier ht(x).
If the Onetime is the time needed to get only one simple classifier, and the training time to get one weak classifier is
Traintime, then

Traintime = k* Onetime.
The step is done repeatedly until the face detection rate is satisfied. If the number of weak classifiers is T, then it would
cost Alltime to obtain the final strong classifier.

 Alltime = Traintime *T = k* Onetime *T
If there are 600 weak classifiers needed, the mean search time of each hj is 0.1s, only 24,000 features is used to train,
then the consumed time would be 600×24,000×0.1 =1,440,000s(i.e. 400 hours, about 16 days). It is too long. So it is
necessary to save the time for computing hj.
3.2 Division of the feature values
According to Init-AdaBoost, for one Haar-like feature, the feature value of each face sample is used as possible
threshold. Under a given parity, the possible threshold is compared with that of all training samples. Consequently the
false detection rate is calculated. Do it again under another parity. The threshold and the parity with this Haar-like
feature could be determined by the face sample which causes the minimum false detection rate, and the feature value of
this face sample is used as the threshold for the Haar-like feature.The cost time is O(m×n) where m ,n is the number of
face samples and non-face samples. In face detection training, m ,n are all very large, generally thousands even million.
So the time corresponding to O(m×n) is very expensive.
By the experiment results, we find that false detection occurred frequently when there are some noise on the image and
we also find that there are little difference between the feature values of some face samples, the ability of these feature
values to discriminate face sample and non-face sample is similar. So to reduce the number of possible threshold, we
could get the maximum and the minimum feature values of all training face samples with one Haar-like feature, and
obtain r ranks of the feature value from minimum to maximum feature value. That is:

∆j = (max(gj(xi))- min(gj(xi)))/r, i=1…m
Where gj(xi) is the jth Haar-Like feature of ith example xi.
Then using each Thk as a possible threshold to find the weak classifier and its threshold with the parity. Thk is computed
by Thk=min(gj(xi))+k×∆j (k=1……r).

Vol. 1, No. 2 Computer and Information Science

 124

Now the cost time would be O(r×(m+n)) instead of O(m×n). After do many experiments,we find that the detection
performance could be the same as Init-AdaBoost when r is less then 100. If let r=100, then the value of r×(m+n) would
be smaller and smaller than m×n because m, n are usually thousands even millions. So the time used to train would be
falled rapidly and could be denoted as O(m+n).
Furthermore, let Wk is the sum of weight of every samples under threshold Thk, Gk is the sum of weight of the samples
whose feature value is more than Thk, but less than Thk+1 , then the sum of weight of every samples under threshold Thk+1
is Wk+1.

Wk+1= Wk +Gk.

That is to say only those samples are tested whose feature value is more than Thk,, and it is not necessary to test all
samples to calculate Wk+1 when Wk has been known. So the time for training could be also saved.
The improved AdaBoost based on the division of the feature values is called Rank- AdaBoost.
3.3 Finding of dual-threshold
According to experimental results, the local feature distributes regularity corresponding to a weak classifier. The typical
local features of face and non-face are shown in Figure 4.
In Figure 4, vertical axis y says the ratio of face or non-face in total samples, the horizontal axis x is values of feature.
Threshold used to indicate face or non-face could be obtained rapidly. As Figure 4 shows, face is higher than non-face
from θ (1) to θ (2), so θ (1)and θ (2) are used as dual-threshold. The specific method to find threshold is described as
follows.
1) For each x, compute face(x)- nonface(x).
2) Choose x' with the maximum: x’=argmax (face (x)- nonface (x)).
3) From x' to left or right to find the crossing point which cause face(x)-nonface(x)<0. If no crossing point is found,
then the boundary point is selected as crossing point. So we could get two crossing points and use them as
dual-threshold. AdaBoost based dual-threshold is called Dual- AdaBoost.
When determining a feature as a current weak classifier or not, the dual-threshold of the features may be adjusted to
ensure weak classifier ht to meet the demand of detection. So this method can greatly accelerate each weak classifier
search. If there were 24,000 features, the search time would be 1/50 of that of exhaustive search.
4. Proposed Inheriting cascaded detector
In cascaded detector, fewer and fewer sub-window images need to be detected by layer classifier at later stages, a little
error would make overall detection performance decline. So, a sequence of gradually more complex and more powerful
classifiers are trained to increase classification performance with examples that have pass through all the previous
classifiers. During cascaded detector training, the predecessor is used as a part of its successor, that is to say each layer
is considered not only as an independent node of the cascaded classifier but also as a component of its successor. So the
later classifier includes more classification features.

