
www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

Published by Canadian Center of Science and Education 55

Structured Acceptance Test Suite Generation Process for Multi-Agent
System

Belkacem Athamena (Corresponding author)

MIS Department, College of Business Administration

Al Ain University of Science and Technology

PO box 64141, Al Ain, Abu Dhabi, UAE

E-mail: athamena@gmail.com

Zina Houhamdi

Software Engineering Department, College of Engineering and IT

Al Ain University of Science and Technology

PO box 64141, Al Ain, Abu Dhabi, UAE

E-mail: z_houhamdi@yahoo.fr

Received: November 13, 2011 Accepted: November 22, 2011 Published: January 1, 2012

doi:10.5539/cis.v5n1p55 URL: http://dx.doi.org/10.5539/cis.v5n1p55

Abstract

In recent years, Agent-Oriented Software Engineering (AOSE) methodologies are proposed to develop complex
distributed systems based upon the agent paradigm. The implementation for such systems has usually the form of
Multi-Agent Systems (MAS). Testing of MAS is a challenging task because these systems are often programmed
to be autonomous and deliberative, and they operate in an open world, which requires context awareness. In this
paper, we introduce a novel approach for goal-oriented software acceptance testing. It specifies a testing process
that complements the goal oriented methodology Tropos and strengthens the mutual relationship between goal
analysis and testing. Furthermore, it defines a structured and comprehensive acceptance testing process for
engineering software agents by providing a systematic way of deriving test cases from goal analysis.

Keywords: Agent Testing, Goal-Oriented Testing Methodology, Acceptance Testing, Test Case Generation

1. Introduction

MAS are increasingly taking over operations and controls in enterprise management, automated vehicles, and
financing systems, assurances that these complex systems operate properly need to be given to their owners and
their users (Nguyen et al., 2010). This calls for an investigation of suitable software engineering frameworks,
including requirements engineering, architecture, and testing techniques, to provide adequate software
development processes and supporting tools. In particular, the very specific nature of software agents makes it
difficult to apply existing software testing techniques to them. For instance, agents operate asynchronously and
in parallel, which challenges testing and debugging. As a result, testing software agents and MAS seeks for new
testing techniques dealing with their peculiar nature. The techniques need to be effective and adequate to
evaluate agent's autonomous behaviors and build confidence in them.

The strong connection between requirements engineering and testing is widely recognized (Graham, 2002). First,
designing test cases early and in parallel with requirements helps discovering problems early thus avoiding
implementing erroneous specifications. Secondly, good requirements produce better tests. Moreover, early test
specification produces better requirements because it helps to clarify ambiguities in requirements. The link is so
important that considerable effort has been devoted to what is called test-driven (or test-first) development. In
such approach, tests are produced from requirements before implementing the requirements themselves (Beck,
2002).

Several AOSE methodologies have been proposed (Henderson-Sellers & Giorgini, 2005; Houhamdi, 2011a). In
terms of testing and verification, while some consider specification-based formal verification (Dardenne et al.,
1993; Fuxman et al., 2004; Perini et al., 2003), other borrow Object-Oriented (OO) testing techniques, taking

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

 ISSN 1913-8989 E-ISSN 1913-8997 56

advantage of a mapping of agent-oriented abstractions into OO constructs (Cossentino, 2008; Pavon et al., 2005).
However, a structured testing process for AOSE methodologies is still absent.

In this paper, we propose an acceptance testing process that exploits the link between requirements and test cases.
We describe the proposed approach with reference to the Tropos software development methodology
(Mylopoulos & Castro, 2000) and consider MAS as the target implementation technology.

The remainder of the paper is organized as follows. Section 2 recalls basic elements of the Tropos methodology
and introduces related work. Section 3 discusses the proposed approach, an acceptance testing process and test
suite derivation. An example that illustrates how to derive test suites is presented in Section 4. Finally, Section 5
gives conclusion.

