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Abstract 

In this paper, we introduce type systems to detect faulty calls of functions in a program. The intended meaning of 
the faulty call is calling a function with a miss-match to the number of its arguments. We use error-detecting 
semantics that when detects the faulty calls, doesn't proceed to the next state. Type systems are used in the 
process of analysis and in repairing. The paper presents two type systems: the safety type system which checks 
the safety of a given program and the repairing type system which corrects errors. The repairing process is made 
by replacing the faulty call of function with a correct one. In the repairing process simple interactive input/output 
statements are used. The interaction (input/output) helps to get the lost parameters by interacting with the user; 
informing him about the number of lost parameters. The user can then input these parameters. 

Keywords: type systems, semantics of programming languages, faulty function calls 

1. Introduction 

Programmers use functions in many cases as they make their work easier to follow. In most of programming 
languages, a function’s definition consists of function’s name, list of parameters and function’s body. This is the 
basic structure of functions. Often the function’s name with the list of parameters is called a declaration. The 
parameters are taken from the user to operate on by the function’s body. The function’s body is a group of 
statements that will be executed when the function is called. The value of the parameter is passed to the function 
during the call. When the programmer calls a function and passes to it a wrong number of parameters, an error 
occurs (El-Zawawy, 2012; El-Zawawy & Nayel, 2011). 

This paper presents a semantic approach to repair this kind of problems, such that if a function is called with 
passing a wrong number of parameters, the semantics gets stuck and does not proceeds to the next state. This 
semantics is called error-detecting semantics. The analysis is made via type system as it easier to work with. It is 
also easy to be related to a mathematical proof. We introduced two type systems; the first is to check the safety 
of the program (safety type system) and the second is to repair the errors (repair type system) (El-Zawawy, 2011c; 
El-Zawawy, 2011a; El-Zawawy, 2012; El-Zawawy & Nayel, 2011; El-Zawawy, 2011b). 

Example: 

succ(x) 

{x=x+1;} 

The function succ calculates the successor of an integer x. To find the successor of 5 we need to run succ(5). But 
if we run succ( ) or succ(5,6), we get error messages. These two calls are called faulty calls. To solve this 
problem, we use the interaction between the program and the environment to get the missing parameter. If a 
faulty call exists, the safety type system detects it and doesn’t continue to the next state. The repair type system 
repairs this error. The error is repaired by using a function put to inform the user about the right number of 
parameters needed. We use get to get the new values of the parameters. The new values will be assigned to fresh 
variables to save the new parameters values. After getting all the parameters, we call the function again with 
these new values. Note that: We ignore any values passed to the function in the first call “the faulty one” 
(El-Zawawy, 2011c; El-Zawawy, 2011a). We use type systems in the analysis as they provide useful features 
like optimization and documentation. 
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The rest of the paper is organized as follows. Section 2 introduces the syntax of the language and the error 
detecting semantics with the safety type system. In Section 3 the repair type system is presented with the proof of 
its soundness. Section 4 concludes the paper and Section 5 reviews some related work. 

2. Error Detection 

This section presents a small model for faulty function call (with respect to the number of arguments). When a 
function is called, it must be passed to the write number of parameters, according to its definition. The syntax of 
the While language appears in Figure 1. It is extended with statements for function call and interaction (getting or 
putting a value). The goal in this section is to capture the error when a faulty call is attempted (El-Zawawy, 2012; 
El-Zawawy & Nayel, 2011). In Figure 1, the set of statements Stm, and the set of the atomic statements Atm, are 
defined over the set of function names F. Var denotes the set of variables. a ranges over Atm, S over Stm, x 
over Var, and n over . We treat the Boolean values true and false as the numeric values 1 and 0. 