fk(x) = fk−1(x) +)(
1

xht

T

i
t∑

=

α

where fk(x) and fk-1(x) is a strong classification function on the kth and k-1th layer respectively. It is called inheriting
cascaded detector. Based on this algorithm, the overall performance of the cascaded detector is enhanced. Moreover, the
threshold of classifier on different layers is adjusted to separate the training samples of face and non-face as far as
possible, so that more non-face would be ignored. Both computational speed and the performance are improved
obviously by this detection approach simultaneously.
As an example, we need to train strong classifiers on the kth layer. fk(x) and Hk(x) is a strong classification function
and strong classifier respectively. A total of L samples consist of m positive examples (face) and n negative examples
(non-face). Positive examples arrange in a sequence before n negative examples.
1) Given example images: (x1, y1), …, (xL, yL), where yi∈{1, -1} represents positive or negative examples; gj(xi) is the
jth Walsh feature of ith example xi. L=m+n.
2) Using the last weights resulted from the strong classifiers training on (k-1)th layer as w1,i. If k=1 then initialize

weights
3) Search θj

 (1) and θj
 (2) of each local feature based on its distribution in all face and non-face examples. Use θj

 (1) and θj

0.5/m i≤m,
0.5/n otherwise

w1, i =

Computer and Informaiton Science May, 2008

 125

(2) as dual-threshold .
4) For t = 1, ..., T
a. Normalize the weights

∑
=

=
L

j
jtitit www

1
,,, /

b. For each feature j, get a weak classifier hj with θj
(1) and θj

 (2) by the method discussed above, and evaluate its error εj,
)sgn()(

1 , iij
L

i itj yxhw∑=
=ε . Choose a weak classifier ht with the lowest error εt from all these weak classifiers, then

calculate coefficient
αt

(0) = (ln ((1−εt)/εt))/2.
c. Get a strong classifier function

fk(x) = fk−1(x) +)()()0(
1

1
xhxh tti

t

i
i αα +∑

−

=

The corresponding strong classifier is:

d. Using the thresholds to test on positive samples and to make fk(x) achieve the default requirements Dk≥d×Dk−1.
e. Use fk(x) to test on negative samples, if Fi≤f×Fi−1 then exit the iteration.

f. Update the weights tth
itit ww α−

+ = e,,1 , where αt = (ln ((1−εt)/εt))/2.

5) Get a strong classifier function

fk(x) = fk−1(x) +)(
1

xht

T

i
t∑

=

α

the corresponding strong classifier is:

where))((min
,1 ikmik xf

=
=β .

5. Experimental results
5.1 Experiments on MIT-CBCL data set
The publicly available MIT-CBCL face database is used to evaluate the performance of the proposed face detection
system. The original MIT-CBCL training set contains 2,429 face images and 4,548 non-face images in 19 ×19 pixels
grayscale PGM format. The training faces are only roughly aligned, i.e., they were cropped manually around each face
just above the eyebrows and about half-way between the mouth and the chin. The data set willserve our purpose of
comparing our detection system with their original system, which we shall train using the same training set. Some
samples are shown as Figure 5.
The training data set we used is the subset of MIT-CBCL and consist of 1,429 face images and 3,548 non-face images.
The test set consists of 1,000 face images and 1,000 non-face images left. The compuer we used is with P4/2.4GHz
CPU, 1 GB memory. The results are shown as Table 1.
According to Table 1, the Detection rate and False positive under Rank-AdaBoost or Dual-AdaBoost are similar with
Init-AdaBoost, but the training time is obviously different. The training time used in Dual-AdaBoost is only 1/50 of that
of Init-AdaBoost. The detection time also fall about half because of less classifiers used. Moreover,the robustness and
the ability of generalization become better and better.