2. Background and Related Works

2.1 Tropos
Tropos is an AOSE methodology that covers the whole software development process. Tropos is based on two
key ideas. First, the notion of agent and all related mentalistic notions (for instance goals and plans) are used in
all phases of software development, from early analysis down to the actual implementation. Second, Tropos
covers also the very early phases of requirements analysis, thus allowing for a deeper understanding of the
environment where the software must operate, and of the kind of interactions that should occur between software
and human agents. Tropos methodology spans five phases (Fuxman et al., 2004; Mylopoulos & Castro, 2000):

(1) Early requirements concerned with the problem understanding by studying an organizational setting where
the intended system will operate. The output of this phase is an organizational model which includes relevant
actors (representing stakeholders) their respective goals (stakeholder’s objectives) and their interdependencies.

(2) Late requirements, where the intended system is described within its operational environment, along with
relevant functions (hardgoals) and qualities (softgoals). The intended system is introduced as a new actor. It
appears with new dependencies with existing actors that indicate the obligations of the system towards its
context as well as what the system expects from existing actors in its environment.

(3) Architectural design, where the system’s global architecture is defined in terms of subsystems,
interconnected through data, control and other dependencies. More system actors are introduced. They are
assigned to subgoals or goals and tasks (those assigned to the system as a whole).

(4) Detailed design, where behavior of each architectural component is defined in more detail including
specification of communication and coordination protocols. Agents' goals, beliefs and capabilities are
specified in detail using existing modeling languages like UML or AUML, along with the interaction between
them should occur between software and human agents.

(5) Implementation. During this phase, the Tropos specification, produced during detailed design, is
transformed into a skeleton for the implementation. This is done through a projection from the Tropos
constructs to those of a target agent programming platform, such as JADE (TILAB, 2011). Recent work on
mapping Tropos goal model to JADEX programming platform is described in (Penserini et al., 2006).

2.2 MAS Testing Type
There are four types of testing: Agent testing, Integration testing, System testing and Acceptance testing. The
objectives and scope of each type is described as follows:

 Agent testing. The smallest unit of testing in agent-oriented programming is an agent. Testing a single agent
consists of testing its inner functionality and agent’s capabilities to fulfill its goals and to sense and effect the
environment (Houhamdi, 2011b).

 Integration testing. An agent has been unit-tested; we have to test its integration with existing agents. In some
circumstances, we have to test also the integration of that agent with the agents that will be developed and
integrated subsequently. Integration testing make sure that a group of agents and environmental resources
work correctly together which involves checking an agent works properly with the agents that have been
integrated before it and with the “future” agents that are in the course of Agent testing or that are not ready to
be integrated. This often leads to developing mock agents or stubs that simulate the behaviors of the “future”
agents (Houhamdi & Athamena, 2011a).

 System testing. Agents may operate correctly when they run alone but incorrectly when they are put together.
System testing involves making sure all agents in the system work together as intended. Specifically, one

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

Published by Canadian Center of Science and Education 57

must test the interactions among agents (protocol, incompatible content or convention, etc.) and other
concerns like security, deadlock (Houhamdi & Athamena, 2011b).

 Acceptance testing. Test the MAS in the customer execution environment and verify that it meets the
stakeholder goals, with the participation of stakeholders.

To the best of our knowledge, there is no work dealing explicitly with testing MAS at the acceptance level,
currently. In fact, agent, integration, and system test harnesses can be reused in acceptance test, providing
execution facilities. However, as testing objectives of acceptance test differ from those of the lower levels,
evaluation metrics at this level (such as metrics for openness, fault-tolerance, and adaptivity) demand for further
research. In this work, we are interested by acceptance testing and in next section, we present in detail a testing
process model and we discuss how to derive systematically test cases from goal models.

3. Test Suite Derivation

The acceptance test is a final test of the system, to be executed after the software passes all of the more extensive
unit tests and has been successfully integrated. The acceptance test will consist of a set of selected tests which
demonstrate that the system complies with all requirements, but will not be as exhaustive as the unit and
integration testing (Trevor, 2009).