 

a::= n | x | a1 op a2 | x := a | skip | get 

S::= a | S1; S2 | if a then St else Sf | while a do St | f () = {S} |f(x1; x2; …; xn)={S} | put(a) 

 | call f (x1; x2; …; xn) | call f () 

Figure 1. The programming language 

 

Definition 1: 

The semantics state can be defined as a pair ( , ) such that, 

1- The store  is the function that maps the set of variables Var to the integers  , . 
2- The status function  is a map from the set of function names F to {a(n), na}, where a(n) means that the 

function takes n arguments and na denotes taking no arguments. 
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Figure 2. Error detecting semantics 

 

The rules of this transition system are presented in Figure 2. These rules allow no reach for a final state in case of 
faulty calls. So they get stuck when they found any faulty calls to the function. The Rules  and 
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 define a function f whose body is {S}. As we can see the function status is updated with a(n) or na 
according to the function definition. In  the function is defined to take n parameter, so the status of f is 
a(n). But in  the function is defined to take no parameter so f has the status na. The rules  
and  treat function calls. But we have a condition that the function status must agree with the function 
being called so the rule could be applied. If that condition is not satisfied as in  and , the 
execution gets stocked. The rule  updates the store with the new value of x. The rules   do 
not affect the store or the state. In the rule ,   only gets a numeric value so it doesn't affect the state. 
The rule for sequence,   has the familiar look that we know and it aborts if either of its statements get stuck 
in  or . Also in  and  every time we evaluate the guard expression, we execute either St or 
Sf according to the value of a. The rules of if statement get stuck in if St or Sf get stuck in   , 
respectively. The rule  evaluates St and the while statement if a evaluates to 1. The rule  deals 
with the case when (a) evaluates to zero, meaning that the condition is not satisfied. The while statement gets 
stuck in if St gets stuck as in  or if the while statement gets stuck as in . 

To check the safety of a program, a type system is used. This type system is defined in Figure 3 and is called 
Safety type system. The analysis here is a forward analysis and the types are the maps : , , where 
a(n) stands for taking n arguments and na for taking no arguments. The type decides for every function whether 
it takes n parameters or none. In Figure 3, the type judgment takes the form : . So if the type was c before 
executing S then it will be c' after the execution. 

The rules  and  deal with the function definition.  is for a function named f that takes 
n parameters. After executing this statement, the type map f to a(n) otherwise act like c. As for , it acts 
just the same but with mapping f to na meaning that f takes no parameters at all. The rule  have a 
condition that the function f must have the type a(m) so we can detect any errors when passing the wrong 
number of parameter. It deals with both cases, less or more parameter than we need. But as we can see the call 
statement doesn't change the type, and the same is true for . The rules , , ,  
all act the same, they don't change the type. The rules , ,   are easy to follow. 

Definition 2: 

1. The set of types is defined as C={ | : , |      , }. The 
bottom type is denoted by . 

2.  if and only if  and , . 
3. We say that a state ,  is of type c and write ,  if and only if  . 
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Figure 3. Safety type system 

 

Theorem 1: 

1. If  then , .  ,  implies , . 
2. Suppose that :  and , , . Then ,  implies , . 

Proof: 

1. Let  and let ,  then: 

.  but  therefore .  then , .  

2. By structural induction on type derivation as follows: 
a. For the rule , assume that , , … , :  and 

, , , … , , . Also assume , . We show that , , 
i.e. . . Since we have  and  

, then . Also   implies   
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. From the assumption we have . , and since , 
we can conclude .  as required. 

b. For the rule , assume that  :  and 
,  , . Also assume , . We show that , , i.e.

. . Since we have   and , then . Also 
   implies . From the assumption we have . , 

and since , we can conclude. .  as required. 
c. For the rule , assume that  and  , , . Also 

assume  , . We show that  , , i.e. . . We have 
 and . Also we have c=c'. Then 

. So we can conclude , . 
d. For the rule , assume that     and ,    , . 

Also assume , . We show that , , i.e. . . We have two 
cases: 
Case 1:   Since c=c', then  as required. 
Case 2:  Since all the semantics rules either keep  without change or add new 
functions to it's domain as in , then . Let  and

. Then  and    . From the assumption we have 
.  and . . Then we can conclude .   

as required. 

