
Vol. 2, No. 2 Computer and Information Science

 68

Formal Description for an Object-Oriented

Role-based Access Control Model
Chungen Xu

 Department of Applied Mathematics, Nanjing University of Science & Technology
Jiangsu 210094, China

Tel: 86-25-8431-5877 E-mail: xuchung@mail.njust.edu.cn

Sheng Gong
Library, Nanjing University of Science & Technology

Jiangsu 210094, China

Abstract
Role-based access control(RBAC) is a promising technology for managing and enforcing security in large-scale
enterprise-wide system, and we were motivated by the need to manage and enforce the strong access control technology
of RBAC in large-scale Web environments. Majority of traditional access control models were passive data-protections,
which were not suitable for large and complex multi-user interactive applications. In this paper, we develop a general
model to control users’ behaviors based on their roles actively, and proposes a framework of well-defined Formal
Description for developers to build application-level access control based on users’ roles. It ensure that each role is
configured with consistent privileges, each actor is authorized to proper roles and then each actor can activate and play
his authorized roles without interest conflicts. These formal specifications are consistent and inferable, complete and
simplified, abundant and scalable for diversified multi-user applications.
Keywords: Object-Oriented, Formal description, Role, Access control
1. Introduction
Nowadays multi-user applications tend to be large and complex. The functions and structures of large applications are
complicated and distributed. And thousands of users perform their diversified duties. All these increase complexity of
privilege management, and lead to low control efficiency of users’ interaction. Role-Based Access
Control(RBAC)(Sandhu, 1996,p.38-47)is a successful technology that will be a central component of emerging
enterprise security infrastructures. Moreover, dynamic management and collaborative control are difficult to come into
effect in the large-scale Web environment. So the quality of software on the web must get most improvement.
Majority of well-known access control models are passive ones, such as typical subject-object model, that are often
implemented by Access Control List (ACL) or access control matrices, and Lattice-based Access Control (LBAC) and
many others. These models focus on data-protections at the back-end of applications, and they do not distinguish
permission assignment from activation, and further, are not capable of representing or considering any levels of context
when processing an operation on an object. Recently, some works address active security models. Such as Task-based
Authorization Controls model(Gavrila,1998,p.81-90), and workflow authorization model(Yan, 2000,p.1064-1071)
These models consider somewhat context associated with tasks and workflow.
Our focus in this paper is on a general model to control users’ behaviors actively based on their roles. Object
Technology is used in the model, which is built in Unified Modeling Language (UML)(UML Summary
Version2.0.,2006). Users’ behaviors are abstracted as request services and get results. Thus, user services are protected
via a special interface, regardless of complexity of internal implements of these services to simplify management. Role
is used to organize behavior specifications of numerous users to reduce the burden of privilege management.
Role-Playing is introduced to denote activated role in particular context, and it is modeled as an active class. Every
object of Role-Playing runs in particular context, which interact with a user and controls the user’s behaviors actively.
Users work in collaborative environment. Users use their rights, also perform their obligations. The states, behaviors
and lifetime of Role-Playing objects can be monitored or audited to support dynamic management and business