Acceptance test suite derivation takes place at the Late Requirements phase, in parallel with the system analysis.
At this stage, we have identified: actors, actors' goals, and dependencies between actors. Actors include
stakeholders, identified at Early Requirements phase, and system actors. Stakeholder actors present their
intentions to the system actors by goal dependencies: they delegate goals to the system actors. Stakeholder goals
represent stakeholder objectives and requirements towards the intended system. This type of goal is mainly
identified at the early requirements phase of Tropos. System goals represent system-level objectives or qualities
that the intended system has to reach or provide. This type of goal is mainly specified at the late requirements
phase of Tropos (Dastani et al., 2006). In general, these goals represent users' objectives and intentions with
regard to the intended system, so the fulfillment of these goals is a pivotal benchmark to the system acceptance.
Thus, we will use them as foundations for acceptance test suites.

Acceptance test suite derivation consists of the following steps: For each stakeholder actor identified in the early
and late requirements phases, a set of goals that the actor delegates or depends on the system is identified. These
goals are analyzed by means of decomposition or contribution analysis; and the results are goal decomposition
trees inside system actors. Then, for each of these goals, we have to read the corresponding analysis goal tree to
identify the leaf goals of the tree, and finally to create a test suite for each leaf goal (see Figure 1).

The derived acceptance test suites can be used for two distinctive objectives: Refining the analysis model and
acceptance test. The first objective is realized during acceptance test suite derivation. By using derived suites to
review the specification, one could point out problems with the analysis goal model, such as decomposition,
unsatisfiability, ambiguities, implicit assumptions, inconsistencies (e.g., a goal cannot be fulfilled or a hardgoal
somehow contributes to a softgoal both positively and negatively), and so forth. Problems pointed out at this
stage could substantially reduce development effort, since they can be solved before implementation. On the
other hand, the second objective requires the system to be built. At this time, derived test suites are used by the
customer to evaluate the delivered system to decide eventually whether the system is ready to be deployed or it
needs further improvement.

The analysis of each system actor consists of goal decomposition/contribution trees, in that, goals can be
decomposed into sub-goals, and sub-goals are means to achieve or to contribute to the goals. According to the
introduced steps, we analyze the goal trees and create a test suite for each leaf goal.

Each test suite contains a set of test cases corresponding to the scenarios identified. The operational and usage
scenarios and the fulfillment criteria depend on the problem domain, but they often need agreements from both
sides: customer and development team. Both, work together to define these scenarios. Finally, the fulfillment of
actor's goals can be reasoned on the basis of the fulfillment of the leaf goals and the goal
decomposition/contribution trees.

The basic requirement for the system acceptance (i.e. all the derived test suites are passed) entails that all the
goals of all the stakeholder actors are achieved or satisfied.

4. Case Study

To illustrate our approach, we introduce a multi-agent system that is composed of several cleaning agents
working at a public garden. This software could be deployed on a physical platform composed of a set of moving

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

 ISSN 1913-8989 E-ISSN 1913-8997 58

robots. Robots are in charge of keeping the garden clean; agents in the system have to collaborate to optimize
their work and be nice with visitors.

Following the guidelines of Tropos, we do the early requirements analysis and identify stakeholders' goals
associated with Robot agent (see Figure 2).

There are two top softgoals that the stakeholder wants to reach: SG1: minimize-cleaning-expense and SG0:
improve-service-quality. To reach the latter, two other sub-goals need to be fulfilled: G1: keep-the-garden-clean
and SG2: please-visitors. There could be more goals that the stakeholder wants to achieve, but we consider only
these goals to keep the example simple and understandable.