The remaining rules are straightforward to check.   

Now we can say that the type system is sound so there are no type errors according to:  

Theorem 2: 

Suppose that  in the safety-type system. Then if ,  then it is impossible to get  

, |. 

Proof: 

By structural induction on type derivation as follows: 

1. For the rule , we assume , , … , :   and , . We show that it is 
impossible to have , , , … , |, i.e. there exist ,  such that ,

, , … , , . But the only case we have is  , , , … ,
,  from . 

2. For the rule , we assume  :   and , . We show that it is impossible to 
have ,  |, i.e. there exist ,  such that ,  , . But the 
only case we have is ,  ,  from . 

3. For the rule , we assume :   and , . We show that it is impossible to 
have , |, i.e. there exist ,  such that , , . But the only 
case we have is , ,  from . 

4. For the rule , we assume    :   and , , and assume as a contradiction 
that ,    |. The required results from the induction hypothesis on . 

The remaining rules are straightforward to check. 

3. Repairing Faulty Calls 

Now, after we have checked the safety of the program, we may proceed to the repairing process. We are 
interested in only the errors that result from faulty calls. We have two kinds of functions; one that takes no 
arguments; and the other takes n arguments. The easy part is when we deal with the one that takes no argument. 
In this case, if by mistake any argument is passed to the function, we can easily ignore these values. The tricky 
part occurs when we deal with a function that takes parameters. We have two cases to deal with; the first case is 
when the number of parameters passed is less than the number in the function definition. The second case is 
when this number is more than the function needed. In both cases, we ignore all the values passed to the function 
in the faulty call. Then, we use put to output the right number of parameters needed, and then use  to get a 
new values for the parameters from the user. For example, if we define a function named r by: 
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;  

 10    10 ;  

  

To call this function in the right way, we have to run  . But running for example 6  is wrong. This can be 
repaired by ignoring the value passed here which is 6. So, 6  can be replaced by   i.e. 6  .  

Now, we have a function say ,  defined by: 

,   

  

;  

 ;  

;  

;  

  

To call this function, we may run 2,3 . But if we run  , 2 , or 2,4,6 , we get error messages since the 
function only needs two parameters. To solve this problem, we do the following: 

1. 2   
2. ;  ;  

3.  , ; 

In line 1, 2  informs the user that we need only two parameters to the function. In line 2, the user enters 
the new values and they are stored in  and , respectively. In line 3, the function call is made with the new 
values and the right number of parameters. For the repair type system, the types are the same as that of the safety 
type system. But the form of the type judgment will have a transformation component. The judgment will take 
the form : . This means that S can be replaced by S'. The rules of this type system appear in Figure 4. 
This type system is called the Repair type system as it replaces the wrong statement whenever it is possible. In 
Figure 4, the rule   makes the replacement if the number of parameters is not the same as the one that the 
function takes. The type system detects it, since it is a forward type system. The repairing is done by 
replacing  , , … ,   with  where n is the number of parameters needed. After informing the 
user that we need n new values, it proceeds with getting those values via the commands ;  

; … ; ;. Finally, call the function again with the new n values. The rule  can be considered as 
a special case of . We separate them to deal with the problem in a simpler way. The rules , , 

, and    well as the rules , , and  all are straightforward. 

 , , … , :
;

; ; … , ;
 , , … ,

       

 

 
 , , … , :   

             
 

:
       

 

:
         

 

:
         

 

:
       

 :             :

; : ;
        

 :             :

     :      
       

 :
   :     

       

 

Figure 4. Repair type system 
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Definition 3: 

, , , .    

, . .  