1 fk(x)≥0,
-1 otherwise

Hk(x) =

Vol. 1, No. 2 Computer and Information Science

 126

5.2 Experiments on a Real-World Test Set
5.2.1 Training data sets selection
Face samples must be selected carefully with variability in face orientation (up-right, rotated), pose (frontal, profile),
facial expression, occlusion, and lighting conditions. Moreover some unimportant features of the face should be
removed, such as hair and or so.
Non-face samples could be selected randomly. Any sub-window of an image containing no face can be used as a
non-face sample. Almost arbitrary large training set can be easily constructed using these non-face samples.
In our experiment, the training data were collected from various sources. Face images were taken from the MIT-CBCL
face training dataset, FERET face dataset, NJUST603 and web. The dataset contains face images of variable quality,
different facial expressions and taken under wide range of lightning conditions. The dataset contained 8145 face
samples including rotated versions of some faces.
Non-face images were collected from the web and MIT-CBCL non-face dataset. Images of diverse scenes were
included. The dataset contained images such as animals, plants, countryside, man-made objects, etc. Some non-face
samples were selected by randomly picking sub-windows from hundreds of images that did not contain face. More than
2,180 thousand non-face samples were used. Hundreds of these non-face images is very similar to face. Each image of
all samples was cropped into size of 19×19. Figure 6 shows some face samples. Figure 7 shows some non-face samples.
In the experiment, 9954 total Haar-like features were selected and used as weak classifiers. The smallest rectangle filter
was defined as 4×4, the biggest was 16×16 on the window of 19×19 image.
5.2.2 Experimental results
Given that non-face samples discarded on each layer was more than 40%, at the same time the face samples detection
rate was more than 99.99% . We get a cascaded detector using the proposed improved AdaBoost and inheriting cascade
model. The face cascaded detector using Rank-AdaBoost has 35 layers of classifiers. The face cascaded detector using
Dual-AdaBoost has 21 layers of classifiers.
We tested our system on the MIT+CMU frontal face test set(Rowley et al,1998, pp.22–38). MIT+CMU dataset consists
of 130 images with 507 total frontal faces. Every image was resized by 0.85 each iteration during test. The the
performance of our detection system are shown in Table 2.
Experimental results on MIT+CMU face set shows that our method provides higher classification performance than
Viola and Jones' method both on training speed and detection accuracy.
6. Conclusions and Future Work
In this paper, we presented a speed-up technique to train a face detecotor using AdaBoost by improveing the threshold
searching method and new inheriting cascaded frame. Our proposed face detection system incorporating the technique
reduces the number of subwindows that need preprocessing and verification. The proposed system is much faster than
the original AdaBoost-based detection systems in training speed and is also higher in testing accuracy. It is suitable for
realtime applications. Further, the system performs well for frontal faces in gray scale images with variation in scale
and position.
A larger training set would be essential for the detector to be of practical use. In particular, the number of non-face
images would have to be drastically increased in order to decrease false positives. Moreover, as mentioned earlier, using
a larger number of Haar-like features would also improve the accuracy. Implementing and inproving the cascade is
required in order to achieve the ultimate aim of our work, i.e., to improve the accuracy of the detector while maintaining
real-time detection speed.
References
H.Rowley, S.Balujaand T.Kanade.(1998). Neural Network-based Face Detection. IEEE Pattern Analysis and Machine
Intelligence, 20, 22–38.
H.Rowley, S.Baluja and T.Kanade. (1998). Rotation Invariant Neural Network-based Face Detection. In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition [C], Australia, 38-44.
Liang Luhong, Ai Hai-zou and Xu Guang-you. (2002). A Survey of Human Face Detection. Chinese Journal of
Computer, 25, 449~458.
P. Viola and M. Jones. (2001). Rapid object detection using a boosted cascade of simple features [A]. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition [C], USA, 511~518.
P. Viola and M.Jones. (2004). Robust real-time face detection. International journal of Computer Vision, 57, 137~154
P. Viola and M. Jones. (2003). Fast Multi-view Face Detection. Shown as a demo at the IEEE Conference on Computer

Computer and Informaiton Science May, 2008

 127

Vision and Pattern Recognition [C], USA.
Schneiderman, H. and Kanade, T. (2000). A Statistical Method for 3D Object Detection Applied to Faces and Cars. In
Proc. of IEEE Conference on Computer Vision and Pattern Recognition, USA, 746-751.
Table 1. Comparison o f the training and detection

 Init-AdaBoost Rank-AdaBoost Dual-AdaBoost

Time for getting a Simple
classifier (s) 0.1192 0.0071 0.0023

Sum of weak classifier 96 98 56

Detection rate (%) 97% 96.4% 98.6%

False positive 1 2 0

Detection time (s) 1.766 1.781 0.953

Table 2. Results on the MIT+CMU test set

 Viola’s Detector Rank-AdaBoost Dual-AdaBoost

False Positive 50 78 167 48 82 169 51 69 138

Detection Rate(%) 91.4 92.1 93.9 91.2 92.3 94.0 91.8 92.6 94.2

Figure 1. Examples of the Viola and Jones features

(a) (b) (c) (d)

Figure 2. Features extraction using integral image

Figure 3. Schematic depiction of a cascaded detector

Vol. 1, No. 2 Computer and Information Science

 128

θ(1) θ(2)

Figure 4. Distribution of typical local features

(a) Some face examples (b) Some nonface examples

Figure 5. Some training examples

Figure 6. Some faces from the training set

Figure 7. Some non-faces from the training set

nonface

f(x)

P(f(x))

nonface

face