Figure 3 shows the late requirements analysis for Robot. The stakeholder delegates three goals SG1, SG2, and
G1 to the multi-agent system under construction. At a high-level view, the system adds two hardgoals: G2:
team-work and G3: be-polite in order to reach SG1, SG2, as required. Robots must achieve all the three
hardgoals. Based on goal models specified in the first two phases Early and Late Requirements, we identify three
leaf goals that give rise to three acceptance test suites, following the steps described in system flowchart (Figure
1). Each test suite can have several test cases. The test scenarios presented in Table 1, Table 2 and Table 3 are
abstract, and we keep them so to make our example simple.

For instance, for the scenario of the test case TC1.1, we could specify it as follows: The checking area is a
rectangle of 15 x 20 meters. At positions (2,4), (4,8), (10,12), (10,17), we put the following garbage: 1
newspaper at (2,2); 2 plastic glasses at (4,5); dust at (15,15); 1 towel and soft drink at (14,12), within a 0.5 meter
circle. The robot is put at position (1,1) and is switched on by a stakeholder. It is left alone, cleaning the area for
half an hour. Then, it is switched off by a garden staff.

5. Conclusion

This paper introduced a suite test derivation approach for acceptance testing that takes goal-oriented
requirements analysis artifact as the core elements for test case derivation. The proposed process has been
illustrated with respect to the Tropos development process. It provides systematic guidance to generate test suites
from modeling artifacts produced along with the development process. We have discuss how to derive test suites
for acceptance test from organizational and system goals. These test suites can be used to refine goal analysis
and to detect problems early in the development process.

Similar to object-oriented approaches in which test cases are derived from use-case requirements models, we
investigate how to derive test cases from goal-oriented Tropos requirements models. Specifically, the proposed
methodology contributes to the existing AOSE methodologies by providing:

 A testing process model, which complements the development methodology by drawing a connection between
goals and test cases, and,

 A systematic way for deriving test cases from goal analysis.

References

Beck, K. (2002). Test driven development: By example. Boston, MA, USA: Addison-Wesley Longman
Publishing.

Cossentino, M. (2008). From Requirements to Code with PASSI Methodology. In Sugumaran, V. (Ed.),
Intelligent Information Technologies: Concepts, Methodologies, Tools, and Applications, 491-512.

Dardenne, A., Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of
Computer Programming, 20(1-2), 3-50. http://dx.doi.org/10.1016/0167-6423(93)90021-G

Dastani, M., Riemsdijk, M., & Meyer, J. (2006). Goal types in agent programming. In Proceeding of the 17th
European Conference on Artificial Intelligence (ECAI’06), Frontiers in Artificial Intelligence and Applications,
141, 220-224.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004). Specifying and analyzing
early requirements in Tropos. Requirements Engineering, 2, 132-150.
http://dx.doi.org/10.1007/s00766-004-0191-7

Graham, D. (2002). Requirements and testing: Seven missing-link myths. IEEE Software, 5, 15-17.
http://dx.doi.org/10.1109/MS.2002.1032845

Henderson-Sellers, B., & Giorgini, P. (2005). Agent-Oriented Methodologies. USA: Idea Group Publishing.
http://dx.doi.org/10.4018/978-1-59140-581-8

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

Published by Canadian Center of Science and Education 59

Houhamdi, Z. (2011a). Multi-agent system testing: A survey. International Journal of Advanced Computer
Science and Applications, 2(6), 135-141. http://dx.doi.org/10.3844/jcssp.2011.690.697

Houhamdi, Z. (2011b). Test suite generation process for agent testing. Indian Journal of Computer Science and
Engineering, 2(2), 272-280. http://www.ijcse.com/docs/IJCSE11-02-02-50.pdf

Houhamdi, Z., & Athamena, B. (2011a). Structured integration test suite generation process for multi-agent
system. Journal of Computer Science, 7(5), 690-697.

Houhamdi, Z., & Athamena, B. (2011b). Structured system test suite generation process for multi-agent system.
International Journal on Computer Science and Engineering, 3(4), 1681-1688. http://www.enggjournals.com/
ijcse/doc/IJCSE11-03-04-036.pdf

Mylopoulos, J., & Castro, J. (2000). Tropos: A framework for requirements-driven software development.
Information Systems Engineering State of the Art and Research Themes SpringerVerlag, 261-273.