Theorem 3: 

Suppose that :  and , ,  then: 

1. If , ,  then there exists a state ,  such that , ,  and 
, , . 

2. If , ,  and S does not get stuck at , , then there exist a state ,  such that: 
, ,  and , , . 

Proof: 

1. By structural induction on type derivation of repair type system as follows: 
a. For the rule , assume that 

 

 , , … , :
;

; ; … , ;
 , , … ,

 

, and , , . Also assume , , , … , , . We show that there 
exists a state ,  such that 

, ; ; ; … , ;  , , … , , , 
and ,  , . Since , , , 

, , , where  is the value we have by . Also 
, , ,  , …  ,  

, , … , ,   

  , , … , , .  

Let  , , … , .  Then ,  , , … , , ). So 
g , ; ; ; … , ;  , , … , ,  . 
Since   and , . 
Since , , , . . Since all the variables added to  are 
all fresh then  , . The by assumption  and  satisfy the 
required conditions. 

b. For the rule , assume that  , , … , :   , 
and , , . Also assume , , , … , , . We show that there 
exists a state ,  such that ,   , , and ,  , . Since 

,   , , , ,  and , , , then 
, , . 

c. For the rule , assume that : , and , , . Also 
assume  , , . We show that there exists a state ,  such that 

, , , and  ,  , . Since ,
, , then  , , . But  and 

. Then . So , , . 
d. For the rule , assume that    :     , and 

, , . Also assume ,    , . We show that there exists a 
state ,  such that ,    , , and ,  , . We have 
two cases: 
Case 1: 0 In this case , ,  and ,  ,  by . So we 
can conclude that ,  , .   
Case 2: 1 In this case by  we have , ,  and ,

   , . We also have ,  ,  and   ,  
    , . By induction hypothesis we may assume he required for the sub 

statements. So ,  ,  and hence ,  , .   
The remaining rules are straightforward to check. 
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2. By structural induction on type derivation of Repair type system: 
a. For the rule , assume that 

 

 , , … , :
;

; ; … , ;
 , , … ,

 

Also assume , ,  and  , ; ; ; … ,
;  , , … , , . From Theorem 3.1, 

  , , … ,  and . From semantics rules we have 
,  , , … , , , . We show that there exists  
,    , ; ; ; … , ;  , , … ,
, , and ,  , . Since , ,  , , and  , we 

get ,  , .  
b. For the rule , we assume that   , , … , :   , 

and , , . Also assume ,  , . We show that there exists a 
state ,  such that ,  , , … , , , and  ,  , . 
Since ,  , , … , , , , and ( , )=(  , ). Then we can 
conclude that , , ,   , .  

c. For the rule , we assume that : , and , , . Also we 
assume , , . We show that there exists a state ,  such that 

, , and ,   , . Let , , .     
Hence , ,  and   ,  , . To show that 

,  , , it is enough to show that,  
and . . Since  and 

. But , then . Also we 
have .   and  . So .  . 
Then we get ,   ,  as required. 

d. For the rule , assume that    :     , and 
, , . Also assume  ,    , . 

Let ,    , . We have two cases: 
Case 1: 0 In this case , ,  and , ,  by . Then we 
can conclude that ,  , .   
Case 2:  1  In this case by  we have ,  ,  
and  ,     , . We also have , ,  
and ,     , . As induction hypothesis we may assume the 
required for the sub statements. So  , , ), then  ,  , . 

The remaining rules are straightforward to check.   

4. Conclusion 

This paper presents a type system for detecting faulty calls of functions and a type system for repairing these 
errors by interacting with the user through input/output statements. The errors that we treat are the function calls 
that have wrong number of arguments (more or less) than the function needs. To repair these errors, we ignore all 
the parameter values and ask the user to re-input them and when we get these values we call the function again 
with them. The soundness of both type systems is proved via induction on the type rules. 

5. Related and Future Work 

In (Fischer, Saabas, & Uustalu, 2009) two problems related to file access errors and queues are approached. The 
file problem happens when opening a file that is already opened or closing a file that is already closed. Also 
reading from a closed file is another source of abortion. The work in (Fischer, Saabas, & Uustalu, 2009) ignores 
end of file errors for simplicity. For the concept of queue, this paper treats situations of adding values to full 
queues (over/under flow). 