Computer and Information Science May, 2009

 69

activities control. In this paper, we proposes a framework of well-defined Formal Description for developers to build
application-level access control based on users’ roles. It ensure that each role is configured with consistent privileges,
each actor is authorized to proper roles and then each actor can activate and play his authorized roles without interest
conflicts.
2. Model elements and constraint semantics
Figure 1 represents the model. Service is an interface, in which user-services are collected, and they are associated
with Roles by PA; Actors are made members of proper roles by SA objects; At runtime actors activate some of their
authorized roles with Role-Playing objects created and acquire authorized services.
As there are complex structural and semantic relations between protected objects in a large application, the model
builds a Service interface, thereby interface structure, dynamic privilege and privilege implication specifications are
specified. Notice that, any interface cannot be instantiated any object, therefor an element of Service is a service item
rather than an object of it.
Privilege_Authorization (PA) class is an association class between Role and Service. An instance of it is a tuple (r, s)
denoted by pa(r, s), which means role r has permission to a service item s under a context condition specified in its
attribute: context_cond.
Usually a permission of an operation implies another one, The implication relation is denoted by 21 ss cf⎯→⎯ , where cf
is a function converting the context condition of s1 to that of s2.
A large application may contain numerous and complex associated roles. The model supports role’s cardinality
constraint, Role Inheritance (RI), one kind of hierarchy structure, and Separation of Duties (SD) to signify interest
conflict relations.
Status_Authorization (SA) is an association class between Actor and Role. An instance of it is a tuple (a, r) denoted
by sa(a, r), which means the actor a has been authorized to role r.
An instance of Separation of Duties (SD) is a tuple(role1, role2) representing conflict of interest between them. There
are two subtypes of SD: Static Separation of Duties (SSD) and Dynamic Separation of Duties (DSD).
At runtime actors activate and play their authorized roles to perform their duties according with privilege specifications.
To signify the activated roles, the model introduces Role-Playing.
A role-playing is a performance of one role r activated by an actor a in particular context, which is an active object
denoted by rp{a, r}. An instance of Role-Playing(RP) class is a role-playing object running in particular context
denoted by rp{a,r}.context. A role r is activated, if and only if there exists at least one rp{x, r}.
3. Formal specifications of constraint
As the model uses many associations representing relations of objects, a set of specifications for association is set as
global constraints firstly.
3.1 Specifications for a role’s privileges to services
F1. A service item in Service is either an operation or an interface:

)(InterfacesOperationsServicess ∈∨∈↔∈∀

F2. Each operation is declared in particular interface:
iopInterfaceiOperationop <,∈∃→∈∀

Where iop < means that operation op is declared in interface i.

F3. Generalization between interfaces is built in strict partial orders: irreflexive, anti-symmetric and transitive.
F4. A PA object is a permission of a role to a service with context condition:

))()_).,((),((, srcondcontextsrpaCCPAsrpaServicesRoler cc⎯→⎯→↔∈∃∈∈∀

Where CC(pa(r, s).context_cond) means that current context satisfy the condition: pa(r, s).context_cond. sr cc⎯→⎯
means that role r has permission for service s under current context cc.
F5. If a role has authorization to an operation, then the interface in which the operation declared is authorized:

)_).,(_).,(',),('
),((,,

condcontextsrpacondcontextirpaPAirpa
isPAsrpaInterfaceiOperationsRoler

=∈∃
→∧∈∃∈∀∈∀∈∀ <

F6. If a role has authorization to an interface, then the super-interface of it is authorized:

)_).,(_).',(',)',('
),'(),((',,

condcontextsrpacondcontextsrpaPAsrpa
tionGeneralizassgPAsrpaInterfacessRoler

=∈∃
→∈∃∧∈∃∈∀∈∀

Vol. 2, No. 2 Computer and Information Science

 70

F7. If an operation implies another one, and a role has authorization to the operation, then the implied one is authorized
with context condition conversion:

))_).,((_).,(,),(
),()((,,

112222

112121

condcontextsrpacfcondcontextsrpaPAsrpa
PAsrpassOperationssRoler cf

=∈∃
→∈∃∧⎯→⎯∈∀∈∀

Where
21 ss cf⎯→⎯ denote operation s1 imply s2 with context condition conversion by cf. cf(pa1(r,s1).context_cond) converts

context condition of pa1 to that of pa2.
Below inference is derived from F4 and predicate logic:
For role r and service s, if more than one pa(r, s) objects are derived from F5, F6 or F7 or defined directly, then finally
only one pa(r, s) exists as a substitute with their context conditions union:

)_).,(_).,(_).,(
,),(),(),,((,

21

21

condcontextsrpacondcontextsrpacondcontextsrpa
PAsrpaPAsrpasrpaServicesRoler

∨=
∈∃→∈∃∈∀∈∀

3.2 Specifications for associations
F8. Each tuple value in an association class appears at most once:

''',)','('),,(), ,(ttbbaaCbatbatBAAssoCC =→=∧=∈∀∈∀

where AssoC(A,B) is a set of association classes of class A and B.
F9. If a tuple exist in an association class, then its associated objects must exist in the associated classes respectively:

() BbAaCbatBAAssoCC ∈∃∧∈∃→∈∀∈∀),(,,

F10. If class A associate with B, and the minimum of multiplicity of the associate end to A is 1, and if one object b exist
in B, then at least one object exists in A linking with b:

),(, 1).min(,),(balinkAaBbmultipACBAAssoCC ∈∃→∈∀∧=>−∈∀

Where C->A.multip is the multiplicity of C association end to A, and Link(a, b) means that object a links with b.
F8 and F9 apply to PA, RI, SD, SA et al. F8 ensures the objects consistency of association classes. F9 and F10 indicate
that prerequisite of associated object existence. For example in Figure 1, when a Role-Playing object rp{a, r} exist,
then a SA object sa(a,r) must exist by F10, and then the a exist in Actor and the r exist in Role by F9. F9 and F10
ensure that the associated object cannot be removed before the associating objects are removed.
3.3 Specifications for roles’ relations and authorizations
F11. The Role Inheritance (RI) relation ri(super-role, sub-role) are strict partial orders: irreflexive, anti-symmetric and
transitive.
F12. The Separation of Duties (SD) relation sd(r1, r2) are irreflexive, symmetric and intransitive.
F13. The SD is exclusive with RI for any two roles:

)),(),(),((, 1222112121 RIrrriRIrrriSDrrsdRolerr ∈¬∃∧∈¬∃→∈∃∈∀

F14. If a role inherits another role that is in SD with a third role, then the sub-role is in SD relation with the third one:
)),('),(),((,, 221121 SDrrsdSDrrsdRIrrriRolerrr ∈∃→∈∃∧∈∃∈∀

F15. The SD has Static Separation of Duties (SSD) and Dynamic Separation of Duties (DSD) as its sub-type:
)),(),(),((, 21212121 DSDrrdsdSSDrrssdSDrrsdRolerr ∈∃∨∈∃↔∈∃∈∀

F16. The SSD relation is exclusive with DSD for any two roles:
)),(),((, 212121 DSDrrdsdSSDrrssdRolerr ∈¬∃→∈∃∈∀

F17. If one role inherits another and an actor is authorized for the sub-role, then the actor is also authorized for its
super-role:

)),(),(),((,, 12212121 SArasaSArasaRIrrriActoraRolerr ∈∃→∈∃∧∈∃∈∀∈∀

F18. If a role has a privilege to a service, then the role has the privilege override the privileges of its super-roles to the
service:

))()_).,((),(
),'('),'((,',

srcondcontextsrpaCCPAsrpa
PAsrpaRIrrriServicesRolerr

cc⎯→⎯→→∈∃∧

∈∃∧∈∃∈∀∈∀

F19. If a role has not privileges to a service, then the role inherits the non-overridden privileges of its super-roles. (The
formal inheritance algorithm will be discussed elsewhere as its complexity)
F20. The number of authorized actors for any role does not exceed the authorized cardinality of the role:

)_.}|),({(ycardinalitauthorizedrActoraSArasaRoler ≤∈∈∈∀

Computer and Information Science May, 2009

 71

F21. An actor cannot be authorized for two roles in SSD relation:

)),(
),(),((,,

2

12121

SArasa
SArasaSSDrrssdRolerrActora

∈¬∃→
∈∃∧∈∃∈∀∈∀

Below inferences can be derived from above specifications:
If one role inherits another, the authorized cardinality of the sub-role cannot exceed that of its super-roles. There is no
role inheriting two roles in SD relation.
3.4 Specifications for activated roles
F22. The activated number of a role does not exceed its activated cardinality:

)_.}|},{{(ycardinalitactivatedrActoraPlayingRolerarpRoler ≤∈−∈∈∀

F23. An actor cannot activate two roles in DSD relation:

)},{
},{),((,,

2

12121

PlayingRolerarp
PlayingRolerarpDSDrrdsdRolerrActora

−∈¬∃→
−∈∃∧∈∃∈∀∈∀

F24. An actor activates a role no more than once in same context:
, ({ , } '{ , } , '{ , }. { , }.)a Actor r Role rp a r Role Playing rp a r Role Playing rp a r context rp a r context∀ ∈ ∀ ∈ ∃ ∈ − → ¬∃ ∈ − =

F25. If an actor activate a sub-role in a context, then its super-role is activated in the same context:
1 2 1 2 2 1 1 2, , ((,) { , } '{ , } , '{ , }. { , }.)a Actor r r Role ri r r RI rp a r Role Playing rp a r Role Playing rp a r context rp a r context∀ ∈ ∀ ∈ ∃ ∈ ∧∃ ∈ − →∃ ∈ − =

4. Conclusion
Formal Description specifications for application-level access control are challenging and imperative works. This paper
provides a novel framework of formal specifications, in which contain formal, consistent and inferable constraints.
They are more complete and simplified than traditional ones, but also they are general and scalable for a wide range of
multi-user interactive computing and distributed information–processing systems. The concept of usage control
(UCON)(Ferraiolo,2001,224-274.and Zhang, 2008,p.1-36.)]is an important access control system after RBAC and
introduced as a unified approach to capturing a number of extensions for access control models and systems. In UCON,
a control decision is determined by three aspects: authorizations, obligations and conditions. We will give the formal
specification of UCON in the future.
References
Dewan,D. and Shen,H. (1998). Controlling access in multiuser interface, ACM Transactions on Computer-Human
Interaction, Volume 5, No. 1, 34-62.
Enterprise JavaBeans Developers Guide (1999). [Online] http:/ /java.sun.com /products /ejb/ devguide. (Aug., 1999)
Ferraiolo, D. Sandhu, R. (2001). Proposed NIST Standard for Role-Based Access Control, ACM Trans. on Information
and System Security (TISSEC), 4(3) Aug. 2001, 224-274.
Gavrila,S.I. and Barkley,J.F. (1998). Formal specification for role based access control user/role and role/role
relationship management. RBAC '98. Proceedings of the third ACM workshop on Role-based access control, Oct.
22-23, 1998, Fairfax, VA, 81-90.
Jonathan D. M. (1998). Control principles and role hierarchies, RBAC '98. Proceedings of the third ACM workshop on
Role-based access control, Oct. 22-23, 1998, Fairfax, VA, 63-69.
Sandhu ,R.S., Coyne,E.J., Feinstein,H.L., and Youman,C.E. (1996). Role-Based Access Control Models. IEEE
Computer, Volume 29, Number 2, 38-47.
UML Summary Version2.0. (2006). UML Semantics Version2.0,UML Notation Guide. [Online] Available at:
http://www-01.ibm.com/software/rational/uml/ (Aug.,2006).
Yan, H., Zhang, H. and Xu, M.W. (2000). Object modeling and implementation of access control based on role,
Chinese Journal of Computers, v 23, n 10, 1064-1071.
Zhang, X.,Nakae, M., Covington, M. and Sandhu, R. (2008). Toward a Usage-Based Security Framework for
Collaborative Computing Systems, ACM Trans. on Information and System Security. (TISSEC), Volume 11, Number 1,
1-36.

Vol. 2, No. 2 Computer and Information Science

 72

RoleActor <<interface>>
Service

Privilege_Authorize(PA)Status_Authorize(SA)

{active}
Role-Playing

Role_Relation Service_Relation

messaging

* * **

*

*

*

*

* *
* *

* *

*

1

1

1

interact

perform
activate verify

invoke/return*

*

Figure 1. The class diagram of the model