Nguyen, C., Perini A., & Tonella, P. (2010). Goal oriented testing for MASs. Int. J. Agent-Oriented Software
Eng., 4, 79-109. http://dx.doi.org/10.1504/IJAOSE.2010.029810

Pavon, J., Gomez-Sanz, J. J., & Fuentes, R. (2005). The INGENIAS Methodology and Tools. In
Henderson-Sellers, B., & Giorgini, P. (Eds.), Agent-Oriented Methodologies, 236-276.

Perini, A., Pistore, M., Roveri, M., & Susi, A. (2003). Agent-oriented modeling by interleaving formal and
informal specification. In Proc. AOSE, 36-52. http://dx.doi.org/10.1007/978-3-540-24620-6_3

Penserini, L., Perini, A., Susi, A., & Mylopoulos, J. (2006). From capability specifications to code for
multi-agent software. In proceeding of the 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE’06), 253-256.

TILAB (2011). Java agent development framework. [Online] Available: http://jade.tilab.com/

Trevor, A. (2009). User acceptance testing. Silverpath technologies Inc. http://www.silverpath.com/resources/
Silverpath-UserAcceptanceTestingWhitepaper-090203.pdf

Table 1. Test suite derived for goal G1 (Keep the Garden Clean)

Test case Scenario Criteria

TC1.1
Given an actual area of the garden (A for short), garbage are
placed at specified positions (p1; …; pn), the amount of garbage
is (a1; a2; …; an), respectively. The robot must clean this area.

The area will be cleaned in
less than t minutes.

TC1.2
Area A has garbage that is repeatedly thrown into it in a random
manner.

The area is periodically
cleaned.

TC1.3
Depending on the time at the garden, area A can be more or less
dirty: the amount of garbage is a function of time and position.

Robot adapts its cleaning
interval and focal positions.

Table 2. Test suite derived for goal G2 (Team Work)

Test case Scenario Criteria

TC 2.1 Agents of robots work together in area A.
The agents do not overlap their cleaning
areas.

TC2.2 There is two recharging stations (X1;X2) in A.
There is no conflict with regard to the
recharging station.

Table 3. Test suite derived for goal G3 (Be polite)

Test case Scenario Criteria

TC3.1
While the cleaning agents are moving or
cleaning in area A, there are N humans
moving in the area along different directions.

The cleaning agents stop moving/working and
nod their heads to say hello when they meet a
human.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

 ISSN 1913-8989 E-ISSN 1913-8997 60

Figure 1. Acceptance test flowchart

TS ← Empty

LS =Scenario Sets

True

True

C

False

Start

Identify stockholder’s actors

AL ≠ null End

Next LG
False

LS ≠ null

Identify Criteria(C)

TC ← (LS, C)

Insert (TC, TS)

Next LS

TC =Test Case

LG = leaf Goal List

Identify scenarios related to LG

LG ≠ null Next= Goal

Obtain Leaf Goals

Decomposition tree

True

Goal decomposition

GL ≠ null Next AL
False

GL = Goals List

True

Identify Actors Goals

False
End

AL = List of Actors

Identify stockholder’s actors

AL ≠ null

TS = Test Suite

TS ← Empty

Start

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 1; January 2012

Published by Canadian Center of Science and Education 61

Garden Staff

G1: Keep-garden clean
SG1: Minimize

Expense

SG2: Please Visitors

Actor Dependence link (And) Softgoal Hardgoal

Figure 2. Stakeholder's goals

Figure 3. Goal decomposition tree

Actor Dependence link (And)

 Contribution link

Softgoal

Hardgoal

SG1: Minimize

Expense

Cleaning Robot

G1: Keep-garden clean

SG2: Please Visitors

G2: Team work G3: Be polite