Type systems are used intensively (El-Zawawy, 2011c; El-Zawawy, 2011a; El-Zawawy, 2012; El-Zawawy & 
Nayel, 2011; El-Zawawy, 2011b) in program analysis. In (El-Zawawy, 2011c), the problem of dead-code 
elimination was approached with type systems. This optimization is based on flow-sensitive pointer analysis. 
The final type system is an enrichment of that pointer analysis. The work in (El-Zawawy, 2011c) deals with the 
memory safety of multi-threaded programs. This paper presents a type system for pointer analysis of 
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multi-threaded programs. The memory-safety type system is a flow sensitive which invokes anther flow 
insensitive type system (for pointer analysis). Basic constructs treated by these flow-insensitive type systems (for 
pointer analysis) are parallel programming constructs. 

In Benton's work (Benton, 2004), static analysis is presented via elementary logic; type systems are used in the 
analysis to generalize it with Hoare logic which is used in the optimization of while programs. A data-structure 
repair-system is presented in (Demsky & Rinard, 2006). This system generates a repair algorithm for the input 
data structures that have the form of relational model. This algorithm detects and repairs the errors during the 
program execution. In (Denney & Fischer, 2003), the static safety of the program is proved to guarantee a 
dynamic safety. This is done using Hoare reference rules to check the safety policies. In this work, the soundness 
and completeness of safety policies on memory access and memory read and write are proved. The assertion 
violation is treated in (Elkarablieh, Garcia, Suen, & Khurshid, 2007) with a repairing algorithm that finds the 
errors and repairs them without terminating the program. This algorithm repairs complex structures with the 
ability to recover from future errors. 

In (Frade, Saabas, & Uustalu, 2007) live variables analysis is treated as a classical data flow analysis, and shown 
to be certified on a variety of levels; completely analogous to certification of program safety or functional 
correctness. This paper shows that the type systems should be seen as foundational Hoare logic to study the same 
abstract semantics. The programs studied in (Frade, Saabas, & Uustalu, 2007) contain a provision for 
error-detection and error-recovery presented in (Horning, Lauer, Melliar-Smith, & Randell, 1974). The work in 
(Knoop, Rüthing, & Stefen, 1994) presents a version of the algorithm of lazy code motion that works on a flow 
graph. The algorithm is a life time optimal with a unidirectional analysis. 

The work (Paleri, Srikant, & Shankar, 2003) presents a simple for partial redundancy elimination which is built 
up on the two concepts of partial availability and safe partial anticipability. This algorithm works on flow graph 
with four unidirectional analyses. This algorithm also integrates the notations of safety from the definition of 
partial availability and from the definition of safe partial anticipability. A program optimization approach is 
presented in (Saabas & Uustalu, 2008a). This work presents compositional type systems with a transformation 
component. Dead-code elimination and common sub-expression elimination are studied in (Saabas & Uustalu, 
2008a). 

The work in (Saabas & Uustalu, 2007) presents a type system for optimizing stack-based code. In this work, 
dead store instructions and load-pop pairs are treated with no need for assumption about input code. An 
algorithm for soundness proofs and strongest analysis is presented in a simple way in (Saabas & Uustalu, 2007). 
Optimizations of partial redundancy elimination are studied in (Saabas & Uustalu, 2008b). More precisely 
(Saabas & Uustalu, 2008b) optimizes the Hoare logic proofs of the given program with the help of a type 
derivation representation of the result of the underlying data flow analyses. 

Mathematical domains and maps between domains can be used to mathematically represent programs and data 
structures. This representation is called denotation semantics of programs (Cazorla, Cuartero, Ruiz, & Pelayo, 
2000; Guo, 2001; Schwartz, 1979). One of our directions for future research is to translate concepts of function 
repair to the side of denotation semantics (El-Zawawy & Jung, 2006; El-Zawawy, 2007). Doing so provides a 
good tool to mathematically study in deep function repair. Then obtained results can be translated back to the 
side of programs and data structures. 
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